
Citation: Eum, S.; Kim, H.; Kwon, H.;

Sim, M.; Song, G.; Seo, H. Parallel

Implementations of ARIA on ARM

Processors and Graphics Processing

Unit. Appl. Sci. 2022, 12, 12246.

https://doi.org/10.3390/app122312246

Academic Editor: Paris Kitsos

Received: 21 October 2022

Accepted: 25 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Parallel Implementations of ARIA on ARM Processors and
Graphics Processing Unit
Siwoo Eum, Hyunjun Kim, Hyeokdong Kwon, Minjoo Sim, Gyeongju Song and Hwajeong Seo *

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Republic of Korea
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: The ARIA block cipher algorithm is Korean standard, IETF standard (RFC 5794), and
part of the TLS/SSL protocol. In this paper, we present the parallel implementation of ARIA block
cipher on ARMv8 processors and GPU. The ARMv8 processor is the latest 64-bit ARM architecture
and supports ASIMD for parallel implementations. With this feature, 4 and 16 parallel encryption
blocks are implemented to optimize the substitution layer of ARIA block cipher using four different
Sboxes. Compared to previous works, the performance was improved by 2.76× and 8.73× at
4-plaintext and 16-plaintext cases, respectively. We also present optimal implementation on GPU
architectures. GPUs are highly parallel programmable processors featuring maximum arithmetic
and memory bandwidth. Optimal settings of ARIA block cipher implementation on GPU were
analyzed using the Nsight Compute profiler provided by Nvidia. We found that using shared
memory reduces the execution timing when performing substitution operations with Sbox tables.
When using many threads with shared memory instead of global memory, it improves performance
by about 1.08∼1.43×. Additionally, techniques using table expansion to minimize bank conflicts have
been found to be inefficient when tables cannot be copied by the size of the bank. We measured the
performance of ARIA block ciphers implemented with various settings. This represents an optimized
GPU implementation of the ARIA block cipher.

Keywords: ARIA block cipher; ARMv8; GPU; parallel computation; software implementation;
Nsight compute

1. Introduction

Today, the size of data is getting bigger and the internet speed is getting faster. This causes
a lot of data to be encrypted quickly. In line with this, hardware is developing rapidly, and the
development of hardware enables fast operation and provides various functions.

ARMv8 is the latest 64-bit ARM architecture. ARMv8 supports Advanced Single
Instruction Multiple Data (ASIMD), which is also known as NEON engine. ASIMD is
an instruction that can perform arithmetic operations on multiple data in parallel. In [1],
the parallel encryption of AES block ciphers [2] is performed, showing a 5% performance
improvement over the ASIMD-based Linux kernel implementation. In [3], they presented
optimized format alignment and round function layer for SM4 block cipher on ARMv8
architectures. In [4], they utilized TBL/TBX instructions to perform fast multiplication for
format-preserving encryption on ARMv8 architectures.

Graphics processing units (GPUs) have become an integral part of today’s computing
systems. Parallel implementations of block ciphers using GPU capabilities are steadily
progressing. Recently, the parallel implementation of block cipher using ARX structure was
introduced in [5], and parallel implementation of AES using SPN structure was introduced
in [6,7].

The ARIA block cipher [8] was developed in 2003. The algorithm is Korean standard,
IETF standard (RFC 5794), and part of the TLS/SSL protocol. The ARIA block cipher is
designed with an SPN (substitution permutation network) structure. It is designed as

Appl. Sci. 2022, 12, 12246. https://doi.org/10.3390/app122312246 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/app122312246
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312246?type=check_update&version=1

Appl. Sci. 2022, 12, 12246 2 of 16

a substitution layer using four different Sboxs, a diffusion layer, and an addroundkey
layer [9]. Previous studies implemented ARIA block ciphers on low-end processors. Few
implementation works have been carried out on high-end processors.

In this paper, we firstly present parallel implementations of the ARIA block cipher on
ARMv8 processor. For the efficient implementation of the substitution layer, we explored
two approaches of 4-PT (plaintext) and 16-PT, where 4-PT and 16-PT indicate that when the
block size of the encryption algorithm is 128-bit, 4 (4 × 128-bit) and 16 (16 × 128-bit) blocks
are encrypted in parallel. Secondly, we optimized parallel implementations of the ARIA
block cipher on GPU (Nvidia GTX 3060). GPUs provide several types of memory space.
In this paper, each implementation is evaluated by loading and using Sbox in different
memory types, including global, shared, and constant. Furthermore, a method using
extended Sbox to solve the bank conflict problem is introduced in [6]. We also explored
this technique for ARIA block cipher in this paper.

1.1. Contributions
1.1.1. Parallel ARIA Implementation on ARMv8 Processor

We are the first to implement a parallel implementation of an ARIA block cipher on
an ARMv8 processor. In order to efficiently use TBL instructions in an ARIA substitution
process that uses an Sbox where each byte is different, 4 or 16 plaintext blocks are imple-
mented in parallel. The LD4 instruction provided by ARMv8 optimizes the process of
sorting plaintext blocks for parallel implementation.

1.1.2. Parallel ARIA Implementation on GPU

We are the first to implement and analysis a parallel implementation of an ARIA
block cipher on a GPU. In the parallel implementation, Sbox is loaded into shared memory
provided by the GPU for comparative analysis. The latency of the memory provided
by the GPU is different. Depending on the implementation, high-latency memory may
perform better than low-latency memory. Types of memory used are global memory, shared
memory, and constant memory. We investigated the optimal environment by comparing
and analyzing various factors (memory types, threads, blocks) that can affect performance
in GPU implementations.

1.2. Previous Implementations of ARIA Block Cipher

There are many ARIA implementations on various environments. We firstly explore
previous implementations, especially on other embedded processors.

Yang et al. [10] presented hardware architecture of ARIA block cipher. It divided plain-
text into eight16-bit blocks to make smaller hardware size. They proposed a new design for
the substitution and the memory block. The presented implementation used Verilog-HDL,
and the proposed ARIA-128 implementation took 400 cycles at encryption step.

Ryu et al. [11] showed a 32-bit structure small hardware implementation of ARIA
block cipher. Since it uses a 32-bit input value unit, they redesigned four kinds of Sboxes.
The proposed 32-bit ARIA operator is on 0.25 µm standard CMOS cell process. The result
takes 278 clock cycles for the ARIA-128 operation.

Lee and Choi [12] proposed a 16-bit optimization design for ARIA block cipher.
They proposed a 16-bit computation for ARIA diffusion layer from 32-bit optimized tech-
nique [13]. It mainly used matrix multiplication of matrix form 16 × 16 involutional block
diagonal matrix and 16 × 16 involutional matrix. Additionally, it has its own Sbox with
8 × 32 lookup table. The proposed implementation takes about 600 microseconds for
ARIA-128 encryption on the target platform, Atmel ATmega2560 microcontrollers.

