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Abstract: Carotenoids and betalains are food-derived bioactive compounds well-known for their
countless healthy properties, especially as antioxidants, anti-inflammatory and immune system
regulators. We have achieved a concise literature review on the main topics related to fruits and
vegetables that contain such bioactive compounds, their localization in the plant cells, enzyme-
assisted extraction (EAE) from vegetable sources (agricultural/food waste and unsold fruits and
vegetables) and methods to improve pigment stability. The growing demand for more sustainable,
efficient, and energy-saving techniques has driven the design of EAE protocols, such as a green
route for the recovery of more stable natural pigments avoiding the use of organic solvents. This
review discusses for the first time the application of commercial multi-enzymatic preparations by
comparing it with the use of a tailored enzymatic mix, specifically formulated on the basis of the
polysaccharide composition of vegetable source, for enhancing pigment recovery yield and stability.
In order to move the economy in the direction of a circular economy model, the valorization of fruit
and vegetable waste as a source of high added-value compounds, such as natural colorants, is a key
issue. Therefore, the unsold vegetables may find a different use, where the donation to a food bank
or charity organization may not be a viable path.
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1. Introduction

The economic, environmental and ethical impact deriving from unsold food, which
contributes to increasing the volume of food waste, has led to a strategy shift from food
retailers. A quick and easy solution could be to take initiatives such as price promotions or
donations [1]. In the European grocery store, the costs associated with food waste are, on
average, about 1.6% of net sales and nearly 4% for the worst food retailers [2,3]. Referring
to data from the European Statistical Institute (Eurostat), it is possible to estimate that the
wholesale and retail food sector accounts for 5% of food waste in the EU. In detail, the work
of Gonzalez-Torre et al. [4] investigated marketplaces in Spain, proving that it is possible
to better manage unsold food via donations to food banks. Piirsalu et al. [5] reported a
comprehensive study concerning the situation in Estonia, highlighting that about half (49%)
of the unsold food products lie in fruits and vegetables (27% and 22%, respectively). A
similar scenario has been found in the USA, where 13–14% of fruits and vegetables supplied
to supermarkets remain unsold, which amounts to 6 Mt per year [6].

The data analysis shows that 46 tonnes/year of food remain unsold in a large gro-
cery store (supermarket and hypermarket), 11 tonnes/year in a medium-sized store, and
1.7 tonnes/year in a small store [5]. At the same time, the stores donate about 12% of unsold
food to food banks or other charity organizations. Concerning Italy, Tedesco et al. [7]
reported that in the General Wholesale Market of Milan, about 1500 tonnes/year of unsold
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vegetables are generated and collected to be redistributed by charitable organizations. How-
ever, given the high perishability of these products, the donation of unsold food is limited
by national legislation, and most of them become food waste destined for landfill [8]. In
order to harmonize the unsold food legislation of member states, the European Parliament
has adopted the resolution n. 2018/C 307/03 [9].

In a circular economy model, the valorization of fruit and vegetable waste makes it
possible to recycle or reuse materials and reinsert them into the supply chain, thus allowing
economic growth as well as minimizing negative environmental effects [10]. Different
biotechnological methods and green processing technologies (e.g., microwave-, pressur-
ized liquid-, ultrasound-, supercritical fluid-, pulsed electric field- and enzyme-assisted
extraction) can be used for the extraction of high added-value molecules from unsold
fruits and vegetables, fulfilling the consumer’s expectation and reducing the environmental
footprint [11,12]. These high added-value molecules, such as proteins, peptides, polysac-
charides, dietary fibers and functional bioactive substances (e.g., polyphenols, antioxidants,
antimicrobial compounds and natural pigments) may be used as natural food additives [13].
Among these, vegetable pigments (e.g., carotenoids, betalains, anthocyanins and chloro-
phylls) are considered safe and healthy as they possess, in addition to coloring power,
antioxidant, anti-inflammatory and antimutagenic activities [14]. There are few industrial
companies that rely on enzyme assisted technology to obtain high added-value compounds.
An attractive example is the young biotechnological company BIOLIE (France), which has
developed a new technology based on the extraction of molecules from plant materials,
including waste (e.g., agricultural, agri-food and forest co-products) using suitable for-
mulations based on enzymatic cocktails. The production mainly concerns the recovery
of oils and active ingredients, among others, also from a circular economy perspective
(www.biolie.fr, accessed on 18 November 2022) [15].

