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Abstract: In recent years, there has been an increasing number of fires in buildings. The methods
for detecting residual properties of buildings after fires are commonly destructive and subjective.
In this context, property prediction based on mathematical modeling has exhibited its potential.
Backpropagation (BP), particle swarm algorithms optimized-BP (PSO-BP) and random forest (RF)
models were established in this paper using 1803 sets of data from the literature. Material and
relevant heating parameters, as well as compressive strength loss percentage, were used as input and
output parameters, respectively. Experimental work was also carried out to evaluate the feasibility of
the models for prediction. The accuracy of all the models was sufficiently high, and they were also
much more feasible for prediction. Moreover, based on the RF model, the importance of the inputting
parameters was ranked as well. Such prediction has provided a new perspective to non-destructively
and objectively assess the post-fire properties of concrete. Additionally, this model could be used to
guide performance-based design for fire-resistant concrete.

Keywords: concrete; compressive strength loss after high temperature; artificial neural network;
random forest; prediction model

1. Introduction

In recent years, there has been an increasing number of fires in buildings. It is reported
that during 2003–2012 there was an annual average of 180,000 fires in China and 1,403,000 in
the United States, respectively [1], while in the first three quarters of 2022, 223,800 residential
fires were already reported in China [2]. When a fire occurs, temperature increases fast in a
short time (see Figure 1). As a result of the decomposition of hydration products, thermal
cracking, loosening of matrix structure and expansion and/or decomposition of aggregates,
the properties of structural concrete usually deteriorate with the increase in temperature [3].
Currently, the following methods are mostly used to detect the quality of a building after
fire [4]: (1) concrete is hammered by experienced personnel to determine its degree of
damage according to the sound made; (2) the rebound method is used to determine the
residual strength of the concrete, particularly in the near-surface zone, i.e., roughly 30 mm;
(3) concrete is cored, and the residual strength of the core sample is determined by its depth
of ablation. Although these methods are widely used, they also have shortcomings such
as being highly subjective, the number of samples being limited and possible secondary
damage being caused. In this context, based on the data in the literature published, this
paper proposes statistical models to predict compressive strength loss of normal concrete
after exposure to high temperatures, attempting to implement such examination effectively
and non-destructively. Parallel experimental work is also to be carried out to evaluate
the feasibility of the prediction. In addition, weighting of the influencing factors is to be
analyzed, which could be useful to better understand the thermal behavior of the concrete
and to provide possible guidance for thermal performance-based concrete design.
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ing (RD). Therefore, in this paper, the W/B, T, V, MD, C and RD were used as input pa-
rameters to establish the models. The cooling method (water cooling/natural cooling) was 
converted into a digital signal (0/1). To eliminate the influence of initial strength at room 
temperature (i.e., before exposure to high temperature), strength loss percentage after 
high temperatures (P) was selected as the output parameter in this paper. The P is deter-
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Figure 1. ISO 834 temperature–time curve.

2. Modeling

Backpropagation (BP) neural network, particle swarm optimization BP (PSO-BP)
neural network and random forest (RF) modeling methods are conducted in this paper
to implement the prediction work. In addition, an importance ranking of influencing
parameters is also carried out based on the RF model.

2.1. Parameter Determination

Compressive strength loss of normal concrete after high temperatures is mainly in-
fluenced by material parameters, such as water binder ratio (W/B) and high-temperature
operating mechanisms, such as heating temperature (T), heating velocity (V), maintaining
duration at target temperature (MD), cooling method (C) and resting duration after cooling
(RD). Therefore, in this paper, the W/B, T, V, MD, C and RD were used as input parameters
to establish the models. The cooling method (water cooling/natural cooling) was converted
into a digital signal (0/1). To eliminate the influence of initial strength at room temperature
(i.e., before exposure to high temperature), strength loss percentage after high temperatures
(P) was selected as the output parameter in this paper. The P is determined according
to Equation (1).

P =
fcu, high temperature−fcu, room temperature

fcu, room temperature
×100%, (1)

where fcu, high temperature is the compressive strength of concrete after high temperature and
fcu, room temperature is the compressive strength of concrete at room temperature.

2.2. Data Collection

The data, with a total of 1803 sets, for building the models in this paper was obtained
from the literature [5,88], as detailed in Appendix A, and its statistics are provided in Table 1.
Training used 70% of the data, and the rest of the data was evenly used for validation
and testing.

Table 1. Data statistics.

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

Range [0.18–0.77] [50–1200] [0.10–500] [0–48] 0/1 [0–112] [–99.46–66.88]
Average 0.44 479.50 18.82 2.43 - 3.55 −31.22

Standard deviation 0.12 240.29 57.48 3.09 - 14.07 29.17
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2.3. Models
2.3.1. BP Neural Network

The BP neural network is the most commonly used artificial neural network, which
is a method of processing information imitating a human neural network. The BP neural
network continuously approximates the function by adjusting the weights and thresholds,
and if the error does not meet the requirements, the signal is fed backwards [89]. It is widely
used in the field of civil engineering because of its strong robustness. Its network usually
contains a single input layer, single or multi-hidden layer(s) and a single output layer,
where many neurons are involved. In this paper, the number of neurons in the input and
output layers was 6 and 1, respectively. After trial-and-error and comparison (see Table 2,
where RMSE and MAE are root mean square error and mean absolute error, respectively,
which are to be defined in Section 2.4), a network structure of 6-7-1 was finally determined,
as shown in Figure 2. The Levenberg–Marquardt algorithm was used for training, where
the training frequency, learning rate and minimum error of the training target were set to
1000, 0.01 and 0.00001, respectively. The optimum solution after 50 training sessions was
used as the target model. Furthermore, in order to minimize the effect of data on the results,
the data were normalized to [−1, 1].

Table 2. Comparison between different network structures.

Error (%)
6-5-1 6-7-1 6-10-1 6-(5,5)-1

Training Test Training Test Training Test Training Test

RMSE 6.27 6.09 4.17 3.14 5.98 4.27 4.92 3.97
MAE 5.74 5.01 3.12 2.78 4.73 3.91 4.03 3.19
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2.3.2. PSO-BP Neural Network

Due to the algorithm of the BP neural network easily resulting in the issue of local
extreme small values, the particle swarm algorithm was used in this paper to further
optimize weights and thresholds (PSO), developing the PSO-BP neural network. The PSO
algorithm is inspired by the predatory behavior of bird colonies, treating each individual as
a particle in different spaces to build a search model in terms of velocity (V) and position (X).
If there are n particles in an A dimensional space, i.e., X = (X1, X2, X3 . . . . . . Xn), the
position of particle Xi in the A dimensional space, i.e., potential solution, is denoted as
Xi = (Xi1, Xi2, Xi3 . . . . . . XiA)T. The particle is then updated by each iteration of the individual
and extreme global values, with the velocity and position defined in Equations (2) and (3) [90].
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ViA
k+1 = ωViA

k + c1r1(PiA − XiA) + c2r2(PgA − XiA), (2)

XiA
k+1 = XiA

k + ViA
k+1, (3)

where

→ Vi: particle velocity, denoted as (Vi1, Vi2, Vi3......ViA)T;
→ Pi: individual extreme value, denoted as (Pi1, Pi2, Pi3......PiA)T;
→ Pg: global extreme value, denoted as (Pg1, Pg2, Pg3......PgA)T;
→ Xi: particle position, denoted as (Xi1, Xi2, Xi3......XiA)T;
→ ω: inertia weights;
→ k: number of current iterations;
→ c1 and c2: learning factors which are non-negative constants;
→ r1 and r2: momentum coefficients which are random numbers between [0,1].

In this paper, particle number n was set as 20, learning factors c1 and c2 were kept the
same as 2 and momentum coefficients r1 and r2 were kept the same as 0.8 [90]. Inertia weight
ω was assigned to 0.8 after several trials. In addition, in order to avoid blind searching of
particles, the position and velocity of particles were limited in ranges of [−1, 1] and [0, 1],
respectively [90]. The model iterated and updated 100 times, which ensured that the model
was sufficiently convergent and could be highly reliable because, after 60 iterations, the
adaptability of the model was sufficiently stable, as shown in Figure 3. The training times,
network structure, target minimum error, learning efficiency and normalization range of
the PSO-BP modeling were kept the same as BP modeling, as shown in the previous section.
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2.3.3. RF

RF is a method of taking data samples from a database randomly, where bootstrap
re-sampling is usually used, and then repeatedly dichotomizing the data to eventually
determine the optimum solution by voting [91]. In RF, “forest” refers to an integration of
decision trees which consists of nodes and directed edges. The structure of the model is
shown in Figure 4. This method can highly tolerate outliers of data, compute fast and yield
a prediction with high accuracy. It was found that the determination coefficient R2 tends to
be constant when the number of decision trees is up to 500, which was set to be the number
of decision trees used in this paper.

In addition, RF was also used in this paper to perform a variable importance measure
(VIM), where the contribution of each variable to each tree in the RF is averaged and then
ranked. The Gini index (GI) was used in this paper to evaluate the VIM [92]. Assuming
that there were J variables X1, X2, X3..., XJ, I decision trees and C categories of variables
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(C = 2 when dichotomization is used to process data), the GI of node q of the ith tree is
provided in Equation (4).

GI(i)q =
C

∑
C=1

p(i)qc (1− p(i)qc ), (4)

where pqc is the proportion of category C in node q.
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The importance of variable XJ at node q of the ith tree, i.e., the difference in the Gini
index before and after the branching of node q, is provided in Equation (5).

VIM(Gini)(i)
jq = GI(i)q −GI(i)l −GI(i)r , (5)

where GIl
(i) and GIr

(i) are the Gini index of the two new nodes after branching, respectively.
If variable XJ appears C times, the importance of XJ in the ith tree is provided in

Equation (6).

VIM(Gini)(i)
ij =

C

∑
q=1

VIM(Gini)(i)
jq . (6)

Finally, the importance score of RF is provided in Equation (7).

VIM(Gini)
j =

1
I

I

∑
i=1

VIM(Gini)(i)
ij . (7)

2.4. Error Evaluation

Root mean square error (RMSE) and mean absolute error (MAE) evaluations were
applied in this paper to evaluate the accuracy of the models mentioned previously. Formulae
of the error evaluations are provided in Equations (8) and (9), where yi (y1, y2 . . . . . . yn) is

the value measured value,
a
yi (

a
y1,

a
y2 . . . . . .

a
yn) is the value predicted and n is the number of

data samples. The closer the RMSE and MAE values to zero, the smaller the error between
the data samples and the more accurate the model.

RMSE = (
n

∑
i=1

(yi −
a
yi)

2
/n)

1/2

, (8)

MAE =
n

∑
i=1

∣∣∣∣yi −
a
yi

∣∣∣∣/n. (9)
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3. Experimental Program

Experimental work was also carried out to validate the prediction based on the math-
ematic models. To manufacture the concrete specimens, 42.5-grade ordinary Portland
cement produced by the Yunnan Kunming Huaxin Cement Factory was used. Crushed
stone with 5–25 mm continuous grade was used as coarse aggregate. Machined sand
with a fineness of 2.82 was used as fine aggregate, and a sand ratio of 40% was applied.
Water–binder ratios (W/B) of 0.3, 0.4 and 0.5 were used for comparison. Mix proportions
of concrete specimens are provided in Table 3.

Table 3. Mix proportions of concrete specimens (kg/m3).