Seo et al. [14] targeted two processors, 16-bit MSP430 and 32-bit ARM Cortex-M3.
It provided two optimized implementations. First, on the MSP430 processor, they mainly
used a 16-bit word-wise operator to implement ARIA block cipher. Second, on the ARM
Cortex-M3, implementation used an 8 × 32 lookup-table-based implementation, but was
further optimized by effective memory access. The proposed method rescheduled memory

Appl. Sci. 2022, 12, 12246 3 of 16

access to fully utilize three-stage pipelining. In addition, they proposed optimized imple-
mentation with counter mode of operation that applied precomputation techniques. These
proposed ARIA-128 implementations took 209 and 96 cycles per byte on MSP430 and ARM
Cortex-M3 processors, respectively.

Kwak et al. [15] shows several kinds of block cipher implementations, but on the same
target platform as the 32-bit RISC-V processor. The RISC-V processor has limited registers,
so they proposed efficient registers scheduling. To implement optimized ARIA block cipher,
it also used a lookup table at the substitution layer. The result of optimized ARIA-128
implementation on RISC-V took 295 cycles per byte for encryption.

Lee et al. [16] also targeted the 32-bit RISC-V processor, but its approach is different.
The proposed method used only 10 kinds of RISC-V instructions. It did not use a lookup
table for the substitution step. However, it made new architecture of ARIA substitution.
For this implementation, most of the operations used composite fields. The operation was
performed on SPIKE simulator, and its ARIA-128 implementation took 319 clock cycles.

2. Related Work
2.1. ARIA Block Cipher

The block length of ARIA block cipher is 128 bits, and the key length is 128, 192,
and 256 bits. Depending on the length of each key, the encryption process consists of 12,
14, and 16 rounds. Each round of the ARIA block cipher consists of the following three
parts. First, the round key addition layer is XORed with the 128-bit round key. Second,
the substitution layer uses two types of substitution layers. Each substitution layer uses
precalculated values of S1, S2, and their inverses (i.e., S−1

1 , S−1
2). Figure 1 shows ARIA block

cipher structure and two types of substitution layers. Odd rounds use Type 1 and even
rounds use Type 2. Lastly, the diffusion layer is a simple linear map which is an involution.
The diffusion layer is given by

(x0, x1, · · · , x15)→ (y0, y1, · · · , y15),

where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

In [8], an efficient 8-bit-based diffusion layer implementation method was introduced.
It reduces the number of operations to 76 XOR operations using four additional variables
(T1, · · · , T4) as follows.

Appl. Sci. 2022, 12, 12246 4 of 16

T1 = x3 ⊕ x4 ⊕ x9 ⊕ x14, T2 = x2 ⊕ x5 ⊕ x8 ⊕ x15
y0 = x6 ⊕ x8 ⊕ x13 ⊕ T1, y1 = x7 ⊕ x9 ⊕ x12 ⊕ T2
y5 = x1 ⊕ x10 ⊕ x15 ⊕ T1, y4 = x0 ⊕ x11 ⊕ x14 ⊕ T2
y11 = x2 ⊕ x7 ⊕ x12 ⊕ T1, y10 = x3 ⊕ x6 ⊕ x13 ⊕ T2
y14 = x0 ⊕ x5 ⊕ x11 ⊕ T1, y15 = x1 ⊕ x4 ⊕ x10 ⊕ T2

T3 = x1 ⊕ x6 ⊕ x11 ⊕ x12, T4 = x0 ⊕ x7 ⊕ x10 ⊕ x13
y2 = x4 ⊕ x10 ⊕ x15 ⊕ T3, y3 = x5 ⊕ x11 ⊕ x14 ⊕ T4
y7 = x3 ⊕ x8 ⊕ x13 ⊕ T3, y6 = x2 ⊕ x9 ⊕ x12 ⊕ T4
y9 = x0 ⊕ x5 ⊕ x14 ⊕ T3, y8 = x1 ⊕ x4 ⊕ x15 ⊕ T4
y12 = x2 ⊕ x7 ⊕ x9 ⊕ T3, y13 = x3 ⊕ x6 ⊕ x8 ⊕ T4

128-bit Plaintext

Substitution layer type 1

Diffusion layer

⨁

Substitution layer type 2

Diffusion layer

⨁

RK 1

RK 2

Substitution layer type 2

⨁ RK 13

128-bit Ciphertext

S1 S2 S1-1 S2-1 S1 S2 S1-1 S2-1 S1 S2 S1-1 S2-1 S1 S2 S1-1 S2-1

S1-1 S2-1 S1 S2 S1-1 S2-1 S1 S2 S1-1 S2-1 S1 S2 S1-1 S2-1 S1 S2

(1) Substitution layer Type 1

(2) Substitution layer Type 2

128-bit State

128-bit State

128-bit State

128-bit State

Split into 8-bit

Split into 8-bit

Figure 1. ARIA block cipher algorithm and two types of substitution layers.

2.2. ARMv8 Architecture

ARMv8 is a high-performance embedded 64-bit architecture that supports both
64-bit (i.e., AArch64) and 32-bit (i.e., AArch32) architectures. ARMv8 provides 31 general-
purpose registers; x0-x30 can be used in 64-bit units, and w0-w30 can be used in 32-bit units.
In addition, ARMv8 provides 32 128-bit vector registers (v0-v31). The ARMv8 processor
has shown great influence in the smartphone and it is also widely used in various laptops
and smartphones. In Table 1, the instruction set for ARM processors used in the parallel
implementation of ARIA block cipher are given.

Table 1. Instruction set for optimized parallel implementation ARIA block cipher. Xd: destination
scalar register, Xn: source scalar register, Vd: destination vector register, Vt: transferred vector register,
Vn, Vm: source vector register [17].

asm Operands Description Operation

EOR Vd, Vn, Vm Bitwise exclusive OR Vd← Vn ⊕
Vm

SUB Vd, Vn, Vm Subtract Vd← Vn −
Vm

LD1R Vt, (Xn) Load single-element and replicate to all
lanes Vt← (Xn)

LD4 Vd1–4, (Xn) Load multiple single-element structures Vd1–4← (Xn)

Appl. Sci. 2022, 12, 12246 5 of 16

Table 1. Cont.

asm Operands Description Operation

ST4 Vt1–4, (Xn) Store multiple 4-element structures from
four registers. (Xn)← Vt1–4

MOVI Vt, #imm Move immediate Vt← #imm

TBL Vd, Vn, Vm Table vector Lookup Vd← Vn[Vm]

TBX Vd, Vn, Vm Table vector lookup extension Vd← Vn[Vm]

2.3. GPU Architecture

GPU has become an integral part of today’s computing systems. A modern GPU is
a highly parallel programmable processor featuring maximum arithmetic and memory
bandwidth that far exceeds CPU [18]. We used an Nvidia RTX 3060 laptop GPU. This
GPU has 3840 cores and shows a clock rate of 1702 Mhz. Additionally, CC is 8.3, and it is
designed with Ampere architecture. CC refers to compute capability of the device. Note
that clock rates might vary depending on the GPU manufacturer [19].