The purpose of this paper is to provide a concise review of the sources, enzyme-
assisted extraction and storability of two main classes of red/orange/purple colorants from
food waste or unsold vegetables: carotenoids and betalains. This review systematically
summarizes published reports on natural edible pigments and provides a perspective for
future research on these colorants.

2. Carotenoids and Betalains: Bioactivity and Health Benefits

Carotenoids and betalains are among the most common natural pigments in nature.
Carotenoids may be classified into carotenes (a-carotene, b-carotene and lycopene) and
xanthophylls (lutein, zeaxanthin and b-cryptoxanthin). Both carotenes and xanthophylls
contain hydrogen and carbon chains but differ in the presence of hydroxyl groups [14].
Carotenoids are generally used as natural food colors with yellow to red shades and
antioxidants. They may also be applied as food supplements by exploiting their intrinsic
properties, such as modulation of the immune system and prevention of the risk of cancer
and cardiovascular disease, as well as precursors of vitamin A [16]. The demand for pure,
stabilized, well-characterized and low-price natural carotenoids is constantly growing,
also thanks to the possible positive effects on human health. Their market is estimated to
grow from $1.5 billion in 2019 to $2.0 billion by 2026 [17]. Countless studies have been
conducted to evaluate the health effects of carotenoids from vegetables, and most of them
are shown in Table 1. Tiwari et al. [18] reported that a balanced intake of carotenoids in
ratios similar to those present in fruit and vegetable extracts could lead to a large synthesis
of retinoids, which was more efficient than the single artificial carotenoid (even if used
at high concentration). In addition, they are likely to restore the accumulation of fat and
stimulate its use by the organism. Carotenoids may also act as natural colorants, as well
as serve as a functional bioactive ingredient. In particular, the integration of carotenoids
into the diet has shown several beneficial effects for health, such as the improvement
of the immune system, an increase in antioxidant activity, the marked protective action
against various types of cancer and the reduction of risk of cardiovascular disease due
to their ability to control blood cholesterol levels [19,20]. Direito et al. [21] proved that

www.biolie.fr


Appl. Sci. 2022, 12, 12249 3 of 15

carotenoid extraction from persimmon waste might be a good solution for obtaining
antimicrobial compounds against foodborne methicillin-resistant Staphylococcus aureus
and as an anti-Helicobacter pylori. Anaya-Esparza et al. [22] have reported antidiabetic
properties associated with carotenoids extracted from capsicum fruits. This phenomenon
may depend on the phytochemical and antioxidant properties and, in detail, on their
ability to modulate carbohydrate digestion and enhance insulin secretion. The work of
Araújo-Rodrigues et al. [23] has shown that the by-products of baby carrots and cherry
tomatoes (when transformed into both pulp and powder) are rich in bioactive compounds
such as phenolics, carotenoids and tocopherols, and therefore, they have a high nutritional
and functional value as additives. Furthermore, this study also demonstrated that the
nutritional profile of these by-products is similar in bioactive terms to the profile of carrots
and tomatoes that meet marketing standards. Moreover, the study of Šeregelj et al. [24]
also demonstrated that the consumption of carrots as a potential source of fiber, phenolic
compounds and carotenoids has been associated with a reduced risk of cardiovascular
disease. This property is due to the ability (especially of carotenoids) to bind molecules
such as cholesterol, reducing its availability in the body. Additionally, consuming these
vegetables would help reduce blood LDL levels and the levels of short-chain fatty acids
produced by colon bacteria. Other studies [25–33] demonstrating the health effects of
carotenoids are summarized in Table 1.