No. W/B Water Cement Coarse Aggregates Fine Aggregates

1 0.3 380 114 1113 743
2,4–7 0.4 380 152 1091 727

3 0.5 380 190 1068 712

Concrete specimens with a size of 100 mm × 100 mm × 100 mm were manufactured
in accordance with the Chinese national standard GB/T 50081-2019. The concrete mixture
was cast into the mold in two layers. After each layer-casting, the mixture was vibrated
for 10–20 s on a vibration table to eliminate any possible voids. The hardened concrete
specimens were de-molded after standing for 1 day in an ambient environment and then
put in a curing room with a temperature of 20 ± 1 ◦C and relative humidity of 100%.
After curing for another 27 days, the specimens were extracted and placed in an electrical
muffle furnace for heating with the operation mechanism provided in Table 4 (illustrated
graphically in Figure 5). Afterwards, the specimens were crushed using a WE-300 hydraulic
universal testing machine to test compressive strength. Three duplicated specimens were
produced for each mix at each heating temperature, and the strength reported is an average
of the three results. The strength loss percentage was calculated using Equation (1).

Table 4. High temperature operation mechanism.

No. T
(◦C)

V
(◦C/min) MD (Hour) C RD (Day)

1

200, 400, 600,
800

10 2 Nature 0
2 10 2 Nature 0
3 10 2 Nature 0
4 5 2 Nature 0
5 10 1 Nature 0
6 10 2 Water 0
7 10 2 Nature 1
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4. Results and Discussion
4.1. Modeling

Regressions of the BP, PSO-BP and RF models are shown in Figures 6–8, respectively.
In the figures, the X (Target) and Y (Output) axis represent the data (P) reported in the
literature and those obtained via modeling, respectively. The dotted line refers to the output
value equal to the target value, and the correlation coefficient R equals 1. The real line is the
regression of the real relation between output value and target value. The closer the real
line is to the dotted line, the higher the R-value. From Figure 6, it can be seen that there is a
good correlation between the data samples no matter whether training, testing, validation
or the whole stage of the BP modeling is considered, as the R-value is greater than 0.86.
PSO processing improved the correlation further as the minimum R-value increased to 0.87
(see Figure 7). The correlation was significantly improved when RF modeling was applied,
as all the R values were higher than 0.92 (see Figure 8). Error evaluation of the models is
provided in Table 5. Both RMSE and MAE values of the models were at a very low level.
This was particularly true when the PSO-BP and the RF models were considered. Both
correlation and error evaluation indicated that the accuracy of the models was sufficiently
high. Compared to the BP model, the PSO-BP and the RF models were more accurate.
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4.2. Experimental Validation

Later, experimental work was carried out to validate the feasibility of the modeling
prediction. The compressive strength of the seven concrete mixes was experimentally
tested to calculate the strength loss percentage; the results are reported in Table 6 and
Figure 9. The appearance of the concrete specimens before and after high-temperature
exposures is shown in Figure 10. From the results, it can be seen that the compressive
strength of all seven mixes reduced with the increase in temperature. After 800 ◦C, only
24–36% of the strength remained. With the increase of W/B from 0.3 to 0.5 (mixes 1,
2 and 3), concrete specimens were to be less dense [3], resulting in a lower strength at
room temperature and a higher strength loss after high-temperature exposures. When a
lower heating velocity was applied (comparison between mixes two and four), the heating
duration was prolonged to achieve the target temperature causing higher strength loss [93].
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A shorter maintenance duration at the high temperatures (comparison between mixes two
and five) could protect the specimens from worse thermal damage [94]; therefore, lower
strength loss was observed. It is usually considered that water cooling will cause thermal
stress distributed in concrete to lower its strength [45]. It was found that the shrinkage of
the cement matrix with temperature could compensate for such stress [95]; therefore, in this
paper, it was observed that water cooling had a less significant influence on the strength loss
(comparison between mixes two and six). After cooling, resting for a certain duration before
crushing allowed parts of the products of concrete, which were decomposed thermally, to
rehydrate to make the concrete dense [96]. Consequently, it was found that the specimens
with a one-day-resting duration showed less strength loss.
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Simultaneously, the material and heating-related parameters used in the experimental
work were put in the models to run a prediction, and the results predicted are reported in
Table 6 as well. The error between the results measured and predicted (100% × |predicted
value-measured value|/measured value) is illustrated in Figure 11, and the statistic of the
errors is summarized in Table 7. From the results, it can be seen that although in all cases
the maximum error values were relatively high, i.e., more than 30%, the mean values of
less than 10% were still at a low level, which could meet the requirement of engineering
practice. Furthermore, concrete mix one always yielded the largest error value in all three
predictions. A possible reason for that could be due to a relatively low W/B of 0.3 being
used in mix one, and the temperature was not high enough, i.e., 200 ◦C; therefore, the data
under such circumstances is not adequate in the literature to run sufficient training during
modeling. Nevertheless, compared to the BP model, the PSO-BP and the RF models indeed
improved the feasibility of the prediction as both the error range and the average error
were reduced dramatically.

Due to the sufficient feasibility of the prediction, it is suggested that in practice,
engineers could input relevant parameters into the models to yield a residual strength
instantly, which could also avoid secondary damage to the post-fire building caused by
destructive testing, and the results would be objective and more reliable.
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Table 5. Error evaluation.

BP PSO-BP RF

Training Test Training Test Training Test

RMSE (%) 4.17 3.14 2.60 2.12 2.56 2.23
MAE (%) 3.12 2.78 3.17 2.63 2.57 1.79
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4.3. VIM

In this paper, a VIM was implemented using the RF model to rank the importance
of the inputting parameters on compressive strength loss of normal concrete after high
temperature, and the result is illustrated in Figure 12. The importance ranking is in the
sequence of T > W/B > V > MD > RD > C. Heating temperature had a crucial influence,



Appl. Sci. 2022, 12, 12237 10 of 48

accounting for 67.3%. Influences contributed by W/B and heating velocity were quite
similar, accounting for 11.6% and 10.3%, respectively, followed by the duration at target
temperature and duration after cooling, accounting for 5.6% and 4.2%, respectively; the
influence of the cooling method was insignificant, accounting for only 1.0%.

Table 6. Compressive strength loss percentages measured and predicted.

No. T (◦C) Compressive
Strength (MPa)

P
(Measured, %)

P
(Predicted by BP, %)

P
(Predicted by PSO-BP, %)

P
(Predicted by RF, %)

1

20 75.61 – – – –
200 69.45 −8.14 −4.61 −5.57 −5.13
400 62.59 −17.22 −14.37 −15.83 −16.98
600 45.36 −40.00 −37.42 −41.23 −39.61
800 26.61 −64.81 −64.14 −65.03 −62.03

2

20 48.16 – – – –
200 44.24 −8.14 −8.27 −7.99 −9.01
400 38.42 −20.22 −16.68 −21.07 −20.66
600 26.48 −45.02 −37.69 −47.51 −47.22
800 14.99 −68.88 −65.36 −69.32 −70.23

3

20 40.42 – – – –
200 35.38 −12.47 −13.15 −11.73 −12.40
400 30.01 −25.76 −27.39 −25.82 −24.92
600 22.17 −45.15 −47.86 −46.22 −42.79
800 11.64 −71.19 −70.37 −69.61 −68.11

4

20 48.16 – – – –
200 42.72 −11.31 −10.96 −12.62 −11.80
400 37.78 −21.56 −22.92 −22.56 −23.19
600 29.37 −39.01 −43.83 −38.91 −38.93
800 11.76 −75.57 −77.17 −77.14 −74.32

5

20 48.16 – – – –
200 44.11 −8.41 −7.59 −10.23 −6.99
400 38.89 −19.25 −16.00 −23.23 −20.20
600 29.94 −37.83 −36.47 −39.67 −38.90
800 15.70 −67.39 −64.00 −68.22 −66.39

6

20 48.16 – – – –
200 44.24 −8.14 −8.14 −8.19 −9.13
400 39.67 −17.63 −16.10 −18.11 −15.19
600 29.15 −39.46 −34.44 −40.34 −38.92
800 17.21 −64.27 −61.42 −63.28 −64.02

7

20 48.16 – – – –
200 44.96 −6.63 −8.21 −7.91 −7.24
400 38.67 −19.70 −21.03 −21.19 −18.93
600 26.63 −44.69 −46.11 −47.91 −44.93
800 15.29 −66.24 −68.31 −69.01 −67.29

It is clear that, for normal concrete, the decomposition of hydration products, cracking,
loosening of matrix structure and expansion and/or decomposition of aggregates caused
the loss of compressive strength with the increase in temperature [3]. Consequently, the
temperature should be the most important factor influencing the compressive strength loss
of concrete. As discussed in Section 4.2, it is usually considered that water cooling will
result in thermal stress in concrete to dramatically reduce its strength. At the same time, it
is also found that shrinkage of cement matrix with temperature would compensate for such
stress to lower the influence on the strength loss. Therefore, the importance of the cooling
method is less significant. Furthermore, a smaller amount of literature has discussed the
influence of the cooling method on the compressive strength of normal concrete; therefore,
a smaller data size would also have an influence on the ranking of the cooling method.
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Table 7. Statistic of the error between the results measured and predicted.

BP PSO-BP RF

Range (%) [0.00–43.37] [0.23–31.57] [0.20–36.98]
Average (%) 8.88 6.37 5.70
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5. Conclusions

Fires in buildings cause serious damage to structural concrete. Post-fire assessments
currently used are usually subjective and destructive. Therefore, BP, PSO-BP and RF models
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were established in this paper to predict the compressive strength loss of normal concrete
after high temperatures.

(1) To establish the models, 1803 sets of data from the publicly published literature were
used, W/B, T, V, MD, C and RD were determined as input parameters and P was
applied as an output parameter. Based on RMSE and MAE error evaluation, the
accuracy of all three models was sufficiently high. Compared to the BP model, both
the PSO-BP and the RF models were more accurate.

(2) Parallel experimental work was carried out with modeling prediction using the same
parameters. An error value between the results measured and predicted of less
than 10% proved that all three models had sufficient feasibility to complement the
prediction. Compared to the other two models, RF one was much more feasible.

(3) Based on the RF model, the importance of the input parameters was ranked in the
sequence of T > W/B > V > MD > RD > C.