Compute unified device architecture (CUDA) is a GPGPU technology that enables
parallel processing performed by GPU to be written using C language. CUDA is developed
and maintained by Nvidia, and this architecture requires an Nvidia GPU and stream
processing driver. The CUDA GPU architecture includes functional kernel, thread, block,
grid, and warp (a bundle of 32 threads) running on the GPU, with one warp running and a
streaming multiprocessor (SM) running threads, concurrently [20,21].

Types of memory provided by GPU are register, shared memory, local memory, con-
stant memory, texture memory, and global memory. Global memory is the largest memory
on the GPU. Most of the data are stored and used in global memory. Global memory is
the largest memory but is the slowest memory. Local memory is memory used to tem-
porarily store register values when the number of registers used by a thread is too large.
A lot of local memory usage is not good for speed, because local memory actually uses
global memory. Texture memory is read-only memory used when visualizing data values.
Constant memory is read-only memory. However, it is possible to initialize the kernel
function before executing it. Constant memory actually uses global memory, but there is
a separate constant cache. For this reason, if all threads use the stored value of the same
address, it can access faster than global memory. Shared memory is memory shared and
used by threads within a block. Although it provides small memory, it has the advantage
of fast memory access speed. In shared memory, the concept of a bank is introduced, and
32 threads executed in warp units can access it at the same time, which shows low latency.
CUDA manages GPU memory by dividing it into on-chip and off-chip. Register and shared
memory are on-chip and the others are off-chip. In order to reduce the transmission delay
of the memory, it is helpful to maximize the on-chip memory to improve the performance.
It is important to use a small size of the on-chip memory efficiently [22]. The detailed
structure of GPU memory is shown in Figure 2. In Figure 2, global, constant, and texture
memory are indicated by arrows as data can move to/from the CPU.

NVIDIA provides a profiler tool for performance analysis. Among them, Nsight Tools
provides three tools: Nsight Compute, Nsight Graphics, and Nsight Systems. Nsight
Compute is a CUDA application interactive kernel profiler. By using Nsight Compute, per-
formance analysis data on kernel operation such as kernel operation time, data throughput,
and computation throughput can be obtained. We use the Nsight Compute profiler for
performance analysis [23].

Appl. Sci. 2022, 12, 12246 6 of 16

Shared Memory

Register

Thread 0

Local
Memory

Register

Thread 1

Local
Memory

Block 0

Global Memory

Constant Memory

Texture Memory

CPU

GPU

Shared Memory

Register

Thread 0

Local
Memory

Register

Thread 1

Local
Memory

Block 1

Figure 2. Structure of GPU memory.

3. Parallel ARIA Implementation

In this paper, a parallel ARIA block cipher is implemented on both ARMv8 and GPU
architectures. Since implementations were performed on different processors, two parts
are described separately in this paper.

3.1. Parallel ARIA Implementation on ARMv8

Instructions used for optimized implementation are described as follows:

• TBL instruction: TBL instruction performs table vector lookup. Substitution and
permutation can be implemented efficiently by using the TBL instruction. An example
of both implementations can be seen in Figure 3.
Figure 3a is an example of the operation process of substitution. The value of the
vector stored in the vn register is read, and the value is used as the index of the vm
register (Sbox is stored in vm). The value stored in the corresponding index of vm is
stored in vd. The location stored in vd is the index when reading a value from vn.
Figure 3b is an example of the operation process of permutation. By using vn and vm
inversely, we can implement efficient permutation. The permutation pattern is stored
in vm, and the permutation result is stored in vd according to the operation of the TBL
instruction described above [1,3].

• Load and store instructions: ARMv8 supports various load and store instruction.
Among them, we use LD4 and ST4 instructions for the parallel implementation.
A parallel implementation requires that the input value be aligned in registers. If
we adjust an arrangement specifier (S and B), it can align the input value without
additional works.
As shown in Figure 1, the ARIA block cipher utilizes four different Sboxs. In order
to use the TBL instruction, indexes using the same Sbox must be stored in the same
register. This is why we implement parallel with 4 and 16 blocks.

In the 4-PT parallel implementation, the input value is loaded through the LD4.S
instruction. Four plaintext blocks are loaded in the register, as shown in Figure 4a. In the
state (a), it is a state suitable for implementing the round key addition layer and the
diffusion layer. For the implementation of the substitution layer using the TBL instruction,
the index using the same Sbox must be in the same register as in Figure 4b. Since the
state Type 2 is not suitable for implementing the round key addition and the diffusion
layers, in this implementation, the state Type 1 is used in the round key addition layer and
the diffusion layer, and the state Type 2 is used in the substitution layer. In other words,
the task of converting to state Type 2 before the substitution operation is added, and the
operation of converting back to state Type 1 after the substitution operation is added.

Appl. Sci. 2022, 12, 12246 7 of 16

26 7 11 9 13 0 9 4 4 1 21 20 12 15 13 7

v15 v14 v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 v7 v11 v9 v13 v0 v9 v4 v4 v1 0 0 v12 v15 v13 v7

vn

vm

vd

(a)

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vn

s14 s10 s6 s2 s15 s11 s7 s3 s12 s8 s4 s0 s13 s9 s5 s1vd

14 10 6 2 15 11 7 3 12 8 4 0 13 9 5 1vm

(b)

Figure 3. Usage of the TBL instruction to substitute or permutation (vn: input vector, vd: destina-
tion register). (a) TBL.16B vd, {vm}, vn; (vm: lookup table is stored). (b) TBL.16B vd, {vn}, vm; (vm:
the permutation pattern is stored).

The diffusion layer is implemented by the 8-bit-based implementation method intro-
duced in Section 2. In state Type 1, values required for operation exist in different registers.
If values required for operation are adjusted to be located at the same index, it can be
implemented simply through the EOR instruction. Figure 5 shows the operation process of
the T variables by simplifying the register for easy understanding.

Although only one block is expressed for simple expression, four blocks do not affect
each other and the operation is possible, as shown in Figure 5. The parallel operation of
the diffusion layer is possible through optimal format alignments. The value of y, which
indicates the result after the operation of the diffusion layer, can be implemented only
with the XOR operation after index adjustment through the REV instruction, similar to the
operation process of the variable T.