Table 1. Studies on the bioactivity and health effects of carotenoids and betalains from vegetable sources.

Pigment Source Bioactivity/Health Benefits Reference

Carotenoids

Waste biomass

Antioxidant, Anti-mutagenic,
anti-proliferative,
anti-inflammatory,

anti-hypertension and
anti-atherogenic activities.

Radical scavenging activity.

Tiwari et al. [17]
Microalgals Rammuni et al. [18]
Agro wastes Cassani et al. [19]
Persimmon Direito et al. [20]
Bell peppers Anaya-Esparza et al. [21]

Carrot and tomato by-products Araújo-Rodrigues et al. [22]
Carrot waste Šeregelj et al., [23]
Tomato waste Gallo et al. [24]

Vegetable waste de Andrade Lima et al. [25]
Tomato by-products Martínez-Hernández et al. [26]
Pomegranate wastes Goula et al. [27]

Tomato peel Kehili et al. [28]
Pumpkin Wang et al. [29]

Tomato and tomato byproducts Viuda-Martos et al. [30]
Tomato peel Rizk et al. [31]

Tomato Palozza et al. [32]

Betalains

Amaranthus, Prickly pear, Red dragon fruit,
Red pitaya, Red beetroot

Antioxidant, anticarcinogenic,
hepatoprotective,
antibacterial, and

anti-inflammatory activities.
Intestinal and immune

regulatory effects and prevent
cardiovascular diseases.

Calva-Estrada et al. [33]

Agro-industrial wastes Zin et al. [34]
Pitaya fruit Castro-Enríquez et al. [35]

Red beetroot Fu et al. [36]
Prickly pear, beetroot Koss-Mikołajczyk et al. [37]

Pitaya peel Tenore et al. [38]
Amaranthus, Prickly pear, Red dragon fruit,

Red pitaya, Red beetroot Polturak et al. [39]

Prickly pear Barba et al. [40]
Red dragon fruit peel Rodriguez et al. [41]

Red beet, Cacti fruits, Dragon fruits,
Swiss chard Gandía-Herrero et al. [42]

Beetroot pomace Vulić et al. [43]

Betalains are molecules deriving from conjugated betalamic acid with cyclo-dopa (red-
violet beta-cyanines) or with the amino groups of amino acids, amines or their derivatives
(yellow betaxanthines) [16]. As indicated in Table 1, they are free radical scavengers and
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prevent the oxidation of biological molecules induced by active oxygen and mediated by
free radicals; moreover, betalains possess antioxidant and antiproliferative activity [34,35].
Castro-Enriquez et al. [36] reported that the pitaya extract, rich in betalain, showed good
antioxidant activity resulting from the presence of betalamic acid in the moiety of betalain
molecule. Indeed, it is an aromatic amino compound able to stabilize free radicals and is,
therefore, able to inhibit the oxidation of lipids, proteins, DNA and enzymes involved in
the generation of highly reactive molecules that are associated with chronic degenerative
diseases. Fu et al. [37] reported that red beets are a rich source of bioactive compounds,
especially betalains, and can be used as functional ingredients in food and medical in-
dustries. This is due to their numerous beneficial effects on health and for the possible
treatment of certain pathologies: cancer, cardiovascular diseases, asthma, arthritis, intesti-
nal inflammation and diabetes. Koss-Mikołajczyk et al. [38] tested the biological activity
(e.g., antioxidant, cytotoxic, anti-genotoxic and influence on enzymatic activities) of extracts
from differently pigmented varieties of two vegetable species: prickly pear (yellow, orange
and red) and red beet (white and red). The results showed that biological activities do
not strictly depend on the concentration of betalain but on their ratio in the plant matrix.
Tenore et al. [39] suggested red pitaya peels as a valuable manufacturing by-product to be
exploited for nutraceutical formulations and food applications due to the reducing and
radical-scavenging capacities of betacyanin fractions. Other studies [40–44] showing the
health effects of betalains are reviewed in Table 1.