(4) With the continuous expansion of data size, the accuracy of the models could be
improved further. Such prediction work has provided a new perspective to assess
the post-fire properties of concrete non-destructively and objectively. Additionally, it
could be used to guide performance-based design for fire-resistant concrete.
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Appendix A

Table A1. Data for modeling.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[5]

0.49 200 10 2 1 14 −4.28
0.49 300 10 2 1 14 8.06
0.49 400 10 2 1 14 11.83
0.49 500 10 2 1 14 2.00
0.49 600 10 2 1 14 −23.50
0.49 700 10 2 1 14 −50.06
0.49 800 10 2 1 14 −71.17
0.49 200 10 2 0 14 −1.33
0.49 300 10 2 0 14 0.94
0.49 400 10 2 0 14 −1.75
0.49 500 10 2 0 14 1.81
0.49 600 10 2 0 14 −17.64
0.49 700 10 2 0 14 −42.75
0.49 800 10 2 0 14 −63.03
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[6]

0.18 100 2 2 1 3 −1.05
0.18 200 2 2 1 3 14.65
0.18 300 2 2 1 3 25.42
0.18 400 2 2 1 3 34.56
0.18 500 2 2 1 3 8.61
0.18 600 2 2 1 3 4.22
0.18 800 2 2 1 3 −68.85

[7]

0.52 200 5 6 1 0 −1.05
0.52 400 5 6 1 0 −9.41
0.52 600 5 6 1 0 −27.74
0.52 800 5 6 1 0 −43.71
0.52 200 5 6 0 2 2.09
0.52 400 5 6 0 2 −11.00
0.52 600 5 6 0 2 −33.50
0.52 800 5 6 0 2 −52.36

[8]

0.33 105 10 3 1 1 −7.06
0.33 200 10 3 1 1 −12.86
0.33 400 10 3 1 1 −36.64
0.33 600 10 3 1 1 −63.91
0.33 800 10 3 1 1 −85.36

[9]

0.49 105 10 6 1 1 −10.00
0.49 300 10 6 1 1 −2.80
0.49 500 10 6 1 1 −13.34
0.49 700 10 6 1 1 −51.94
0.6 105 10 6 1 0 −11.67
0.6 300 10 6 1 0 −7.00
0.6 500 10 6 1 0 −19.63
0.6 700 10 6 1 0 −44.23

0.49 105 10 6 1 0 −10.01
0.49 300 10 6 1 0 −3.42
0.49 500 10 6 1 0 −14.23
0.49 700 10 6 1 0 −41.75
0.4 105 10 6 1 0 −12.74
0.4 300 10 6 1 0 −9.07
0.4 500 10 6 1 0 −10.81
0.4 700 10 6 1 0 −46.70

[10]

0.5 100 10 1 1 1 −8.28
0.5 100 10 2 1 1 −8.77
0.5 100 10 3 1 1 −6.16
0.5 100 10 1 1 1 −6.62
0.5 100 10 2 1 1 −8.48
0.5 100 10 3 1 1 −1.86
0.5 100 10 1 1 1 −6.85
0.5 100 10 2 1 1 −8.95
0.5 100 10 3 1 1 −4.09
0.5 300 10 1 1 1 −7.35
0.5 300 10 2 1 1 −5.64
0.5 300 10 3 1 1 −6.67
0.5 300 10 1 1 1 −4.23
0.5 300 10 2 1 1 −6.11
0.5 300 10 3 1 1 −7.73
0.5 300 10 1 1 1 −3.16
0.5 300 10 2 1 1 −4.66
0.5 300 10 3 1 1 −7.77
0.5 500 10 1 1 1 −38.09
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[10]

0.5 500 10 2 1 1 −41.99
0.5 500 10 3 1 1 −46.16
0.5 500 10 1 1 1 −36.27
0.5 500 10 2 1 1 −41.93
0.5 500 10 3 1 1 −47.90
0.5 500 10 1 1 1 −39.07
0.5 500 10 2 1 1 −41.79
0.5 500 10 3 1 1 −48.22
0.5 700 10 1 1 1 −62.35
0.5 700 10 2 1 1 −67.53
0.5 700 10 3 1 1 −68.91
0.5 700 10 1 1 1 −63.46
0.5 700 10 2 1 1 −66.48
0.5 700 10 3 1 1 −69.65
0.5 700 10 1 1 1 −66.18
0.5 700 10 2 1 1 −68.90
0.5 700 10 3 1 1 −70.65

[11]
0.57 200 16 1.5 1 2 −6.75
0.57 400 10 1.5 1 2 −13.00
0.57 600 3 1.5 1 2 −48.75
0.57 200 16 1.5 0 2 −2.25
0.57 400 10 1.5 0 2 −20.00
0.57 600 3 1.5 0 2 −38.50
0.57 200 16 1.5 1 2 −17.02
0.57 400 10 1.5 1 2 −26.71
0.57 600 3 1.5 1 2 −55.79
0.57 200 16 1.5 0 2 −15.60
0.57 400 10 1.5 0 2 −29.08
0.57 600 3 1.5 0 2 −47.04
0.57 200 16 1.5 1 2 −11.33
0.57 400 10 1.5 1 2 −23.65
0.57 600 3 1.5 1 2 −61.08
0.57 200 16 1.5 0 2 −10.10
0.57 400 10 1.5 0 2 −32.51
0.57 600 3 1.5 0 2 −48.77
0.57 200 16 1.5 1 2 −7.73
0.57 400 10 1.5 1 2 −27.93
0.57 600 3 1.5 1 2 −57.61
0.57 200 16 1.5 0 2 −3.24
0.57 400 10 1.5 0 2 −32.67
0.57 600 3 1.5 0 2 −41.15
0.57 200 16 1.5 1 2 −5.97
0.57 400 10 1.5 1 2 −28.05
0.57 600 3 1.5 1 2 −62.08
0.57 800 2.29 1.5 1 2 −83.64
0.57 200 16 1.5 0 2 −3.90
0.57 400 10 1.5 0 2 −37.66
0.57 600 3 1.5 0 2 −48.05
0.57 800 2.29 1.5 0 2 −88.31

[12]

0.42 300 30 1.5 1 90 1.37
0.42 500 25 1 1 90 1.31
0.42 700 17.5 1 1 90 1.78
0.42 900 11.25 1 1 90 −1.75
0.42 300 30 1.67 1 90 0.03
0.42 500 25 1.67 1 90 4.24
0.42 700 17.5 1.67 1 90 −15.57
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[12]

0.42 900 11.25 1.67 1 90 −27.11
0.42 300 30 2.33 1 90 2.17
0.42 500 25 2.33 1 90 −5.90
0.42 700 17.5 2.33 1 90 −50.55
0.42 900 11.25 2.33 1 90 −70.10
0.42 300 30 3 1 90 4.57
0.42 500 25 3 1 90 −4.57
0.42 700 17.5 3 1 90 −58.82
0.42 900 11.25 3 1 90 −73.57

0.42 300 30 1 0 90 −2.33
0.42 500 25 1 0 90 −10.62

[13]

0.42 700 17.5 1 0 90 −15.43
0.42 900 11.25 1 0 90 −21.31
0.42 300 30 1.67 0 90 −5.22
0.42 500 25 1.67 0 90 −1.21
0.42 700 17.5 1.67 0 90 −13.78
0.42 900 11.25 1.67 0 90 −47.30
0.42 300 30 2.33 0 90 −1.42
0.42 500 25 2.33 0 90 −17.73
0.42 700 17.5 2.33 0 90 −48.21
0.42 900 11.25 2.33 0 90 −58.64
0.42 300 30 3 0 90 2.91
0.42 500 25 3 0 90 −9.12
0.42 700 17.5 3 0 90 −63.13
0.42 900 11.25 3 0 90 −72.22

[14]

0.52 200 6.67 2 1 2 −14.58
0.52 200 6.67 6 1 2 −17.17
0.52 200 6.67 24 1 2 −24.02
0.52 200 6.67 48 1 2 −26.80
0.52 400 13.33 2 1 2 −45.23
0.52 400 13.33 6 1 2 −52.54
0.52 400 13.33 24 1 2 −57.13
0.52 400 13.33 48 1 2 −60.30
0.52 600 20 2 1 2 −85.16
0.52 600 20 6 1 2 −88.72
0.52 600 20 24 1 2 −89.46
0.52 600 20 48 1 2 −90.56
0.52 800 26.67 2 1 2 −92.43
0.52 800 26.67 6 1 2 −92.79
0.52 800 26.67 24 1 2 −93.18
0.52 800 26.67 48 1 2 −93.95

[15]

0.58 150 150 3 1 27 −3.25
0.58 150 150 3 1 25 3.25
0.58 150 150 3 1 21 −15.52
0.58 150 150 3 1 14 −17.33
0.58 150 150 3 1 0 −22.74
0.58 300 300 3 1 27 −13.36
0.58 300 300 3 1 25 −8.30
0.58 300 300 3 1 21 −20.58
0.58 300 300 3 1 14 −16.35
0.58 300 300 3 1 0 −29.96
0.58 400 200 3 1 27 −19.49
0.58 400 200 3 1 25 −9.75
0.58 400 200 3 1 21 −13.00
0.58 400 200 3 1 14 −22.02
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[15]

0.58 400 200 3 1 0 −16.97
0.58 600 75 3 1 27 −37.55
0.58 600 75 3 1 25 −23.47
0.58 600 75 3 1 21 −29.97
0.58 600 75 3 1 14 −47.29
0.58 600 75 3 1 0 −35.74
0.58 800 35.5 3 1 27 −62.82
0.58 800 35.5 3 1 25 −47.29
0.58 800 35.5 3 1 21 −51.99
0.58 800 35.5 3 1 14 −73.65
0.58 800 35.5 3 1 0 −59.93
0.58 900 20.2 3 1 27 −79.78
0.58 900 20.2 3 1 25 −69.68
0.58 900 20.2 3 1 21 −75.09
0.58 900 20.2 3 1 14 −84.12
0.58 900 20.2 3 1 0 −75.09
0.58 150 150 3 0 27 5.12
0.58 150 150 3 0 25 1.89
0.58 150 150 3 0 21 −1.41
0.58 150 150 3 0 14 −5.45
0.58 150 150 3 0 0 −27.17
0.58 300 300 3 0 27 10.91
0.58 300 300 3 0 25 19.22
0.58 300 300 3 0 21 1.89
0.58 300 300 3 0 14 −9.17
0.58 300 300 3 0 0 −31.73
0.58 400 200 3 0 27 1.81
0.58 400 200 3 0 25 6.39
0.58 400 200 3 0 21 3.55
0.58 400 200 3 0 14 −2.55
0.58 400 200 3 0 0 −18.90
0.58 600 75 3 0 27 −25.92
0.58 600 75 3 0 25 −11.40
0.58 600 75 3 0 21 −24.59
0.58 600 75 3 0 14 −59.04
0.58 600 75 3 0 0 −76.83
0.58 800 35.5 3 0 27 −42.47
0.58 800 35.5 3 0 25 −30.85
0.58 800 35.5 3 0 21 −38.24
0.58 800 35.5 3 0 14 −57.59
0.58 800 35.5 3 0 0 −76.83
0.58 900 20.2 3 0 27 −65.64
0.58 900 20.2 3 0 25 −51.54
0.58 900 20.2 3 0 21 −56.03
0.58 900 20.2 3 0 14 −76.21
0.58 900 20.2 3 0 0 −87.17

[16]

0.34 200 5 3 1 0 −3.57
0.34 400 5 3 1 0 −27.26
0.34 600 5 3 1 0 −59.08
0.4 200 5 3 1 0 −8.24
0.4 400 5 3 1 0 −28.92
0.4 600 5 3 1 0 −57.47
0.5 200 5 3 1 0 −10.54
0.5 400 5 3 1 0 −23.49
0.5 600 5 3 1 0 −53.37
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REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[17]

0.49 200 2.5 8 1 0 41.30
0.49 400 2.5 8 1 0 7.60
0.49 600 2.5 8 1 0 −33.20
0.49 700 2.5 8 1 0 −46.70
0.49 800 2.5 8 1 0 −66.30
0.49 200 2.5 8 1 0 −23.40
0.49 400 2.5 8 1 0 −46.50
0.49 600 2.5 8 1 0 −55.50
0.49 700 2.5 8 1 0 −65.50
0.49 800 2.5 8 1 0 −67.60
0.49 900 2.5 8 1 0 −82.50

[18]