D3 D2 D1 D0 C3 C2 C1 C0 B3 B2 B1 B0 A3 A2 A1 A0V0

V1

V2

V3

D7 D6 D5 D4 C7 C6 C5 C4 B7 B6 B5 B4 A7 A6 A5 A4

D11 D10 D9 D8 C11 C10 C9 C8 B11 B10 B8 B09 A11 A10 A9 A8

D15 D14 D13 D12 C15 C14 C13 C12 B15 B14 B13 B12 A15 A14 A13 A12

S1 : S2 : S1-1 : S2-1 :

(a)

D12 D8 D4 D0 C12 C8 C4 C0 B12 B8 B4 B0 A12 A8 A4 A0V0

V1

V2

V3

D13 D8 D5 D1 C13 C8 C5 C1 B13 B8 B5 B1 A13 A8 A5 A1

D14 D10 D6 D2 C14 C10 C6 C2 B14 B10 B6 B2 A14 A10 A6 A2

D15 D11 D7 D3 C15 C11 C7 C3 B15 B11 B7 B3 A15 A11 A7 A3

(b)

Figure 4. Two types of state for 4-PT parallel implementation. (a) 4-PT state Type 1. (b) 4-PT state
Type 2.

Appl. Sci. 2022, 12, 12246 8 of 16

v0 x3 x2 x1 x0

v1 x7 x6 x5 x4

v2 x11 x10 x9 x8

v3 x15 x14 x13 x12

x0 x1 x2 x3

x7 x6 x5 x4

x10 x11 x8 x9

x13 x12 x15 x14

REV32.16b

REV16.16b

REV32.8h

T4 T3 T2 T1

Figure 5. Simplified operation of the variable T.

16-PT Parallel Implementation on ARMv8

In the parallel implementation, it is important to align the input blocks of plaintext.
Implementing a round function is simply performed, but there are cases where the register
alignment is complicated. A 16-PT parallel implementation is such a case. As the num-
ber of blocks to be implemented in parallel increases, alignment becomes more complex
than 4-PT parallel implementation. Conversely, the round function implementation is
simplified because each byte is loaded into a different register. Due to the various load
instructions in ARMv8 architecture, aligning is possible at the same time as load without
the aligning process.

The 16-PT loads the plaintext block with the LD4.B instruction. In 4-PT, an arrangement
specifier is used as S. In 16-PT, it is used as B. When one block is loaded, 4 LD4.B instructions
are used, and 16 × 4 (64) times are used to load all plaintext blocks. The implementation
code is the same as Algorithm 1. If the index of the implemented macro is operated 16 times
from 0–15, the aligned plaintext block is loaded into the v0-v15 vector register. If the macro
is operated once with PT-load 0, the first plaintext block is divided into bytes and loaded at
the 0-th index of v0-v15.

In the implementation of the substitution layer, there is no difficulty in implementation
because values using the same Sbox are combined in one register. In the implementation
of the diffusion layer, 8-bit based implementation method is used. Since each register
is divided in units of bytes, parallel operation is possible if registers required for each
operation are used.

Algorithm 1 Plaintext load macro in 16-PT parallel implementation (x0: plaintext address).

.macro PT-load index
1: LD4.B v0-v3[\index], [x0], #4
2: LD4.B v4-v7[\index], [x0], #4
3: LD4.B v8-v11[\index], [x0], #4
4: LD4.B v12-v15[\index], [x0], #4

.endm

3.2. Parallel ARIA Implementation on GPU

The implementation using the T-table extended Sbox was used to implement ARIA
on GPU. The original size of one Sbox is 256 bytes. In the case of the T-table, the size of
1 KB is used. Since ARIA block cipher uses four different Sboxes, the size of the entire
table increases from 1 KB to 4 KB. By using T-table, memory usage increases, but it has the
advantage of reducing operations in the diffusion layer.

When implementing ARIA block ciphers in parallel on GPU, we compare and analyze
them using various memory types. The substitution layer introduces a lot of memory
access for substitution. Memory accesses cause long latency, and as a result, many memory
accesses have a significant impact on performance. The implementation performance
depends on the memory access. The Sbox is loaded into different memories showing
different latency [24].

In this section, we present four implementations in CUDA codes. Only one Sbox is
covered in detail (in code level), but the remaining three tables operate with the same code.

Appl. Sci. 2022, 12, 12246 9 of 16

First, the basic implementation is to load the Sbox in the global memory (CUDA code
is Listing 1). Global memory has the slowest memory access speed, but it has the largest
capacity. In CUDA programming, memory is allocated to the GPU (device) through
cudaMalloc(). The memory allocated in this way uses global memory. The value of the PC
(i.e., host) memory is copied through cudaMemcpy().

Listing 1. Parallel implementation of ARIA using global memory.

1 // Global Memory Code
2 constant uint32_t s1 [256]={...};
3 ...
4 __global__ Aria_device(in , out , s1 ,...) {...}
5 __host__ Aria_host(in, out , key){
6 roudnkey_gen(key , rk);
7 ...
8 cudaMalloc (&dev_s1 , sizeof(uint32_t)*256);
9 ...

10 cudaMemcpy(s1 , dev_s1 , sizeof(uint32_t)*256);
11 ...
12 Aria_device <<<block , thread >>>(in , out , dev_s1 , ...);
13 ...
14 }

The second is shared memory implementation (CUDA code is Listing 2). Shared
memory is a memory space provided per block that can be shared and used by mul-
tiple threads. In this case, it is possible to access the shared memory in unit of Warp
(i.e., 32 threads) at once. Shared memory can be accessed with faster access speed than
global memory. However, the memory space provided is small at 48 KB. When using shared
memory, it should be implemented with caution against bank conflicts. A bank conflict
is a problem in which multiple threads access the same bank. This leads to sequential
processing in parallel machine. For this reason, it may show slow performance even with
fast access speeds. Shared memory can be initialized through __shared__ in the device
function. Afterwards, an additional operation is performed to copy the values from global
memory to shared memory. A copy process must be performed for each block. In this case,
threadIdx.x, which indicates the thread index of each block, is used [25].

Listing 2. Parallel implementation of ARIA using shared memory.

1 // Shared Memory Code
2 constant uint32_t s1 [256]={...};
3 ...
4 __global__ Aria_device(in , out , dev_s1 ,...){
5 __shared__ uint32_t shared_s1 [256];
6 ...
7 if(threadIdx.x < 256) {
8 shared_s1[threadIdx.x] = dev_s1[threadIdx.x];
9 ...