In this context, their global market (USD 9.1 billion in 2022) is expected to grow at a
Compound Annual Growth Rate of 4.7% over the period of 2022–2032 [45].

3. Carotenoids and Betalains: Natural Source and Cellular Localization

Carotenoids are lipophilic isoprenoid molecules synthesized by almost all photosyn-
thetic plants and are found in larger quantities in some organs and tissues. These pigments
in plants are synthesized and stored in chromoplasts (Figure 1), organelles that arise from
chloroplasts and/or other non-green plastids, such as amyloplast, leucoplast, etc. [18].
Special membranes develop in chromoplasts, called internal membranes of chromoplasts,
whose chemical composition has been extensively studied and has been found to consist
mainly of lipids (e.g., galactolipids) and special proteins (e.g., carotenogenic enzymes) [46].
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In detail, carotenoids are stored in carotenoid-lipoprotein substructures and/or plas-
toglobules (Figure 1).
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Especially some vegetables such as carrot root, red papaya, tomato and watermelon are
characterized by hyperaccumulation of β-carotene and lycopene as crystalline structures
associated with the formation of crystalline chromoplasts [47].

Tomatoes and carrots are used in various culinary preparations and produce a huge
amount of waste, such as peel and pomace. Lycopene is the main carotenoid present in
tomatoes (especially in the outer pericarp), with a range between 2.62 and 629 mg/100 g,
while other carotenoids are between 0.23 and 2.83 mg/100 g [18,48,49]. Orange carrots
contain a significant amount of carotenoids (mainly β-carotene and, to some extent, α-
carotene). Their distribution depends on the localization, which varies in the xylem (nu-
cleus) and in the phloem (flesh) of the root (where it is most abundant) [18]. Other sources
of carotenoids are pumpkin [β-carotene (78 µg/g), α-carotene (48 µg/g)] [50], mango
[β-carotene (5–32 µg/g)] [51], watermelon [lycopene (60–70 µg/g)] [52] and sweet potato
[β-carotene (310 µg/g)] [53]. As reported by Benucci et al. [12], several green approaches
(e.g., microwave-, pressurized liquid-, ultrasound-, supercritical fluid- and pulsed elec-
tric field assisted extraction) may be applied for the recovery of carotenoids from natural
sources and agricultural/food waste. These methods substantially differ in the mechanism
applied for destructuring plant cells, as well as for operating conditions (e.g., temperature,
pressure and solvent) [18].

Unlike carotenoids, betalains are synthesized in the cytoplasm at the level of the
endoplasmic reticulum, where their key biosynthetic enzymes are present. Their biosynthe-
sis occurs mainly in plant tissues at the level of epidermal and subepidermal structures
of plants. Being secondary metabolites, betalains are stored as glycolates in the vacuole
(Figure 2) [40], whose membrane is made up of approximately 62% proteins, phospholipids
and sterols [54].
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Betalains are found in the edible parts of a few plants but also in the leaves, flowers,
stems and bracts [43]. Red beet (390–445 mg/100 g) [34] is the only vegetable currently and
commercially used for the extraction of betalains. Such pigments from Amaranthaceae plants
used in traditional Chinese medicine, such as Amaranthus sp. (0.95–6.02 mg/100 g) [47]
and Celosia sp., were tested for their feasibility to color food, although they are used only
locally. The most promising family among betalain-bearing plants is the Cactaceae [55],
and the main genera producing edible fruits are Opuntia (41–89 mg/100 g) [34], Hylocereus
(82.79 mg/100 g) [56] and Stenocereus (479 mg/100 g) [57].

Among the different green methods applied for the recovery of betalains from natural
sources and agricultural/food waste, pulsed electric field-, microwave- and ultrasound-
assisted extraction are the most promising [12].



Appl. Sci. 2022, 12, 12249 6 of 15

4. Enzyme-Assisted Extraction for the Recovery of Carotenoids and Betalains

The application of enzymes for the breakdown of the plant cell-wall barrier is an
interesting and promising field for the green extraction of high added-value molecules
from unsold fruits and vegetables, avoiding the use of solvents [12].