0.42 300 10 6 1 0 −27.00
0.42 500 10 6 1 0 −44.00
0.42 700 10 6 1 0 −64.00
0.42 300 10 6 1 0 −14.00
0.42 500 10 6 1 0 −33.00
0.42 700 10 6 1 0 −67.00

[19]

0.25 200 90 0.5 1 1 −4.59
0.25 400 90 0.5 1 1 −13.33
0.25 600 54 0.5 1 1 −32.43
0.25 800 28.42 0.5 1 1 −44.40
0.3 200 90 0.5 1 1 −4.52
0.3 400 90 0.5 1 1 −12.36
0.3 600 54 0.5 1 1 −31.62
0.3 800 28.42 0.5 1 1 −46.36

[20]

0.31 200 10 3 1 0 4.63
0.31 400 10 3 1 0 45.66
0.31 600 10 3 1 0 7.07
0.31 800 10 3 1 0 −56.30
0.31 200 10 3 1 0 38.68
0.31 400 10 3 1 0 52.44
0.31 600 10 3 1 0 23.40
0.31 800 10 3 1 0 −49.33

[21]

0.3 200 16 2 1 0 −10.55
0.3 400 20.5 2 1 0 −29.61
0.3 600 17.5 2 1 0 −47.08
0.3 800 13.4 2 1 0 −75.64
0.3 200 16 2 1 0 −12.78
0.3 400 20.5 2 1 0 −31.86
0.3 600 17.5 2 1 0 −48.60
0.3 800 13.4 2 1 0 −78.01
0.3 200 16 2 1 0 −15.41
0.3 400 20.5 2 1 0 −37.21
0.3 600 17.5 2 1 0 −51.17
0.3 800 13.4 2 1 0 −78.30
0.3 200 16 2 1 0 −10.35
0.3 400 20.5 2 1 0 −35.24
0.3 600 17.5 2 1 0 −49.20
0.3 800 13.4 2 1 0 −79.57

[22]

0.48 200 10 1.5 1 0 −16.21
0.48 400 10 1.5 1 0 −10.48
0.48 800 10 1.5 1 0 −4.68
0.48 200 10 1.5 1 0 4.29
0.48 400 10 1.5 1 0 −69.21
0.48 800 10 1.5 1 0 −31.90
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REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[23]

0.35 200 12 2 1 0 −18.16
0.35 300 12 2 1 0 −28.18
0.35 400 12 2 1 0 −22.24
0.35 600 12 2 1 0 −41.64
0.35 800 12 2 1 0 −69.66
0.35 200 12 2 1 0 −8.54
0.35 300 12 2 1 0 −17.24
0.35 400 12 2 1 0 −15.05
0.35 600 12 2 1 0 −37.74
0.35 800 12 2 1 0 −72.94
0.35 200 12 2 1 0 −7.32
0.35 300 12 2 1 0 −16.47
0.35 400 12 2 1 0 −14.25
0.35 600 12 2 1 0 −36.24
0.35 800 12 2 1 0 −66.57
0.35 200 12 2 1 0 −14.66
0.35 300 12 2 1 0 −23.60
0.35 400 12 2 1 0 −21.76
0.35 600 12 2 1 0 −41.94
0.35 800 12 2 1 0 −71.91

[24]

0.33 200 15 2 1 1 −8.24
0.33 400 15 2 1 1 −19.06
0.33 600 15 2 1 1 −40.14
0.33 800 15 2 1 1 −65.84
0.33 200 15 2 1 1 −5.55
0.33 400 15 2 1 1 −14.62
0.33 600 15 2 1 1 −32.71
0.33 800 15 2 1 1 −44.80
0.33 200 15 2 1 1 −9.10
0.33 400 15 2 1 1 −16.28
0.33 600 15 2 1 1 −32.99
0.33 800 15 2 1 1 −45.90
0.33 200 15 2 1 1 −9.07
0.33 400 15 2 1 1 −20.40
0.33 600 15 2 1 1 −33.99
0.33 800 15 2 1 1 −48.03

[25]

0.27 200 10 1.5 1 0 −0.13
0.27 400 10 1.5 1 0 −7.02
0.27 600 10 1.5 1 0 −28.61
0.27 800 10 1.5 1 0 −71.52
0.27 200 10 1.5 1 0 −19.42
0.27 400 10 1.5 1 0 −30.87
0.27 600 10 1.5 1 0 −37.39
0.27 800 10 1.5 1 0 −70.14

[26]

0.49 800 6 1 1 0 −74.41
0.49 1100 6 1 1 0 −91.88
0.49 800 6 1 0 0 −78.62
0.49 1100 6 1 0 0 −91.57
0.49 800 6 1 1 0 −65.90
0.49 1100 6 1 1 0 −87.75
0.49 800 6 1 0 0 −71.63
0.49 1100 6 1 0 0 −89.60

[27]
0.49 250 10 2 0 7 −2.03
0.49 450 10 2 0 7 −3.36
0.49 250 10 2 0 7 −7.90
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REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[27]

0.49 450 10 2 0 7 −21.94
0.49 250 10 2 0 7 −17.92
0.49 450 10 2 0 7 −28.29
0.49 250 10 2 0 7 −23.79
0.49 450 10 2 0 7 −31.72
0.49 550 10 2 0 7 −46.32
0.49 650 10 2 0 7 −66.78

[28]

0.55 100 5 1 1 2 −9.01
0.55 300 5 1 1 2 −26.12
0.55 500 5 1 1 2 −36.94
0.55 700 5 1 1 2 −47.75
0.33 100 5 1 1 2 −8.74
0.33 300 5 1 1 2 −33.01
0.33 500 5 1 1 2 −45.63
0.33 700 5 1 1 2 −69.90

[29]

0.36 200 20 1.5 0 2 −4.30
0.36 300 20 1.5 0 2 −4.70
0.36 400 20 2 0 2 −15.30
0.36 500 20 2 0 2 −35.60
0.36 600 20 2.5 0 2 −40.50
0.36 700 20 2.5 0 2 −44.20
0.36 800 20 2.5 0 2 −69.20

[30]

0.44 100 100 2 1 0.25 19.38
0.44 100 100 2 1 0.25 0.32
0.44 100 100 2 1 0.25 −0.66
0.44 200 200 2 1 0.25 1.94
0.44 200 200 2 1 0.25 −7.05
0.44 200 200 2 1 0.25 4.32
0.44 300 300 2 1 0.25 6.20
0.44 300 300 2 1 0.25 −16.99
0.44 300 300 2 1 0.25 −9.97
0.44 400 400 2 1 0.25 1.94
0.44 400 400 2 1 0.25 −14.10
0.44 400 400 2 1 0.25 −18.27
0.44 500 500 2 1 0.25 −7.75
0.44 500 500 2 1 0.25 −19.87
0.44 500 500 2 1 0.25 −15.61
0.44 600 2.5 1 1 0.25 −24.81
0.44 600 2.5 1 1 0.25 −32.69
0.44 600 2.5 1 1 0.25 −31.89
0.44 700 2.5 1 1 0.25 −47.67
0.44 700 2.5 1 1 0.25 −50.64
0.44 700 2.5 1 1 0.25 −57.81
0.44 800 2.5 1 1 0.25 −54.26
0.44 800 2.5 1 1 0.25 −60.90
0.44 800 2.5 1 1 0.25 −72.09
0.44 900 2.5 1 1 0.25 −74.03
0.44 900 2.5 1 1 0.25 −77.88
0.44 900 2.5 1 1 0.25 −74.42
0.35 100 100 2 1 0.25 −1.48
0.35 100 100 2 1 0.25 2.08
0.35 100 100 2 1 0.25 6.04
0.35 200 200 2 1 0.25 −8.62
0.35 200 200 2 1 0.25 −7.79
0.35 200 200 2 1 0.25 0.00
0.35 300 300 2 1 0.25 −12.56
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REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[30]

0.35 300 300 2 1 0.25 −3.64
0.35 300 300 2 1 0.25 −12.09
0.35 400 400 2 1 0.25 −20.69
0.35 400 400 2 1 0.25 −16.88
0.35 400 400 2 1 0.25 −7.69
0.35 500 500 2 1 0.25 −26.60
0.35 500 500 2 1 0.25 −24.68
0.35 500 500 2 1 0.25 −22.53
0.35 600 2.5 1 1 0.25 −40.89
0.35 600 2.5 1 1 0.25 −38.18
0.35 600 2.5 1 1 0.25 −32.69
0.35 700 2.5 1 1 0.25 −43.60
0.35 700 2.5 1 1 0.25 −45.19
0.35 700 2.5 1 1 0.25 −32.97
0.35 800 2.5 1 1 0.25 −60.59
0.35 800 2.5 1 1 0.25 −60.00
0.35 800 2.5 1 1 0.25 −52.75
0.35 900 2.5 1 1 0.25 −78.08
0.35 900 2.5 1 1 0.25 −80.52
0.35 900 2.5 1 1 0.25 −75.82
0.35 100 100 2 1 0.25 2.90
0.35 100 100 2 1 0.25 2.31
0.35 100 100 2 1 0.25 4.78
0.35 200 200 2 1 0.25 −9.54
0.35 200 200 2 1 0.25 −9.64
0.35 200 200 2 1 0.25 −9.56
0.35 300 300 2 1 0.25 −16.80
0.35 300 300 2 1 0.25 −18.03
0.35 300 300 2 1 0.25 −17.67
0.35 400 400 2 1 0.25 −18.67
0.35 400 400 2 1 0.25 −25.37
0.35 400 400 2 1 0.25 −22.25
0.35 500 500 2 1 0.25 −27.59
0.35 500 500 2 1 0.25 −27.67
0.35 500 500 2 1 0.25 −27.86
0.35 600 2.5 1 1 0.25 −31.33
0.35 600 2.5 1 1 0.25 −33.33
0.35 600 2.5 1 1 0.25 −32.85
0.35 700 2.5 1 1 0.25 −37.97
0.35 700 2.5 1 1 0.25 −41.72
0.35 700 2.5 1 1 0.25 −40.33
0.35 800 2.5 1 1 0.25 −61.83
0.35 800 2.5 1 1 0.25 −58.07
0.35 800 2.5 1 1 0.25 −61.33
0.35 900 2.5 1 1 0.25 −88.80

[31]

0.46 100 11 6 1 1 −4.00
0.46 300 11 6 1 1 −15.00
0.46 500 11 6 1 1 −45.00
0.46 700 11 6 1 1 −73.00
0.46 100 11 6 1 7 −14.00
0.46 300 11 6 1 7 −18.00
0.46 500 11 6 1 7 −58.00
0.46 700 11 6 1 7 −79.00
0.46 100 11 6 1 14 4.00
0.46 300 11 6 1 14 −21.00
0.46 500 11 6 1 14 −60.00
0.46 700 11 6 1 14 −78.00
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W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[31]

0.46 100 11 6 1 28 0.00
0.46 300 11 6 1 28 −23.00
0.46 500 11 6 1 28 −63.00
0.46 700 11 6 1 28 −80.00
0.46 100 11 6 1 56 −9.00
0.46 300 11 6 1 56 −17.00
0.46 500 11 6 1 56 −58.00
0.46 700 11 6 1 56 −75.00
0.46 100 11 6 1 77 −16.00
0.46 300 11 6 1 77 −26.00
0.46 500 11 6 1 77 −52.00
0.46 700 11 6 1 77 −77.00
0.46 100 11 6 1 112 −5.00
0.46 300 11 6 1 112 −23.00
0.46 500 11 6 1 112 −57.00
0.46 700 11 6 1 112 −76.00