10 }
11 ...
12 }
13 __host__ Aria_host(in, out , key){
14 roudnkey_gen(key , rk);
15 ...
16 cudaMalloc (&dev_s1 , sizeof(uint32_t)*256);
17 ...
18 cudaMemcpy(s1 , dev_s1 , sizeof(uint32_t)*256);
19 ...
20 Aria_device <<<block , thread >>>(in , out , dev_s1 , ...);
21 ...
22 }

Appl. Sci. 2022, 12, 12246 10 of 16

We also utilized the technique of copying the Sbox to minimize bank conflicts (CUDA
code is Listing 3). Since the Sbox of ARIA is 4 KB, copying the Sbox by the number of banks
will exceed the available shared memory size. Therefore, the maximum number of copies
of the Sbox to shared memory is 12. However, the number of banks is 32. If we copy it to
12, the table is mixed when sorted in the bank. The bank conflict cannot be controlled if
they are sorted as shuffled state. Thus, the best copy is the divisor of 32. In this paper, the
implementation was carried out when Sbox was simply used as a shared memory without
copying, when it was copied to 8, and, finally, when it was copied to 12.

Listing 3. Extended Sbox ARIA using shared memory.

1 // Extended Sbox code using shared memory
2 constant uint32_t s1 [256]={...};
3 ...
4 __global__ Aria_device(in , out , dev_s1 ,...){
5 __shared__ uint32_t shared_s1 [256][N];
6 ...
7 for(int i=threadIdx.x; i<256; i+= blockDim.x) {
8 for(int j=0; j<N; j++){
9 shared_s1[threadIdx.x][j] = dev_s1[i];

10 ...
11 }
12 }
13 ...
14 }
15 __host__ Aria_host(in, out , key){
16 roudnkey_gen(key , rk);
17 ...
18 cudaMalloc (&dev_s1 , sizeof(uint32_t)*256);
19 ...
20 cudaMemcpy(s1 , dev_s1 , sizeof(uint32_t)*256);
21 ...
22 Aria_device <<<block , thread >>>(in , out , dev_s1 , ...);
23 ...
24 }

4. Evaluation
4.1. Evaluation on ARMv8 Implementation

In this section, we show the performance evaluation of the ARIA block cipher on
ARMv8 architectures. The difference in key length is only the number of rounds, so
we measured performance based on 128-bit key length. Performance is measured on a
MacBook Pro 13 with the Apple M1, one of the latest ARMv8 processors. We used the
Xcode framework, set the optimization option to -Os, and measured the performance.
Since there are no existing studies on ARIA implementations for ARMv8 architectures,
comparative analysis is performed with reference implementation. In addition, although
the target processor is different, the performance of the previous study was also included
for comparison. This can compare performance differences due to differences in hardware.
In our works, CPB (cycle per byte) is calculated and analyzed using the following formula:

CPB = Milliseconds/1000/Number of iteration/Input Byte × Operating frequency

After running the encryption function 10,000,000 times, it is counted as the operating
frequency (3.2 Ghz) and input bytes. Performance results are shown in Table 2. Existing
studies also show the performance results of the encryption function.

Appl. Sci. 2022, 12, 12246 11 of 16

Table 2. Performance comparison of implementation of the ARIA block cipher.

Imple. Target Parallel CPB

Seo et al. [14] 32-bit ARM Cortex-M3 1-PT 147
Kwak et al. [15] 32-bit RISC-V HiFive1 rev b 1-PT 295

Reference C 64-bit ARMv8 Apple M1 1-PT 4.77
This work 64-bit ARMv8 Apple M1 4-PT 1.73
This work 64-bit ARMv8 Apple M1 16-PT 0.57
This work 64-bit ARMv8 A12 Bionic 4-PT 2.17
This work 64-bit ARMv8 A12 Bionic 16-PT 0.96

The performance difference from previous studies clearly shows the large difference
due to the difference in processors. Compared to the reference C implementation, which is
not an assembly-optimized implementation, the difference is about 60×. This means that
hardware differences lead to large performance differences.

In 4-plaintext of our implementation, the performance was 1.73 cpb, which was
2.76× higher than that of reference implementation. The 16-plaintext showed a performance
of 0.57 cpb, and 8.73× improved performance compared to reference implementation. It
also showed 3.04× better performance compared to 4-plaintext. The result shows that the
highly optimized ARIA block cipher in a parallel way can achieve much higher throughput
than that of sequential implementation. In addition, the same ARMv8 architecture was used,
but the effect of the operating frequency was investigated by measuring the performance
in an environment with different operating frequencies. Performance was measured on an
Apple IPad Air (3rd) with an A12 Bionic chip. The operating frequency speed of Apple
M1 is 3.2 Ghz, whereas in A12 it is 2.49 GHz. As a result, it shows 1.6× and 1.25× higher
performance in M1 with high operating frequency. From this, it can be seen that the higher
the operating frequency, the better the performance.

4.2. Evaluation on GPU Implementation

In this section, we show the performance of ARIA block cipher implementations
depending on various types of memory in the GPU. As with the ARMv8 performance
evaluation, the difference in key length is only the number of rounds, so we measured
performance based on 128-bit key length. Factors that affect GPU implementation perfor-
mance include number of threads and number of blocks. Performance measurements
were taken while correcting for these factors. The Nvidia GeForce GTX 3060 laptop
GPU was used for the testing. It was implemented in the Visual Studio, and the CUDA
11.8 Runtime template was used. Performance is presented in several tables for more
convenient performance comparison. The size of the input data for each implementation is
(number of blocks × number of threads × block size). That is, if the number of blocks is
1024 and the number of threads is 32, the size of the input data is 0.5 MB (1024 × 32 × 16).
The input data are used as a random value. Our goal is to find the optimal implementation
environment (e.g., type of memory, number of threads, number of blocks). The Roundkey
was used by storing it in the GPU’s constant memory. When all threads refer to the same
memory, the Roundkey is stored in constant memory because it is better for performance
to use constant memory.

First, for performance comparison according to memory types, the number of blocks
was fixed to 1024× 32 and the number of threads to 256 to show the implementation perfor-
mance according to the type of memory. Shared[256] is an implementation of Listing 2 that
uses Sbox tables copied to shared memory. Shared[4][256] and Shared[256][4] are an imple-
mentation of Listing 3 that uses Sbox tables copied to shared memory. The performance
results are shown in Table 3.

Appl. Sci. 2022, 12, 12246 12 of 16

Table 3. Performance comparison by memory type (C.: compute; M.: memory).

Memory Type Block Thread Duration (ms) C. Throughput (%) M. Throughput (%)

Global 32,768 256 7.95 55.92 93.94
Shared[256] 32,768 256 7.32 61.81 99.77

Shared[4][256] 32,768 256 8.15 58.43 98.52
Shared[256][4] 32,768 256 8.14 55.14 92.80

As shown in Table 1, it can be seen that the use of shared memory improves com-
putation and memory throughput and, as a result, shortens the kernel operation time.
In terms of kernel execution time, performance is improved by 1.08× using shared memory.
However, we found that implementations of extending Sbox tables to avoid bank conflicts
performed worse than using global memory. While the size of the bank is 32, it seems
that it cannot prevent a complete bank collision, because only four copies were copied. To
analyze this in more detail, we compare the performance according to the number of table
copies. We use a fixed number of blocks and threads as above (block: 1024 × 32, thread:
256). The performance results are shown in Table 4.