Enzyme-assisted extraction (EAE) is based on the selective hydrolysis of the plant
cell-wall polysaccharides (e.g., cellulase, hemicellulose, pectinase and protease) [58], which
leads to parietal lysis, thus improving the extraction of bioactive components [59]. For
this reason, preliminary knowledge of the exact cell wall composition of each plant source
(e.g., fruits or vegetables) is crucial for selecting one or more enzymes useful for the
extraction process [60]. For example, Zuorro et al. [61] reported that in enzyme-assisted
aqueous extraction, the interaction of different enzymatic activities leads to the breakdown
of polysaccharide-protein colloids in the cell wall, creating an emulsion that promotes
extraction. Synergism resulting from the combined use of cellulase and pectinase has
been highlighted in several studies (Figure 3). In addition to identifying the most suitable
tailored enzymatic mix, it is essential to understand the catalytic properties, the mode of
action and the optimal operating conditions (temperature, pH, time and dosage) of each
enzyme in order to maximize the extraction yield [12].

EAE results in several benefits, such as a reduction of extraction time, minimization of
the use of organic solvents and an increase in yield and product quality. Reducing the use of
solvents during extraction is particularly important for both regulatory and environmental
reasons, providing a more environmentally friendly option than traditional non-enzymatic
extraction [62]. The main drawback of this approach is the high cost of the biocatalysts.
This problem could be partially solved by reducing the enzymatic dosage used. In turn,
this issue may be addressed by developing a tailored mix formulated on the basis of the
polysaccharide composition of the matrix to be treated [12].

Studies using EAE of carotenoids from vegetable waste are schematically reported in
Figure 3.

The schematic representation in Figure 3 suggests only a few works exploited the
synergistic action of multiple enzymes for the recovery of carotenoids from vegetable
waste [63]. However, the enzymatic dosages used were considerably high [63] even though
many process parameters have been optimized (e.g., temperature and pH), and the yields
were quite low, only 15%. In other works, commercial multi-enzymatic preparations have
been used [61,64–68], which do not allow researchers to selectively balance the individual
activities according to the vegetable tissue composition. This has, above all, implications
on the extraction efficiency, as it appears by the rather prolonged extraction times (4 or
5 h) even though, in many cases, the temperature and pH are those suggested by the
manufacturing sheets. The positive aspects that emerge from the review of these works are
that, in any case, the extraction yields are generally high, about 77–90% [69–71]. However,
the non-balancing enzymatic activities in such commercial multi-enzymatic preparations
make it impossible to modulate pigment extraction, also involving the destruction of the
cytoplasmic organelles (e.g., chromoplasts, in which carotenoids are protected against
alterations).

Only a few studies (Figure 3 focused on the chromoplasts’ isolation from plant tissues,
where carotenoids are stable because they are still incorporated into their natural medium
(lipoproteins). A green extraction protocol for the recovery of lycopene enclosed in the
chromoplast (therefore protected from oxidation) from tomato peels was developed using
hydrolytic enzymes (Cellulyve 50LC, Peclyve LI and Prolyve 1000) and pH variations [64].
In this way, an increase of about 20–30 times in lycopene recovery was achieved. Lom-
bardelli et al. [67] developed a green and sustainable biotechnological approach based on a
tailored enzymatic mix which was designed considering the polysaccharide composition of
ripened tomato cell walls (57% cellulase, 26% polygalacturonidase + pectin lyase and 17%
xylanase). The optimal process conditions to enhance the recovery yield of carotenoids still
contained in whole chromoplasts (4.30 ± 0.08 (mgLyc/Kgtomato)/U) from unsold tomatoes
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were as follows: T = 45–55 ◦C, pH = 5–5.5, extraction time = 180 min and enzymatic total
dosage = 25 U/g.