[32]

0.43 200 20 1 1 0 −24.30
0.43 300 17.5 1 1 0 −18.66
0.43 400 2.24 1 1 0 −24.66
0.43 500 1.84 1 1 0 −28.99
0.43 600 1.16 1 1 0 −41.69
0.43 700 1.04 1 1 0 −62.96
0.43 800 1.02 1 1 0 −70.94

[33]

0.56 150 10 1.5 1 0 −3.80
0.56 250 10 1.5 1 0 −8.70
0.56 350 10 1.5 1 0 −13.60
0.56 450 10 1.5 1 0 −21.50
0.56 550 10 1.5 1 0 −37.70
0.56 650 10 1.5 1 0 −53.60
0.56 150 10 1.5 0 0 −11.30
0.56 250 10 1.5 0 0 −18.00
0.56 350 10 1.5 0 0 −22.60
0.56 450 10 1.5 0 0 −25.70
0.56 550 10 1.5 0 0 −29.80
0.56 650 10 1.5 0 0 −35.10
0.53 150 10 1.5 1 0 −4.20
0.53 250 10 1.5 1 0 −11.70
0.53 350 10 1.5 1 0 −15.90
0.53 450 10 1.5 1 0 −18.40
0.53 550 10 1.5 1 0 −33.30
0.53 650 10 1.5 1 0 −51.50
0.53 150 10 1.5 0 0 −7.40
0.53 250 10 1.5 0 0 −14.60
0.53 350 10 1.5 0 0 −21.00
0.53 450 10 1.5 0 0 −23.00
0.53 550 10 1.5 0 0 −24.30
0.53 650 10 1.5 0 0 −31.40
0.5 150 10 1.5 1 0 −6.10
0.5 250 10 1.5 1 0 −13.00
0.5 350 10 1.5 1 0 −18.60
0.5 450 10 1.5 1 0 −23.50
0.5 550 10 1.5 1 0 −35.40
0.5 650 10 1.5 1 0 −56.20
0.5 150 10 1.5 0 0 −7.80
0.5 250 10 1.5 0 0 −15.70
0.5 350 10 1.5 0 0 −21.70
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[33]
0.5 450 10 1.5 0 0 −29.00
0.5 550 10 1.5 0 0 −25.80
0.5 650 10 1.5 0 0 −31.30

[34]

0.77 200 2.5 1 1 1 −8.40
0.77 400 2.5 1 1 1 −12.38
0.77 800 2.5 1 1 1 −84.51
0.77 200 2.5 1 1 1 −4.23
0.77 400 2.5 1 1 1 −13.93
0.77 800 2.5 1 1 1 −70.04
0.77 200 2.5 1 1 1 −7.01
0.77 400 2.5 1 1 1 −14.02
0.77 800 2.5 1 1 1 −68.49
0.77 200 2.5 1 1 1 −3.59
0.77 400 2.5 1 1 1 −25.01
0.77 800 2.5 1 1 1 −77.04
0.77 200 2.5 1 1 1 −1.51
0.77 400 2.5 1 1 1 −6.82
0.77 800 2.5 1 1 1 −64.01
0.77 200 2.5 1 1 1 −7.97
0.77 400 2.5 1 1 1 −16.88
0.77 800 2.5 1 1 1 −56.69
0.77 200 2.5 1 1 1 −11.30
0.77 400 2.5 1 1 1 −14.78
0.77 800 2.5 1 1 1 −56.23
0.77 200 2.5 1 1 1 −11.69
0.77 400 2.5 1 1 1 −35.50
0.77 800 2.5 1 1 1 −56.28

[35]

0.29 851 2 4 1 0 −78.80
0.29 851 10 4 1 0 −57.60
0.29 851 100 4 1 0 −8.00
0.25 851 2 4 1 0 −78.30
0.25 851 10 4 1 0 −68.90
0.25 851 100 4 1 0 −16.20
0.27 851 2 4 1 0 −74.20
0.27 851 10 4 1 0 −73.70
0.27 851 100 4 1 0 −7.00
0.24 851 2 4 1 0 −75.70
0.24 851 10 4 1 0 −78.00
0.24 851 100 4 1 0 −11.50

[36]

0.43 200 10 6 1 1 −0.97
0.43 300 10 6 1 1 6.31
0.43 400 10 6 1 1 −13.56
0.43 500 10 6 1 1 −21.81
0.37 200 10 6 1 1 −2.46
0.37 300 10 6 1 1 −18.60
0.37 400 10 6 1 1 −13.31
0.37 500 10 6 1 1 −28.04

[37]

0.4 100 3 3 1 0 −13.32
0.4 200 3 3 1 0 −10.05
0.4 300 3 3 1 0 −24.80
0.4 600 3 3 1 0 −66.47

0.35 100 3 3 1 0 −15.04
0.35 200 3 3 1 0 −12.75
0.35 300 3 3 1 0 −23.80
0.35 600 3 3 1 0 −70.16
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W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[37]

0.3 100 3 3 1 0 −15.52
0.3 200 3 3 1 0 −14.72
0.3 300 3 3 1 0 −30.95
0.3 600 3 3 1 0 −73.35
0.3 100 3 3 1 0 −14.52
0.3 200 3 3 1 0 −11.99
0.3 300 3 3 1 0 −27.48
0.3 600 3 3 1 0 −69.15

[38]

0.29 600 2.5 0 1 0 −52.55
0.29 800 2.5 0 1 0 −74.47
0.29 600 2.5 0 1 0 −45.45
0.29 800 2.5 0 1 0 −66.67
0.29 600 2.5 0 1 0 −49.91
0.29 800 2.5 0 1 0 −75.08
0.29 600 2.5 0 1 0 −48.00
0.29 800 2.5 0 1 0 −67.63
0.29 600 2.5 0 1 0 −61.35
0.29 800 2.5 0 1 0 −81.70
0.29 600 2.5 0 1 0 −55.75
0.29 800 2.5 0 1 0 −75.53
0.29 600 2.5 0 1 0 −59.23
0.29 800 2.5 0 1 0 −82.60
0.29 600 2.5 0 1 0 −62.54
0.29 800 2.5 0 1 0 −82.87
0.29 600 2.5 0 1 0 −55.06
0.29 800 2.5 0 1 0 −79.29
0.29 600 2.5 0 1 0 −54.30
0.29 800 2.5 0 1 0 −75.18
0.29 600 2.5 0 1 0 −53.18
0.29 800 2.5 0 1 0 −71.97
0.29 600 2.5 0 1 0 −54.95
0.29 800 2.5 0 1 0 −80.99
0.29 600 2.5 0 1 0 −58.42
0.29 800 2.5 0 1 0 −82.65
0.29 600 2.5 0 1 0 −54.54
0.29 800 2.5 0 1 0 −76.78

[39]

0.2 120 4 2 1 3 0.04
0.2 200 4 2 1 3 0.07
0.2 300 4 2 1 3 0.14
0.2 400 4 2 1 3 0.17
0.2 500 4 2 1 3 0.00
0.2 600 4 2 1 3 −0.16
0.2 700 4 2 1 3 −0.44
0.2 800 4 2 1 3 −0.81
0.2 900 4 2 1 3 −0.80
0.2 120 4 2 1 3 0.05
0.2 200 4 2 1 3 0.06
0.2 300 4 2 1 3 0.12
0.2 400 4 2 1 3 0.15
0.2 500 4 2 1 3 0.01
0.2 600 4 2 1 3 −0.20
0.2 700 4 2 1 3 −0.41
0.2 800 4 2 1 3 −0.72
0.2 900 4 2 1 3 −0.69
0.2 120 4 2 1 3 0.06
0.2 200 4 2 1 3 0.08
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[39]

0.2 300 4 2 1 3 0.13
0.2 400 4 2 1 3 0.16
0.2 500 4 2 1 3 0.09
0.2 600 4 2 1 3 −0.15
0.2 700 4 2 1 3 −0.40
0.2 800 4 2 1 3 −0.72
0.2 900 4 2 1 3 −0.68

[40]

0.28 200 5 0 0 0 −30.95
0.28 400 5 0 0 0 −36.11
0.41 200 5 0 0 0 −11.29
0.41 400 5 0 0 0 −9.57
0.41 200 5 0 0 0 −9.23
0.41 400 5 0 0 0 −4.62
0.41 600 5 0 0 0 −33.46
0.41 800 5 0 0 0 −68.65
0.64 200 5 0 0 0 −10.41
0.64 400 5 0 0 0 −19.46
0.64 600 5 0 0 0 −35.75
0.64 800 5 0 0 0 −70.14
0.64 200 5 0 0 0 −16.97
0.64 400 5 0 0 0 −49.54
0.64 600 5 0 0 0 −66.51
0.64 800 5 0 0 0 −76.15

[41]

0.34 100 10 3 1 0 2.54
0.34 200 9.09 3 1 0 −11.38
0.34 300 10.89 3 1 0 −5.84
0.34 400 8.7 3 1 0 −14.82
0.34 500 9.09 3 1 0 −23.80
0.34 600 8.82 3 1 0 −40.42
0.34 700 8.92 3 1 0 −51.65
0.34 800 8.73 3 1 0 −67.81
0.34 900 8.91 3 1 0 −83.83
0.3 100 10 3 1 0 10.74
0.3 200 9.09 3 1 0 −1.67
0.3 300 10.89 3 1 0 8.95
0.3 400 8.7 3 1 0 −7.40
0.3 600 8.82 3 1 0 −52.03
0.3 800 8.73 3 1 0 −63.60
0.3 900 8.91 3 1 0 −76.37

0.25 100 10 3 1 0 −6.34
0.25 200 9.09 3 1 0 −9.09
0.25 300 10.89 3 1 0 −11.85
0.25 400 8.7 3 1 0 −9.09
0.25 500 9.09 3 1 0 −30.67
0.25 600 8.82 3 1 0 −41.23
0.25 700 8.92 3 1 0 −56.38
0.34 100 10 3 1 0 −0.15
0.34 200 9.09 3 1 0 −2.26
0.34 300 10.89 3 1 0 3.77
0.34 400 8.7 3 1 0 −15.51
0.34 500 9.09 3 1 0 −22.59
0.34 600 8.82 3 1 0 −39.61
0.34 700 8.92 3 1 0 −50.75
0.34 800 8.73 3 1 0 −72.44
0.34 900 8.91 3 1 0 −81.33
0.3 100 10 3 1 0 6.99
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W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[41]

0.3 200 9.09 3 1 0 10.29
0.3 300 10.89 3 1 0 3.96
0.3 400 8.7 3 1 0 −4.88
0.3 500 9.09 3 1 0 −21.77
0.3 600 8.82 3 1 0 −22.96
0.3 700 8.92 3 1 0 −33.51
0.3 800 8.73 3 1 0 −61.48
0.3 900 8.91 3 1 0 −71.24

0.25 100 10 3 1 0 0.10
0.25 200 9.09 3 1 0 −7.86
0.25 300 10.89 3 1 0 −3.49
0.25 400 8.7 3 1 0 −0.29
0.25 500 9.09 3 1 0 −31.81
0.25 600 8.82 3 1 0 −46.56
0.25 700 8.92 3 1 0 −64.79
0.25 800 8.73 3 1 0 −74.01
0.25 900 8.91 3 1 0 −80.60

[42]