Table 4. Performance by number of Sbox table copies (C.: compute, M.: memory, block: 1024 × 32,
thread: 256).

Type Duration (ms) C. Throughput (%) D. Throughput (%) Bank Conflicts

Sbox[4][256] 8.15 58.43 98.52 123,863,597
Sbox[8][256] 8.57 59.21 96.70 126,228,907

Sbox[12][256] 9.16 58.77 91.87 126,287,694
Sbox[256][4] 8.14 58.42 98.94 124,919,451
Sbox[256][8] 9.50 53.32 98.73 156,685,446

Sbox[256][12] 9.93 54.18 94.59 152,467,045

Due to the size limit of shared memory, up to 12 tables can be copied. As a result of the
measurement, it was confirmed that the higher the number of copies of the table, the lower
the performance. When performing front table expansions ([4][256]), the increased number
of copies slowed down memory throughput, resulting in poor performance. Increasing the
number of copies only increases the number of copies of the table from global memory to
shared memory and degrades performance because the bank conflicts cannot be resolved.
When performing back table expansions ([256][4]), the increased number of copies slowed
down compute throughput, resulting in poor performance. An increase in bank collisions
is considered to be the cause of a decrease in the computational throughput. As a result, it
is inefficient to apply this technique when it is impossible to copy as much as the bank size.

Next, we checked the performance comparison according to the number of blocks,
which is one of the factors affecting performance. In this case, we fixed only the number
of threads (256) and increased the number of blocks during the measurement. We did
not compare the performance of table extension implementations, we only compared the
performance of global and shared memory implementations, because we saw above that
table expansion is inefficient. The performance results are shown in Table 5.

Table 5. Performance as the number of blocks increases (C.: compute, M.: memory, thread: 256).

Memory Type Block Duration (ms) C. Throughput (%) D. Throughput (%)

1024 0.28 49.24 85.43
1024 × 8 1.98 55.00 93.33

Global 1024 × 16 3.96 54.68 92.94
1024 × 32 7.95 55.29 93.94
1024 × 64 15.83 55.11 93.46

1024 0.24 58.99 95.32
1024 × 8 1.84 61.54 99.34

Shared 1024 × 16 3.67 61.73 99.63
1024 × 32 7.32 61.81 99.77
1024 × 64 14.63 61.86 99.84

Appl. Sci. 2022, 12, 12246 13 of 16

In this case, when the same memory type is used, the kernel operation time (duration)
cannot be compared because the input data increases as the number of blocks increases.
However, the kernel operation time is also included for comparison according to memory
types. In fact, increasing the number of blocks did not affect performance, but here we
can see that the number of blocks does not affect performance (in implementation of
ARIA block cipher). Additionally, we can reaffirm that using shared memory can help
improve performance.

Finally, we compare the performance according to the number of threads. The number
of blocks is fixed (1024 × 32) and performance is measured by increasing the number of
threads. We compare the performance of global and shared memory implementations, such
as comparing performance by number of blocks. The performance results are shown in
Table 6.

Table 6. Performance as the number of threads increases (C.: compute, M.: memory, blocks: 1024 × 32).

Memory Type Thread Duration (ms) C. Throughput (%) D. Throughput (%)

32 0.97 56.21 94.82
64 1.94 56.41 95.16

Global 128 3.87 56.53 95.39
Memory 256 7.95 55.29 93.94

512 17.94 48.55 83.42
1024 47.65 36.69 62.24

32 1.01 69.46 97.85
64 1.91 65.27 98.99

Shared 128 3.70 63.25 99.56
Memory 256 7.32 61.81 99.77

512 15.64 56.97 93.15
1024 33.09 53.37 87.52

It can be seen that the lower the number of threads (32), the better the performance
is to use global memory. This is because the process of copying from global to shared
memory is higher than the improvements achieved using shared memory. The greater
the number of threads, the greater the performance difference that can be achieved using
shared memory. In the performance of the shared memory implementation, it can be seen
that as the number of threads increases, the performance becomes better than that of global
memory, but the computational throughput decreases. This is because as the number of
threads increases, more bank conflicts occur.

Tables 7–9 show the overall performance of global, shared memory, and extended
Sbox using shared memory implementations. Overall, depending on the implementation,
it is more efficient to use global memory in implementations with fewer than 32 threads,
and more efficient to use shared memory when using more than 32 threads. Increasing the
number of blocks can improve memory throughput, but does not significantly improve
performance as compute throughput cannot support it. Therefore, a large number of
blocks is not always efficient, so it is recommended to use an appropriate number of blocks
depending on the size of the data. Memory throughput has always been higher than
computational throughput. Therefore, for the number of threads, it is recommended to
use the number of threads 64, 128 because the compute throughput is highest when using
shared memory.

Appl. Sci. 2022, 12, 12246 14 of 16

Table 7. Performance of all the global memory implementation (C.: compute, M.: memory).

Memory Type Block Thread Duration (ms) C. Throughput (%) D. Throughput (%)

Global 1024 32 0.04 41.60 73.96
Global 1024 64 0.07 47.45 82.93
Global 1024 128 0.13 51.34 88.00
Global 1024 256 0.28 49.24 85.43
Global 1024 512 0.65 41.70 71.86
Global 1024 1024 1.53 35.68 60.60
Global 1024 × 8 32 0.25 54.23 92.05
Global 1024 × 8 64 0.49 55.44 93.91
Global 1024 × 8 128 0.98 55.98 94.64
Global 1024 × 8 256 1.98 55.00 93.33
Global 1024 × 8 512 4.62 47.70 81.90
Global 1024 × 8 1024 11.95 36.60 62.08
Global 1024 × 16 32 0.49 55.50 93.84
Global 1024 × 16 64 0.98 56.09 94.76
Global 1024 × 16 128 1.94 56.35 95.11
Global 1024 × 16 256 3.96 54.68 92.94
Global 1024 × 16 512 9.09 47.95 82.35
Global 1024 × 16 1024 23.84 36.64 62.15
Global 1024 × 32 32 0.97 56.21 94.82
Global 1024 × 32 64 1.94 56.41 95.16
Global 1024 × 32 128 3.87 56.53 95.39
Global 1024 × 32 256 7.95 55.29 93.94
Global 1024 × 32 512 17.94 48.55 83.42
Global 1024 × 32 1024 47.65 36.69 62.24
Global 1024 × 64 32 1.93 56.54 95.27
Global 1024 × 64 64 3.86 56.60 95.44
Global 1024 × 64 128 7.72 56.63 95.47
Global 1024 × 64 256 15.83 55.11 93.46
Global 1024 × 64 512 35.13 49.65 85.29
Global 1024 × 64 1024 95.22 36.70 62.25

Table 8. Performance of all the shared memory implementation (C.: compute, M.: memory).