Similarly, betalains from unsold red beets have been recovered employing a tailored en-
zymatic mix based on the polysaccharide composition of red-beet cell walls (37% cellulase,
28% polygalacturonidase + pectin lyase and 35% xylanase) at two different temperatures (25
and 45 ◦C) [72]. In view of a more energy-saving extraction procedure, the most effective
EAE protocol (in terms of pigment recovery yield and color attributes) was optimized
at low temperature (25 ◦C), pH = 5–5.5, extraction time = 240 min and enzymatic total
dosage = 25 U/g. Other studies concerning the extraction of betalains from vegetable
waste [73,74], as well as the corresponding recovery yield, are depicted in Figure 3. Differ-
ently from what was observed for carotenoid extraction, the recovery of betalains using
commercial multi-enzymatic preparations is less dependent on the formulation of the
tailored enzymatic mix. Operating at optimized temperature (40–45 ◦C) and pH (4.0–5.5)
conditions leads to sufficiently high yields in short extraction times (about 2 h).
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5. Stability of Carotenoids and Betalains

All natural pigments, especially carotenoids, are deeply unstable and prone to alteration
due to heat, light and oxygen exposure [12]. To address the stability problem, microencapsula-
tion and nanoencapsulation have been extensively investigated. Rodriguez-Amaya [75] and
de Freitas Santos et al. [76] comprehensively reviewed the encapsulation methods and the
materials applied to produce carotenoid-rich microparticles (e.g., modified starch, maltodex-
trin, β-glucan, carboxy-methylcellulose, inulin, pectin, chickpea protein, gelatin, whey protein
isolate and gum Arabic). Other prominent studies are reported in Table 2.

Lombardelli et al. [77] assessed the stability of carotenoid-containing chromoplasts
(Chr) (recovered by a tailored enzymatic mix) under different temperatures (4, 25 and 40 ◦C)
and light exposure (dark and UV-light irradiation), in comparison to the free carotenoids
(Free car) obtained by solvent extraction. Irrespective of the different storage conditions
(temperature and UV-light exposure), the lowest pigment degradation rates were found for
Chr [0.014 days−1 (25 ◦C in the dark)–0.057 days−1 (40 ◦C under UV-light)] rather than Free
car [0.018 days−1 (25 ◦C in the dark)–0.071 days−1 (40 ◦C under UV-light)]. Furthermore,
Chr better retained the colorimetric parameters, especially at 4 ◦C (∆E~4.0) and 25 ◦C
(∆E~4.5) in the dark. These results proved that the chromoplast envelope better preserves
the red-orange nuance of natural pigments recovered by EAE than carotenoids from solvent
extraction [77].

Concerning betalains, one of the main obstacles that limit their application in the food sec-
tor is their poor stability under operational conditions. Numerous studies have been focused
on exploring approaches to stabilize them, extending their applications [78,79]. Some of the
stabilization methods that have been studied include the addition of antioxidants, chelating
agents and encapsulation techniques [80,81]. Castro-Enríquez et al. [82] demonstrated that
encapsulation by freeze drying, using polysaccharide-protein matrices, is a suitable method
to enhance betalains stability (Table 2).

Lombardelli et al. [83] studied the synergistic action of UV light and heat on the visual
colorimetric perception of betalains enzymatically extracted from unsold beets. The study
demonstrated that if the pigment was kept at temperatures close to room temperature, the
effect of UV light was negligible. This is evident considering the colorimetric parameters at
4 and 25 ◦C. By storing the pigment at medium to high temperatures (40 ◦C), stability is
strongly affected by temperature rather than exposure to UV light.
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Table 2. Overview of recent studies about carotenoids and betalains stabilization.

Pigment Stabilizing Study Results Reference

Carotenoid

Stabilizing method Stabilizing conditions

Antioxidants

α-tocopherol, tripolyphosphate, EDTA, citric acid, gallic acid,
propyl gallate. Storage conditions: 32 ◦C in the dark

α-tocopherol was the most effective in decreasing
lycopene oxidation. Bou et al. [84]

Mixed tocopherols and sodium ascorbate (250–5000 µg/g).
Storage conditions: 35 ◦C, air exposure (91 days)

Both antioxidants improved carotenoid stability,
specifically when used in elevated concentrations
(2500–5000 µg/g), but were not able to prevent
carotenoid degradation when subjected to oxygen.