0.5 400 2.5 3 1 7 −1.77
0.5 600 2.5 3 1 7 −23.92
0.5 800 2.5 3 1 7 −69.93
0.5 400 2.5 3 1 7 2.85
0.5 600 2.5 3 1 7 −11.71
0.5 800 2.5 3 1 7 −66.18
0.5 400 2.5 3 1 7 17.12
0.5 600 2.5 3 1 7 −5.30
0.5 800 2.5 3 1 7 −57.75
0.5 400 2.5 3 1 7 7.84
0.5 600 2.5 3 1 7 −4.73
0.5 800 2.5 3 1 7 −55.76
0.5 400 2.5 3 1 7 12.74
0.5 600 2.5 3 1 7 −5.75
0.5 800 2.5 3 1 7 −63.26
0.5 400 2.5 3 1 7 20.40
0.5 600 2.5 3 1 7 −26.41
0.5 800 2.5 3 1 7 −76.98
0.5 400 2.5 3 1 7 4.62
0.5 600 2.5 3 1 7 −19.48
0.5 800 2.5 3 1 7 −75.39
0.5 400 2.5 3 1 7 2.86
0.5 600 2.5 3 1 7 −19.80
0.5 800 2.5 3 1 7 −77.81
0.5 400 2.5 3 1 7 3.29
0.5 600 2.5 3 1 7 −25.48
0.5 800 2.5 3 1 7 −77.02

[43]

0.53 50 16 3 0 0 9.06
0.53 100 16 3 0 0 −3.92
0.53 150 16 3 0 0 −5.34
0.53 200 16 3 0 0 −23.00
0.53 250 16 3 0 0 −26.59
0.53 300 16 3 0 0 −30.54
0.53 350 16 3 0 0 −26.90
0.53 400 16 3 0 0 −57.57
0.53 450 16 3 0 0 −47.44
0.53 500 16 3 0 0 −55.71
0.53 600 16 3 0 0 −59.28
0.53 700 16 3 0 0 −67.17
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W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[43]

0.53 50 16 3 1 0 13.39
0.53 100 16 3 1 0 20.27
0.53 150 16 3 1 0 −1.01
0.53 200 16 3 1 0 −16.14
0.53 250 16 3 1 0 −19.01
0.53 300 16 3 1 0 −23.68
0.53 350 16 3 1 0 −18.60
0.53 400 16 3 1 0 −30.49
0.53 450 16 3 1 0 −33.71
0.53 500 16 3 1 0 −48.13
0.53 600 16 3 1 0 −49.89
0.53 700 16 3 1 0 −61.39
0.53 50 16 3 0 0 −6.01
0.53 100 16 3 0 0 −13.34
0.53 150 16 3 0 0 −18.00
0.53 200 16 3 0 0 −20.66
0.53 250 16 3 0 0 −32.67
0.53 300 16 3 0 0 −21.27
0.53 350 16 3 0 0 −29.95
0.53 400 16 3 0 0 −42.63
0.53 450 16 3 0 0 −37.92
0.53 500 16 3 0 0 −45.59
0.53 600 16 3 0 0 −62.93
0.53 700 16 3 0 0 −68.23
0.53 50 16 3 1 0 −4.01
0.53 100 16 3 1 0 −9.33
0.53 150 16 3 1 0 −8.64
0.53 200 16 3 1 0 −17.98
0.53 250 16 3 1 0 −19.96
0.53 300 16 3 1 0 −16.26
0.53 350 16 3 1 0 −19.24
0.53 400 16 3 1 0 −20.56
0.53 450 16 3 1 0 −23.54
0.53 500 16 3 1 0 −31.88
0.53 600 16 3 1 0 −42.87
0.53 700 16 3 1 0 −54.52

[44]

0.43 100 1 0 1 0 −4.72
0.43 200 1 0 1 0 −25.65
0.43 400 1 0 1 0 −28.44
0.43 600 1 0 1 0 −35.62
0.43 800 1 0 1 0 −56.00
0.43 100 1 0 1 0 −13.26
0.43 200 1 0 1 0 −20.74
0.43 400 1 0 1 0 −20.93
0.43 600 1 0 1 0 −33.55
0.43 800 1 0 1 0 −70.24
0.43 100 1 0 1 0 1.75
0.43 200 1 0 1 0 −15.82
0.43 400 1 0 1 0 −15.24
0.43 600 1 0 1 0 −32.51
0.43 800 1 0 1 0 −69.72

[45]

0.3 200 5.5 0 1 0 −7.41
0.3 400 5.5 0 1 0 −12.12
0.3 600 5.5 0 1 0 −26.94
0.3 800 5.5 0 1 0 −46.97
0.3 1000 5.5 0 1 0 −89.06
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W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[45]

0.3 200 5.5 0 0 0 −27.27
0.3 400 5.5 0 0 0 −29.12
0.3 600 5.5 0 0 0 −43.43
0.5 200 6.67 0 1 0 −31.84
0.5 400 6.67 0 1 0 −23.15
0.5 600 6.67 0 1 0 −26.09
0.5 800 6.67 0 1 0 −51.47
0.5 1000 6.67 0 1 0 −75.32
0.5 200 6.67 0 0 0 −32.90
0.5 400 6.67 0 0 0 −29.38
0.5 600 6.67 0 0 0 −33.96
0.5 800 6.67 0 0 0 −55.82

[46]
0.43 110 0.1 0.5 1 0 −0.82
0.43 210 0.1 0.5 1 0 −7.01
0.43 310 0.1 0.5 1 0 −34.65

[47]

0.5 200 10 2 1 0 −16.93
0.5 200 10 4 1 0 −27.46
0.5 200 10 6 1 0 −34.93
0.5 400 10 2 1 0 −18.43
0.5 400 10 4 1 0 −27.09
0.5 400 10 6 1 0 −33.84
0.5 600 10 2 1 0 −35.75
0.5 600 10 4 1 0 −38.31
0.5 600 10 6 1 0 −41.34
0.5 200 10 2 1 0 −16.08
0.5 200 10 4 1 0 −16.08
0.5 200 10 6 1 0 −8.08
0.5 400 10 2 1 0 −9.86
0.5 400 10 4 1 0 −13.11
0.5 400 10 6 1 0 −17.52
0.5 600 10 2 1 0 −15.78
0.5 600 10 4 1 0 −20.41
0.5 600 10 6 1 0 −19.03
0.5 200 10 2 1 0 −25.15
0.5 200 10 4 1 0 −31.57
0.5 200 10 6 1 0 −28.94
0.5 400 10 2 1 0 −20.57
0.5 400 10 4 1 0 −25.76
0.5 400 10 6 1 0 −34.81
0.5 600 10 2 1 0 −36.31
0.5 600 10 4 1 0 −41.71
0.5 600 10 6 1 0 43.26

[48]

0.5 200 16.98 0 1 0 20.74
0.5 400 15.75 0 1 0 −13.41
0.5 600 12.7 0 1 0 −45.12
0.5 800 11.28 0 1 0 −70.73
0.5 200 16.98 0 0 0 −1.62
0.5 400 15.75 0 0 0 −27.64
0.5 600 12.7 0 0 0 −59.35
0.5 800 11.28 0 0 0 −70.32
0.5 200 16.98 0 0 0 −13.00
0.5 400 15.75 0 0 0 −40.65
0.5 600 12.7 0 0 0 −69.51
0.5 800 11.28 0 0 0 −85.37
0.5 200 16.98 0 0 0 −15.04
0.5 400 15.75 0 0 0 −45.53
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[48]

0.5 600 12.7 0 0 0 −67.07
0.5 800 11.28 0 0 0 −80.89
0.5 200 16.98 0 0 0 −12.19
0.5 400 15.75 0 0 0 −33.74
0.5 600 12.7 0 0 0 −66.26
0.5 800 11.28 0 0 0 −82.11
0.5 200 16.98 0 1 0 8.12
0.5 400 15.75 0 1 0 −21.40
0.5 600 12.7 0 1 0 −47.97
0.5 800 11.28 0 1 0 −72.32
0.5 200 16.98 0 0 0 6.64
0.5 400 15.75 0 0 0 −27.31
0.5 600 12.7 0 0 0 −53.87
0.5 800 11.28 0 0 0 −67.53
0.5 200 16.98 0 0 0 −8.49
0.5 400 15.75 0 0 0 −42.07
0.5 600 12.7 0 0 0 −64.21
0.5 800 11.28 0 0 0 −92.99
0.5 200 16.98 0 0 0 −10.33
0.5 400 15.75 0 0 0 −41.33
0.5 600 12.7 0 0 0 −62.73
0.5 200 16.98 0 0 0 −6.64
0.5 400 15.75 0 0 0 −34.32
0.5 600 12.7 0 0 0 −61.62
0.5 200 16.98 0 1 0 9.95
0.5 400 15.75 0 1 0 −10.38
0.5 600 12.7 0 1 0 −47.88
0.5 800 11.28 0 1 0 −84.65
0.5 200 16.98 0 0 0 7.10
0.5 400 15.75 0 0 0 −24.68
0.5 600 12.7 0 0 0 −60.01
0.5 800 11.28 0 0 0 −87.14
0.5 200 16.98 0 0 0 −11.46
0.5 400 15.75 0 0 0 −34.31
0.5 600 12.7 0 0 0 −69.66
0.5 800 11.28 0 0 0 −92.49
0.5 200 16.98 0 0 0 −13.60
0.5 400 15.75 0 0 0 −37.16
0.5 600 12.7 0 0 0 −67.15
0.5 200 16.98 0 0 0 −8.60
0.5 400 15.75 0 0 0 −35.37
0.5 600 12.7 0 0 0 −63.58
0.5 200 16.98 0 1 0 31.91
0.5 400 15.75 0 1 0 −7.44
0.5 600 12.7 0 1 0 −38.87
0.5 800 11.28 0 1 0 −74.27
0.5 200 16.98 0 0 0 3.20
0.5 400 15.75 0 0 0 −13.39
0.5 600 12.7 0 0 0 −48.78
0.5 800 11.28 0 0 0 −75.75
0.5 200 16.98 0 0 0 −7.20
0.5 400 15.75 0 0 0 −32.19
0.5 600 12.7 0 0 0 −64.61
0.5 800 11.28 0 0 0 −86.64
0.5 200 16.98 0 0 0 −4.72
0.5 400 15.75 0 0 0 −28.23
0.5 600 12.7 0 0 0 −60.65
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[48]

0.5 800 11.28 0 0 0 −85.16
0.5 200 16.98 0 0 0 −2.74
0.5 400 15.75 0 0 0 −21.80
0.5 600 12.7 0 0 0 −51.75
0.5 800 11.28 0 0 0 −84.17
0.5 200 16.98 0 1 0 8.03
0.5 400 15.75 0 1 0 −23.89
0.5 600 12.7 0 1 0 −47.18
0.5 800 11.28 0 1 0 −75.93
0.5 200 16.98 0 0 0 −6.06
0.5 400 15.75 0 0 0 −42.98
0.5 600 12.7 0 0 0 −60.82
0.5 800 11.28 0 0 0 −78.65
0.5 200 16.98 0 0 0 −12.87
0.5 400 15.75 0 0 0 −54.80
0.5 600 12.7 0 0 0 −71.27
0.5 800 11.28 0 0 0 −88.65
0.5 200 16.98 0 0 0 −9.69
0.5 400 15.75 0 0 0 −49.80
0.5 600 12.7 0 0 0 −67.63
0.5 800 11.28 0 0 0 −85.01
0.5 200 16.98 0 0 0 −7.87
0.5 400 15.75 0 0 0 −46.62
0.5 600 12.7 0 0 0 −64.91
0.5 800 11.28 0 0 0 −85.93