Memory Type Block Thread Duration (ms) C. Throughput (%) D. Throughput (%)

Shared 1024 32 0.04 54.83 76.93
Shared 1024 64 0.07 58.64 88.69
Shared 1024 128 0.12 59.48 93.58
Shared 1024 256 0.24 58.99 95.32
Shared 1024 512 0.51 55.27 90.43
Shared 1024 1024 1.06 52.47 86.10
Shared 1024 × 8 32 0.26 67.74 95.40
Shared 1024 × 8 64 0.48 64.61 97.96
Shared 1024 × 8 128 0.93 62.88 98.98
Shared 1024 × 8 256 1.84 61.54 99.34
Shared 1024 × 8 512 3.93 56.80 92.89
Shared 1024 × 8 1024 8.30 53.13 87.12
Shared 1024 × 16 32 0.51 68.89 97.03
Shared 1024 × 16 64 0.96 65.10 98.71
Shared 1024 × 16 128 1.85 63.13 99.37
Shared 1024 × 16 256 3.67 61.73 99.63
Shared 1024 × 16 512 7.82 56.93 93.09
Shared 1024 × 16 1024 16.52 53.53 87.78
Shared 1024 × 32 32 1.01 69.46 97.85
Shared 1024 × 32 64 1.91 65.27 98.99
Shared 1024 × 32 128 3.70 63.25 99.56
Shared 1024 × 32 256 7.32 61.81 99.77
Shared 1024 × 32 512 15.64 56.97 93.15
Shared 1024 × 32 1024 33.09 53.37 87.52
Shared 1024 × 64 32 2.01 69.76 98.28
Shared 1024 × 64 64 3.82 65.40 99.19
Shared 1024 × 64 128 7.39 63.31 99.66
Shared 1024 × 64 256 14.63 61.86 99.84
Shared 1024 × 64 512 31.24 56.94 93.10
Shared 1024 × 64 1024 66.14 53.27 87.36

Appl. Sci. 2022, 12, 12246 15 of 16

Table 9. Performance of the extended Sbox using shared memory implementation (C.: compute,
M.: memory).

Memory Type Block Thread Duration (ms) C. Throughput (%) D. Throughput (%)

Shared[4][256] 1024 × 32 32 1.57 59.57 74.37
Shared[4][256] 1024 × 32 64 2.24 66.16 95.84
Shared[4][256] 1024 × 32 128 4.14 62.09 98.77
Shared[4][256] 1024 × 32 256 8.15 58.43 98.52
Shared[4][256] 1024 × 32 512 17.09 53.38 92.14
Shared[4][256] 1024 × 32 1024 33.25 53.74 93.82
Shared[8][256] 1024 × 32 32 2.65 47.01 50.10
Shared[8][256] 1024 × 32 64 2.83 63.25 81.70
Shared[8][256] 1024 × 32 128 4.48 64.33 95.72
Shared[8][256] 1024 × 32 256 8.57 59.21 96.70
Shared[8][256] 1024 × 32 512 17.77 53.13 90.94
Shared[8][256] 1024 × 32 1024 33.92 53.59 93.56
Shared[12][256] 1024 × 32 32 3.96 39.31 39.31
Shared[12][256] 1024 × 32 64 3.89 54.02 63.20
Shared[12][256] 1024 × 32 128 4.85 65.82 91.44
Shared[12][256] 1024 × 32 256 9.16 58.77 91.87
Shared[12][256] 1024 × 32 512 18.68 52.10 86.87
Shared[12][256] 1024 × 32 1024 34.26 53.97 93.10
Shared[256][4] 1024 × 32 32 1.75 53.34 90.09
Shared[256][4] 1024 × 32 64 2.54 58.25 98.45
Shared[256][4] 1024 × 32 128 4.38 58.71 99.17
Shared[256][4] 1024 × 32 256 8.14 58.42 98.94
Shared[256][4] 1024 × 32 512 16.57 55.14 92.80
Shared[256][4] 1024 × 32 1024 31.81 56.15 94.11
Shared[256][8] 1024 × 32 32 4.14 30.11 81.52
Shared[256][8] 1024 × 32 64 4.37 41.03 96.72
Shared[256][8] 1024 × 32 128 6.06 47.62 98.51
Shared[256][8] 1024 × 32 256 9.50 53.32 98.73
Shared[256][8] 1024 × 32 512 17.30 54.40 93.56
Shared[256][8] 1024 × 32 1024 31.47 57.78 94.46
Shared[256][12] 1024 × 32 32 4.46 34.90 63.39
Shared[256][12] 1024 × 32 64 4.37 48.15 85.91
Shared[256][12] 1024 × 32 128 5.89 54.27 95.44
Shared[256][12] 1024 × 32 256 9.93 54.18 94.59
Shared[256][12] 1024 × 32 512 18.43 52.69 90.88
Shared[256][12] 1024 × 32 1024 33.22 55.64 94.99

5. Conclusions

In this paper, we present the parallel implementation of ARIA block cipher on both
ARMv8 architectures and GPU. In ARMv8, 4 and 16 plaintext blocks are encrypted in
parallel through TBL and LD4 instructions. Since this technique is also applicable to other
block ciphers, it can be used for parallel implementations of other block ciphers. In GPU,
optimal settings of ARIA block cipher implementation on GPU were analyzed using the
Nsight Compute profiler provided by Nvidia. We found that using shared memory can
help improve performance when performing substitution operations with Sbox tables.
Additionally, techniques using table expansion to minimize bank conflicts were found to be
inefficient when tables cannot be copied by the size of the bank. The performance results
suggest that a large number of blocks and threads do not represent high performance.
Therefore, it provides performance results so that it can be implemented by setting the
appropriate number of blocks and threads according to the implementation environment.
We believe that this work will be helpful in parallel implementation of other ciphers on
both ARMv8 architectures and GPU.

Author Contributions: Software, S.E., H.K. (Hyunjun Kim), H.K. (Hyeokdong Kwon) and M.S.;
Writing—original draft, S.E.; Writing—review & editing, G.S.; Supervision, H.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was financially supported by Hansung University.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 12246 16 of 16

References
1. Fujii, H.; Rodrigues, F.C.; López, J. Fast AES implementation using ARMv8 ASIMD without cryptography extension. In

Proceedings of the International Conference on Information Security and Cryptology, Nanjing, China, 8–9 December 2019;
Springer: New York, NY, USA, 2019; pp. 84–101.