Haas et al. [85]

Encapsulation

α-, β- and γ-cyclodextrins (CDs)
Storage conditions: room temperature, light and oxygen
exposure (24 h, 1 month and 6 months)

β-CD showed the best complexation yields (93.8%)
and was the most favorable to stabilize lycopene. Blanch et al. [86]

β-cyclodextrins (method A, ultrasonic homogenization;
method B, kneading).
Storage conditions: irradiance (1400 lx) at temperatures
25–31 ◦C (21 days)

Complex B offered bigger color stability of the isotonic
drink with respect to complex A. Lobo et al. [87]

α-, β- and γ-cyclodextrins (CDs)
Storage conditions: temperature 4 or 25 ◦C in the dark
(180 days)

β-CDs increased the stability of carotenoids for 90
days at 4 and 25 ◦C Durante et al. [88]

Maltodextrin, Arabic gum (GA) and modified starch.
Storage conditions: 40 ◦C and relative humidity of 75%
(20 days).

Degradation of lutein after spray drying diminished
from 97.62% to 8.06% when modified starch was
replaced by GA.

Álvarez-Henao et al. [89]

Maltodextrin, GA, whey protein isolate,
carboxy-methylcellulose and pectin.
Storage conditions: 25 ◦C (40 days)

Native carbohydrates enhanced the encapsulation
efficiency (50–95%) with respect to other encapsulating
materials.

Curi-Borda et al. [90]

Liposomes, chitosomes and TPP-chitosomes.
Storage conditions: 8 ◦C (14 days) and thermal stability at
40 ◦C and 70 ◦C (1 h)

TPP-chitosome was more useful in shielding carotenes
from degradation during storage. Esposto et al. [91]

Bovine gelatin, calcium caseinate, whey proteins
Storage conditions: 25 ◦C in the dark (24 h and 48 h)

All formulations efficiently increased carotenoid
dispersibility in water. Petito et al. [92]

Nanoencapsulation with zein and ethylcellulose.
Conditions: In Vitro Digestion

Both nanoparticles protected the β-carotene in the
gastrointestinal phase, but only zein nanoparticles
showed great bioaccessibility.

Afonso et al. [93]

Chromoplast (Chr)
Carotenoids in Chr
Storage conditions: 4, 25 and 40 ◦C in the dark and under
UV-light irradiation (30 days)

The lowest pigment degradation rates and better
colorimetric parameters were found for Chr at 4 and
25 ◦C in the dark.

Lombardelli et al. [77]
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Table 2. Cont.

Pigment Stabilizing Study Results Reference

Betalain

Antioxidants Ascorbic and isoascorbic acids (40 mM)
Storage conditions: 100 ◦C (3 min) and 10 ◦C (24 h)

Ascorbic and isoascorbic acids (0.003–1%) allowed the
greatest regeneration yield at pH 3.8. Han et al. [94]

Chelating agents EDTA (10,000 ppm)
Storage conditions: 75 ◦C, pH 5 Increased t1/2 of betanin by 1.5 times. Herbach et al. [79]

Encapsulation

Maltodextrin and combination with pectin, GA, guar gum,
and xanthan gum (XG) +21% increased stability of betalain. Ravichandran et al. [95]

GA, maltodextrin, modified starch (MS), chitosan and their
combination
Storage conditions: 40 ◦C (10 weeks)

Extracts encapsulated in GA–MS revealed the best
colorimetric parameters. Chranioti et al. [96]

Native potato starch and its modification (e.g.,
phosphorylation and succinylation). Storage conditions:
40 ◦C, pH 4.6 (39 days)

Succinylated potato starch was the best alternative for
stabilizing betalains. Vargas-Campos et al. [97]

Maltodextrin and XG by freeze and spray drying
Storage conditions: room temperature and pH 3–6

Microcapsules obtained by freeze-drying were
characterized by greater stability in terms of betanin
and color parameters.