[49]

0.5 200 20 2 1 0.08 7.58
0.5 300 20 2 1 0.08 −0.26
0.5 400 20 2 1 0.08 −3.18
0.5 500 20 2 1 0.08 −5.45
0.5 600 20 2 1 0.08 −8.70
0.5 700 20 2 1 0.08 −25.06
0.5 800 20 2 1 0.08 −71.92
0.5 1000 20 2 1 0.08 −86.94
0.5 1200 20 2 1 0.08 −93.12
0.6 200 20 2 1 0.08 −2.25
0.6 400 20 2 1 0.08 −0.56
0.6 600 20 2 1 0.08 −12.96
0.6 700 20 2 1 0.08 −27.69
0.6 800 20 2 1 0.08 −62.41
0.6 1000 20 2 1 0.08 −85.30
0.6 1200 20 2 1 0.08 −92.13
0.4 200 20 2 1 0.08 −4.87
0.4 400 20 2 1 0.08 −15.97
0.4 600 20 2 1 0.08 −25.12
0.4 700 20 2 1 0.08 −49.68
0.4 800 20 2 1 0.08 −78.81
0.4 1000 20 2 1 0.08 −89.26
0.4 1200 20 2 1 0.08 −98.03
0.5 200 20 2 1 0.08 −0.61
0.5 400 20 2 1 0.08 −27.77
0.5 500 20 2 1 0.08 −34.62
0.5 600 20 2 1 0.08 −56.89
0.5 700 20 2 1 0.08 −66.69
0.5 900 20 2 1 0.08 −83.69
0.5 1200 20 2 1 0.08 −98.69
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[50]

0.41 150 5 5 1 0 −18.56
0.41 300 5 5 1 0 −24.08
0.41 400 5 5 1 0 −35.49
0.41 500 5 5 1 0 −39.87
0.41 600 5 5 1 0 −60.80
0.41 700 5 5 1 0 −75.40
0.41 150 5 5 1 0 −17.85
0.41 300 5 5 1 0 −24.73
0.41 400 5 5 1 0 −34.56
0.41 500 5 5 1 0 −37.13
0.41 600 5 5 1 0 −61.01
0.41 700 5 5 1 0 −73.10
0.41 150 5 5 1 0 −18.27
0.41 300 5 5 1 0 −24.47
0.41 400 5 5 1 0 −36.56
0.41 500 5 5 1 0 −55.23
0.41 600 5 5 1 0 −66.19
0.41 700 5 5 1 0 −75.55
0.41 150 5 5 1 0 −18.70
0.41 300 5 5 1 0 −32.15
0.41 400 5 5 1 0 −49.91
0.41 500 5 5 1 0 −58.15
0.41 600 5 5 1 0 −66.16
0.41 700 5 5 1 0 −77.80

[51]

0.4 100 3 3 1 0 −13.70
0.4 200 3 3 1 0 −10.20
0.4 300 3 3 1 0 −24.70
0.4 600 3 3 1 0 −66.60

0.35 100 3 3 1 0 −15.00
0.35 200 3 3 1 0 −12.50
0.35 300 3 3 1 0 −23.50
0.35 600 3 3 1 0 −70.50
0.3 100 3 3 1 0 −14.60
0.3 200 3 3 1 0 11.40
0.3 300 3 3 1 0 −27.30
0.3 600 3 3 1 0 −68.80
0.3 100 3 3 1 0 −15.30
0.3 200 3 3 1 0 −14.10
0.3 300 3 3 1 0 −29.60
0.3 600 3 3 1 0 −70.90
0.3 100 3 3 1 0 −15.90
0.3 200 3 3 1 0 −14.80
0.3 300 3 3 1 0 −31.30
0.3 600 3 3 1 0 −73.20

[52]

0.42 105 3 16 1 0 −17.71
0.42 150 3 4 1 0 −14.07
0.42 150 3 8 1 0 −9.83
0.42 150 3 16 1 0 −7.71
0.42 200 3 4 1 0 −0.54
0.42 200 3 8 1 0 −3.16
0.42 200 3 16 1 0 −5.05
0.42 250 3 4 1 0 −1.28
0.42 250 3 8 1 0 −4.25
0.42 250 3 16 1 0 −6.29
0.42 300 3 4 1 0 −4.06
0.42 300 3 8 1 0 −7.13
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[52]

0.42 300 3 16 1 0 −9.21
0.42 350 3 4 1 0 −7.34
0.42 350 3 8 1 0 −10.38
0.42 350 3 16 1 0 −12.33
0.42 400 3 4 1 0 −11.56
0.42 400 3 8 1 0 −14.15
0.42 400 3 16 1 0 −15.86
0.42 450 3 4 1 0 −16.00
0.42 450 3 8 1 0 −18.37
0.42 450 3 16 1 0 −19.86

[53]

0.54 100 15.6 0 1 0 −3.65
0.54 300 15.6 0 1 0 −21.40
0.54 500 15.6 0 1 0 −29.07
0.54 800 15.6 0 1 0 −37.90
0.54 100 15.6 0 1 0 −5.37
0.54 300 15.6 0 1 0 −22.55
0.54 500 15.6 0 1 0 −36.69
0.54 800 15.6 0 1 0 −50.67
0.54 100 15.6 0 1 0 −8.42
0.54 300 15.6 0 1 0 −23.88
0.54 500 15.6 0 1 0 −37.07
0.54 800 15.6 0 1 0 −55.24
0.54 100 15.6 0 1 0 −9.94
0.54 300 15.6 0 1 0 −23.88
0.54 500 15.6 0 1 0 −38.21
0.54 800 15.6 0 1 0 −58.09

[54]

0.25 200 6.67 2 0 0 21.61
0.25 400 6.67 2 0 0 1.26
0.25 600 6.67 2 0 0 −29.58
0.25 800 6.67 2 0 0 −70.33
0.25 1000 6.67 2 0 0 −88.92

[55]
0.26 400 10 1 1 2 −0.48
0.26 600 10 1 1 2 −21.53
0.26 800 10 1 1 2 −70.56

[56]

0.4 200 10 3 1 28 4.29
0.4 400 10 3 1 28 −15.71
0.4 600 10 3 1 28 −24.29
0.4 800 10 3 1 28 −52.86
0.4 1000 10 3 1 28 −61.43
0.4 200 10 3 0 28 −1.43
0.4 400 10 3 0 28 −24.29
0.4 600 10 3 0 28 −34.29
0.4 800 10 3 0 28 −57.14
0.4 1000 10 3 0 28 −74.29

[57]

0.62 150 1 0 1 0 −2.55
0.62 300 1 0 1 0 −5.71
0.62 450 1 0 1 0 −42.01
0.62 600 1 0 1 0 −90.96
0.55 150 1 0 1 0 −8.44
0.55 300 1 0 1 0 −0.76
0.55 450 1 0 1 0 −50.38
0.55 600 1 0 1 0 −83.85
0.44 150 1 0 1 0 −9.39
0.44 300 1 0 1 0 2.45
0.44 450 1 0 1 0 −58.29
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[57]

0.44 600 1 0 1 0 −87.17
0.36 150 1 0 1 0 4.66
0.36 300 1 0 1 0 11.67
0.36 450 1 0 1 0 −47.72
0.36 600 1 0 1 0 −84.58
0.29 150 1 0 1 0 −1.72
0.29 300 1 0 1 0 7.41
0.29 350 1 0 1 0 20.54
0.29 600 1 0 1 0 −84.87

[58]

0.33 200 1 3 1 0 3.86
0.33 400 1 3 1 0 −17.66
0.33 600 1 3 1 0 −49.04
0.33 800 1 3 1 0 −75.02
0.33 200 1 3 1 0 3.21
0.33 400 1 3 1 0 −15.91
0.33 600 1 3 1 0 −49.41
0.33 800 1 3 1 0 −76.35
0.33 200 1 3 1 0 −2.29
0.33 400 1 3 1 0 −17.49
0.33 600 1 3 1 0 −53.97
0.33 800 1 3 1 0 −76.66
0.33 200 1 3 1 0 −2.18
0.33 400 1 3 1 0 −16.53
0.33 600 1 3 1 0 −54.68
0.33 800 1 3 1 0 −78.94
0.33 200 1 3 1 0 −0.53
0.33 400 1 3 1 0 −18.59
0.33 600 1 3 1 0 −57.16
0.33 800 1 3 1 0 −77.98
0.33 200 1 3 1 0 3.58
0.33 400 1 3 1 0 −19.79
0.33 600 1 3 1 0 −57.00
0.33 800 1 3 1 0 −80.14
0.33 200 1 3 1 0 −5.91
0.33 400 1 3 1 0 −20.10
0.33 600 1 3 1 0 −54.58
0.33 800 1 3 1 0 −81.95
0.33 200 1 3 1 0 1.91
0.33 400 1 3 1 0 −23.97
0.33 600 1 3 1 0 −50.66
0.33 800 1 3 1 0 −76.39
0.33 200 1 3 1 0 −1.37
0.33 400 1 3 1 0 −16.77
0.33 600 1 3 1 0 −52.98
0.33 800 1 3 1 0 −77.25
0.33 200 1 3 1 0 −1.61
0.33 400 1 3 1 0 −21.09
0.33 600 1 3 1 0 −48.67
0.33 800 1 3 1 0 −78.99
0.33 200 1 3 1 0 −3.44
0.33 400 1 3 1 0 −22.70
0.33 600 1 3 1 0 −51.69
0.33 800 1 3 1 0 −80.00
0.33 200 1 3 1 0 1.10
0.33 400 1 3 1 0 −18.71
0.33 600 1 3 1 0 −49.54
0.33 800 1 3 1 0 −76.41
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[58]

0.33 200 1 3 1 0 0.17
0.33 400 1 3 1 0 −15.91
0.33 600 1 3 1 0 −48.17
0.33 800 1 3 1 0 −75.55
0.33 200 1 3 1 0 3.66
0.33 400 1 3 1 0 −18.71
0.33 600 1 3 1 0 −47.05
0.33 800 1 3 1 0 −77.40
0.33 200 1 3 1 0 −4.54
0.33 400 1 3 1 0 −21.01
0.33 600 1 3 1 0 −50.58
0.33 800 1 3 1 0 −78.00
0.33 200 1 3 1 0 −7.56
0.33 400 1 3 1 0 −21.89
0.33 600 1 3 1 0 −48.55
0.33 800 1 3 1 0 −78.97
0.33 200 1 3 1 0 −8.06
0.33 400 1 3 1 0 −20.73
0.33 600 1 3 1 0 −47.87
0.33 800 1 3 1 0 −80.42

[59]

0.56 105 3 16 1 0 −17.73
0.56 150 3 16 1 0 −7.75
0.56 200 3 16 1 0 −5.07
0.56 250 3 16 1 0 −6.26
0.56 300 3 16 1 0 −9.24
0.56 350 3 16 1 0 −12.37
0.56 400 3 16 1 0 −15.95
0.56 450 3 16 1 0 −19.82

[60]