2. Daemen, J.; Rijmen, V. AES proposal: Rijndael. Int. J. Commun. Netw. Syst. Sci. 1999, 1, 1.
3. Kwon, H.; Kim, H.; Eum, S.; Sim, M.; Kim, H.; Lee, W.K.; Hu, Z.; Seo, H. Optimized Implementation of SM4 on AVR

Microcontrollers, RISC-V Processors, and ARM Processors. Cryptol. Eprint Arch. 2021, 10, 80225–80233. [CrossRef]
4. Kim, H.; Sim, M.; Jang, K.; Kwon, H.; Uhm, S.; Seo, H. Masked Implementation of Format Preserving Encryption on Low-End

AVR Microcontrollers and High-End ARM Processors. Mathematics 2021, 9, 1294. [CrossRef]
5. An, S.; Kim, Y.; Kwon, H.; Seo, H.; Seo, S.C. Parallel implementations of ARX-based block ciphers on graphic processing units.

Mathematics 2020, 8, 1894. [CrossRef]
6. Tezcan, C. Optimization of Advanced Encryption Standard on Graphics Processing Units. IEEE Access 2021, 9, 67315–67326.

[CrossRef]
7. Lee, W.K.; Seo, H.; Seo, S.; Hwang, S. Efficient Implementation of AES-CTR and AES-ECB on GPUs with Applications for

High-Speed FrodoKEM and Exhaustive Key Search. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2962–2966. [CrossRef]
8. Kwon, D.; Kim, J.; Park, S.; Sung, S.; Sohn, Y.; Yeom, Y.; Yoon, E.; Lee, S.; Lee, J.; Chee, S.; et al. New block cipher: ARIA. In

Proceedings of the International Conference on Information Security and Cryptology, Perth, Australia, 30 November–2 December
2020; Springer: New York, NY, USA, 2003; pp. 432–445.

9. Seo, H.; Kwon, H.; Kim, H.; Park, J. ACE: ARIA-CTR Encryption for Low-End Embedded Processors. Sensors 2020, 20, 3788.
[CrossRef] [PubMed]

10. Yang, S.; Park, J.; You, Y. The smallest ARIA module with 16-bit architecture. In Proceedings of the International Conference on
Information Security and Cryptology, Busan, Republic of Korea, 30 November–1 December 2006; Springer: New York, NY, USA,
2006; pp. 107–117.

11. Ryu, G.H.; Koo, B.S.; Yang, S.W.; Chang, T.J. Area efficient implementation of 32-bit architecture of ARIA block cipher using light
weight diffusion layer. J. Korea Inst. Inf. Secur. Cryptol. 2006, 16, 15–24.

12. Lee, W.Y.; Choi, Y.S. Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors. Int. J. Internet
Broadcast. Commun. 2016, 8, 42–52.

13. Sasi, S.B.; Sivanandam, N. A survey on cryptography using optimization algorithms in WSNs. Indian J. Sci. Technol. 2015, 8, 216.
[CrossRef]

14. Seo, H.; Kim, H.; Jang, K.; Kwon, H.; Sim, M.; Song, G.; Uhm, S. Compact Implementation of ARIA on 16-Bit MSP430 and 32-Bit
ARM Cortex-M3 Microcontrollers. Electronics 2021, 10, 908. [CrossRef]

15. Kwak, Y.; Kim, Y.; Seo, S.C. Benchmarking Korean block ciphers on 32-bit RISC-V processor. J. Korea Inst. Inf. Secur. Cryptol. 2021,
31, 331–340.

16. Lee, J.j.; Park, J.u.; Kim, M.j.; Kim, H.w. Efficient ARIA cryptographic extension to a RISC-V processor. J. Korea Inst. Inf. Secur.
Cryptol. 2021, 31, 309–322.

17. ARMv8-A Instruction Set Architecture. Available online: https://documentation-service.arm.com/static/613a2c38674a052ae3
6ca307 (accessed on 26 June 2019).

18. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing. Proc. IEEE 2008, 96, 879–899.
[CrossRef]

19. Furkan Altınok, K.; Peker, A.; Tezcan, C.; Temizel, A. GPU accelerated 3DES encryption. Concurr. Comput. Pract. Exp. 2022, 34, e6507.
[CrossRef]

20. Choi, H.; Seo, S.C. Fast Implementation of SHA-3 in GPU Environment. IEEE Access 2021, 9, 144574–144586. [CrossRef]
21. Iwai, K.; Nishikawa, N.; Kurokawa, T. Acceleration of AES encryption on CUDA GPU. Int. J. Netw. Comput. 2012, 2, 131–145.

[CrossRef] [PubMed]
22. Yeom, Y.J.; Cho, Y.K. High-Speed Implementations of Block Ciphers on Graphics Processing Units Using CUDA Library. J. Korea

Inst. Inf. Secur. Cryptol. 2008, 18, 23–32.
23. Nsight Compute—NVIDA Documentation Center. Available online: https://docs.nvidia.com/nsight-compute/NsightCompute/

index.html (accessed on 24 August 2022).
24. CUDA C Programming Guide V6.0. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

(accessed on 11 May 2022).
25. Lee, W.K.; Goi, B.M.; Phan, R.C.W.; Poh, G.S. High speed implementation of symmetric block cipher on GPU. In Proceedings of

the 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Sarawak, Malaysia,
1–4 December 2014; IEEE: Piscatway, NJ, USA, 2014; pp. 102–107.

http://doi.org/10.1109/ACCESS.2022.3195217
http://dx.doi.org/10.3390/math9111294
http://dx.doi.org/10.3390/math8111894
http://dx.doi.org/10.1109/ACCESS.2021.3077551
http://dx.doi.org/10.1109/TCSII.2022.3164089
http://dx.doi.org/10.3390/s20133788
http://www.ncbi.nlm.nih.gov/pubmed/32640642
http://dx.doi.org/10.17485/ijst/2015/v8i3/59585
http://dx.doi.org/10.3390/electronics10080908
https://documentation-service.arm.com/static/613a2c38674a052ae36ca307
https://documentation-service.arm.com/static/613a2c38674a052ae36ca307
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1002/cpe.6507
http://dx.doi.org/10.1109/ACCESS.2021.3122466
http://dx.doi.org/10.15803/ijnc.2.1_131
http://www.ncbi.nlm.nih.gov/pubmed/36435813
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	Introduction
	Contributions
	Parallel ARIA Implementation on ARMv8 Processor
	Parallel ARIA Implementation on GPU

	Previous Implementations of ARIA Block Cipher

	Related Work
	ARIA Block Cipher
	ARMv8 Architecture
	GPU Architecture

	Parallel ARIA Implementation
	Parallel ARIA Implementation on ARMv8
	Parallel ARIA Implementation on GPU

	Evaluation
	Evaluation on ARMv8 Implementation
	Evaluation on GPU Implementation

	Conclusions
	References