Antigo et al. [98]

Pea protein (3.5–7%) as an encapsulating agent using Spray
Drying (SD 125–150 ◦C)

7% pea protein protected the most content of the
studied bioactive compounds. García-Segovia et al. [99]

Additives

Catechin (2.5–10 mM), ascorbic acid (0.025–0.1% w/v), EDTA
(2–10 mM), β-cyclodextrin (100–250 ppm), maltodextrin
(100–250 ppm) and GA (0.5–2.0% w/v)
Storage conditions: 40 ◦C, for 5 days and at 4 ◦C in the
absence of light and oxygen

Maximum stabilizing effect was exhibited by catechin
(t1/2 203.9 days), EDTA (t1/2 187.3 days), and
β-cyclodextrin (t1/2 144.4 days) compared with control
(t1/2 119.5 days). Ascorbic acid behaved as a
prooxidant (t1/2 78.8 days).

Karangutkar et al. [100]
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Considering the stabilization methods applied for carotenoids and betalains (Table 2),
it is clear that the methodology which ensures the best results is encapsulation, regardless
of the nature of the pigment. Irrespective of the encapsulation technique, our outcomes
prove that gum Arabic [89,90,95,96,98], cyclodextrin [86–88], and modified polysaccharides
(e.g., starch) [89,90,93,96,97] are the most commonly used wall material. In detail, native or
combined carbohydrates enhanced the encapsulation efficiency from 50 to 95% with respect
to the other encapsulating materials [90]. From the critical analysis of the proposed works,
it emerges that the encapsulation process offers countless advantages: (i) simple manipula-
tion converting liquid into solid form; (ii) the possibility of masking unpleasant sensory
appearances; (iii) controlled release through the gastrointestinal tract; (iv) increased of wa-
ter solubility (especially for carotenoids); and (v) enhanced bioavailability. Considering the
effect of antioxidants applied for improving pigment stability, there are some discrepancies
in their real effects and range of concentrations [85,86], especially on the betalains [94].
Karangutkar et al. [100] proved that the addition of ascorbic acid acted as a prooxidant,
reducing the storage stability of betalains, as highlighted by the value of half time (t1/2),
which is reduced by about 1.5 times compared to the control (119.5 days vs. 78.8 days).
Furthermore, antioxidants (mixed tocopherols and sodium ascorbate) were not able to
inhibit carotenoid degradation when exposed to ambient oxygen [85]. Although the use of
additives [84], such as chelating agents [79] (e.g., EDTA, citric acid), has demonstrated a
good stabilizing effect, the high dose required may affect the sensory attributes of foods.

6. Conclusions and Future Outlook

The application of enzymes for carotenoid and betalain recovery from vegetable waste
is an interesting new area, which requires more intense research inputs to establish itself as a
promising technique. EAE is an energy-saving method that offers numerous benefits, such
as the reduction of extraction time and temperature and minimal usage of organic solvents.
It has been profitably applied for the recovery of a number of high added-value molecules
with increased yield and quality. A limitation of this method may be the biocatalyst cost,
which could be overcome by selectively balancing the dosage of each enzymatic activity in
order to design tailor-made formulations for specific vegetable sources. A deep knowledge
of the cell wall composition of the vegetable waste to be treated helps in the selection of the
individual enzymes and their concentration to be used. The enzymatic mix obtained in this
way may be highly efficient, requiring low dosages for pigment recovery, thus reducing the
cost of EAE. Furthermore, from a circular economy point of view, the perspective of reusing
unsold/vegetable waste as a source of natural pigments would lead to the reduction of the
environmental impact due to their disposal. In addition, these sources would be available
at low cost, resulting in a further decrease in the total costs of the extraction process.
In conclusion, for the food and biotechnology industry, EAE for the recovery of natural
colorants has a high potential, being very promising in terms of future technology.
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