0.3 200 2.5 1 1 0 −3.90
0.3 400 2.5 1 1 0 −12.78
0.3 600 2.5 1 1 0 −42.78
0.3 800 2.5 1 1 0 −76.59
0.3 200 2.5 1 1 0 6.36
0.3 400 2.5 1 1 0 −11.03
0.3 600 2.5 1 1 0 −42.83
0.3 800 2.5 1 1 0 −75.86
0.3 200 2.5 1 1 0 10.81
0.3 400 2.5 1 1 0 −7.33
0.3 600 2.5 1 1 0 −39.31
0.3 800 2.5 1 1 0 −73.22
0.3 200 2.5 1 1 0 14.90
0.3 400 2.5 1 1 0 −6.87
0.3 600 2.5 1 1 0 −35.44
0.3 800 2.5 1 1 0 −69.50
0.3 200 2.5 1 1 0 19.08
0.3 400 2.5 1 1 0 0.14
0.3 600 2.5 1 1 0 −44.28
0.3 800 2.5 1 1 0 −71.78

[61]

0.31 200 10 3 1 0 −11.55
0.31 400 10 3 1 0 26.27
0.31 600 10 3 1 0 −5.35
0.31 800 10 3 1 0 −59.94
0.31 200 10 3 1 0 51.47
0.31 400 10 3 1 0 66.88
0.31 600 10 3 1 0 33.89
0.31 800 10 3 1 0 −42.68
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[62]

0.55 400 7.5 1 1 4 −18.89
0.55 600 7.5 1 1 4 −20.94
0.55 800 7.5 1 1 4 −50.72
0.55 400 7.5 1 1 4 −17.03
0.55 600 7.5 1 1 4 −21.62
0.55 800 7.5 1 1 4 −59.19
0.55 400 7.5 1 1 4 −14.33
0.55 600 7.5 1 1 4 −21.50
0.55 800 7.5 1 1 4 −63.48
0.55 400 7.5 1 1 4 −19.55
0.55 600 7.5 1 1 4 −27.73
0.55 800 7.5 1 1 4 −66.82

[63]

0.5 100 6.5 1 1 0 −6.45
0.5 200 6.5 1 1 0 −1.80
0.5 300 6.5 1 1 0 −12.15
0.5 100 6.5 1 1 0 −19.43
0.5 200 6.5 1 1 0 −2.69
0.5 300 6.5 1 1 0 −17.59
0.5 400 6.5 1 1 0 −32.77
0.5 500 6.5 1 1 0 −37.51
0.5 600 6.5 1 1 0 −79.81
0.5 700 6.5 1 1 0 −63.91
0.5 800 5 1 1 0 −69.21
0.5 100 6.5 1 1 0 −14.36
0.5 200 6.5 1 1 0 −0.17
0.5 300 6.5 1 1 0 −11.14
0.5 400 6.5 1 1 0 −21.18
0.5 500 6.5 1 1 0 −37.36
0.5 600 6.5 1 1 0 −55.38
0.5 700 6.5 1 1 0 −59.90
0.5 800 5 1 1 0 −68.10
0.5 100 6.5 1 1 0 10.56
0.5 200 6.5 1 1 0 0.19
0.5 300 6.5 1 1 0 5.54
0.5 400 6.5 1 1 0 12.19
0.5 500 6.5 1 1 0 −27.86
0.5 600 6.5 1 1 0 −42.16
0.5 700 6.5 1 1 0 −50.78
0.5 800 5 1 1 0 −60.71

[64]

0.3 200 2.5 1 1 0 −3.92
0.3 400 2.5 1 1 0 −10.50
0.3 600 2.5 1 1 0 −41.64
0.3 800 2.5 1 1 0 −77.24
0.3 200 2.5 1 1 0 0.09
0.3 400 2.5 1 1 0 −6.35
0.3 600 2.5 1 1 0 −48.18
0.3 800 2.5 1 1 0 −78.08
0.3 200 2.5 1 1 0 −0.25
0.3 400 2.5 1 1 0 −1.41
0.3 600 2.5 1 1 0 −5.89
0.3 800 2.5 1 1 0 −8.73
0.3 200 2.5 1 1 0 2.88
0.3 400 2.5 1 1 0 −6.47
0.3 600 2.5 1 1 0 −53.59
0.3 800 2.5 1 1 0 −80.77
0.3 200 2.5 1 1 0 7.12
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[64]

0.3 400 2.5 1 1 0 −9.14
0.3 600 2.5 1 1 0 −62.59
0.3 800 2.5 1 1 0 −86.22
0.3 200 2.5 1 1 0 5.20
0.3 400 2.5 1 1 0 −13.45
0.3 600 2.5 1 1 0 −68.06
0.3 800 2.5 1 1 0 −91.24
0.3 200 2.5 1 1 0 14.50
0.3 400 2.5 1 1 0 −3.19
0.3 600 2.5 1 1 0 −37.83
0.3 800 2.5 1 1 0 −71.62
0.3 200 2.5 1 1 0 −5.69
0.3 400 2.5 1 1 0 −26.14
0.3 600 2.5 1 1 0 −67.05
0.3 800 2.5 1 1 0 −92.05
0.3 200 2.5 1 1 0 −1.92
0.3 400 2.5 1 1 0 −9.61
0.3 600 2.5 1 1 0 −67.31
0.3 800 2.5 1 1 0 −87.50
0.3 200 2.5 1 1 0 1.67
0.3 400 2.5 1 1 0 −14.99
0.3 600 2.5 1 1 0 −71.66
0.3 800 2.5 1 1 0 −90.00
0.3 200 2.5 1 1 0 3.34
0.3 400 2.5 1 1 0 −21.33
0.3 600 2.5 1 1 0 −78.00
0.3 800 2.5 1 1 0 −92.67
0.3 200 2.5 1 1 0 0.91
0.3 400 2.5 1 1 0 −18.18
0.3 600 2.5 1 1 0 −64.54
0.3 800 2.5 1 1 0 −84.55

[65]

0.5 200 1 1 1 0 8.04
0.5 400 1 1 1 0 −15.32
0.5 600 1 1 1 0 −48.90
0.5 800 1 1 1 0 −69.34
0.5 200 1 1 1 0 12.83
0.5 400 1 1 1 0 −14.87
0.5 600 1 1 1 0 −46.62
0.5 800 1 1 1 0 −69.60
0.5 200 1 1 1 0 14.91
0.5 400 1 1 1 0 1.07
0.5 600 1 1 1 0 −32.97
0.5 800 1 1 1 0 −76.59
0.3 200 1 1 1 0 7.74
0.3 400 1 1 1 0 −19.36
0.3 600 1 1 1 0 −47.42
0.3 800 1 1 1 0 −77.74
0.3 200 1 1 1 0 14.49
0.3 400 1 1 1 0 −14.84
0.3 600 1 1 1 0 −44.17
0.3 800 1 1 1 0 −76.33
0.3 200 1 1 1 0 23.76
0.3 400 1 1 1 0 −0.99
0.3 600 1 1 1 0 −34.16
0.3 800 1 1 1 0 −74.75

[66]
0.5 100 10 1 1 0 −10.42
0.5 300 10 1 1 0 −22.66
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[66]

0.5 500 10 1 1 0 −33.41
0.5 800 10 1 1 0 −78.34
0.5 100 10 1 0 0 −11.30
0.5 300 10 1 0 0 −35.71
0.5 500 10 1 0 0 −44.69
0.5 800 10 1 0 0 −76.85

0.35 100 10 1 1 0 −7.57
0.35 300 10 1 1 0 −3.72
0.35 500 10 1 1 0 5.38
0.35 800 10 1 1 0 −52.45
0.35 100 10 1 0 0 −7.57
0.35 300 10 1 0 0 −14.21
0.35 500 10 1 0 0 −28.07
0.35 800 10 1 0 0 −64.58

[67]

0.6 100 1.5 2 1 0 −0.11
0.6 300 1.5 2 1 0 0.05
0.6 600 1.5 2 1 0 −0.52
0.6 750 1.5 2 1 0 −0.75
0.6 100 1.5 2 1 0 −0.05
0.6 300 1.5 2 1 0 0.06
0.6 600 1.5 2 1 0 −0.50
0.6 750 1.5 2 1 0 −0.75
0.6 100 1.5 2 1 0 0.19
0.6 300 1.5 2 1 0 0.32
0.6 600 1.5 2 1 0 −0.51
0.6 750 1.5 2 1 0 −0.78
0.6 100 1.5 2 1 0 0.13
0.6 300 1.5 2 1 0 0.37
0.6 600 1.5 2 1 0 −0.60
0.6 750 1.5 2 1 0 −0.85
0.6 100 1.5 2 1 0 −0.03
0.6 300 1.5 2 1 0 0.16
0.6 600 1.5 2 1 0 −0.68
0.6 750 1.5 2 1 0 −0.88
0.6 100 1.5 2 1 0 0.13
0.6 300 1.5 2 1 0 0.39
0.6 600 1.5 2 1 0 −0.55
0.6 750 1.5 2 1 0 −0.93
0.6 100 1.5 2 1 0 0.24
0.6 300 1.5 2 1 0 0.24
0.6 600 1.5 2 1 0 −0.53
0.6 750 1.5 2 1 0 −0.75
0.6 100 1.5 2 1 0 −0.01
0.6 300 1.5 2 1 0 −0.07
0.6 600 1.5 2 1 0 −0.48
0.6 750 1.5 2 1 0 −0.77
0.6 100 1.5 2 1 0 −0.09
0.6 300 1.5 2 1 0 −0.08
0.6 600 1.5 2 1 0 −0.47
0.6 750 1.5 2 1 0 −0.77
0.6 100 1.5 2 1 0 −0.05
0.6 300 1.5 2 1 0 −0.08
0.6 600 1.5 2 1 0 −0.59
0.6 750 1.5 2 1 0 −0.81
0.6 100 1.5 2 1 0 0.06
0.6 300 1.5 2 1 0 0.14
0.6 600 1.5 2 1 0 −0.56
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[67]

0.6 750 1.5 2 1 0 −0.87
0.6 100 1.5 2 1 0 0.05
0.6 300 1.5 2 1 0 0.06
0.6 600 1.5 2 1 0 −0.60
0.6 750 1.5 2 1 0 −0.93
0.6 100 1.5 2 1 0 0.08
0.6 300 1.5 2 1 0 0.11
0.6 600 1.5 2 1 0 −0.58
0.6 750 1.5 2 1 0 −0.85
0.6 100 1.5 2 1 0 0.03
0.6 300 1.5 2 1 0 0.11
0.6 600 1.5 2 1 0 −0.66
0.6 750 1.5 2 1 0 −0.76

[68]

0.29 200 5 1 1 0 2.25
0.29 400 5 1 1 0 −29.21
0.29 500 5 1 1 0 −43.26
0.29 600 5 1 1 0 −63.48
0.45 200 5 1 1 0 2.68
0.45 400 5 1 1 0 −16.07
0.45 500 5 1 1 0 −36.61
0.45 600 5 1 1 0 −59.82
0.32 200 5 1 1 0 −14.20
0.32 400 5 1 1 0 −42.61
0.32 500 5 1 1 0 −48.30
0.32 600 5 1 1 0 −68.18
0.48 200 5 1 1 0 −23.97
0.48 400 5 1 1 0 −19.83
0.48 500 5 1 1 0 −41.32
0.48 600 5 1 1 0 −62.81

[69]

0.54 100 5 1 1 0 −18.74
0.54 300 5 1 1 0 −40.00
0.54 500 5 1 1 0 −46.25
0.54 700 5 1 1 0 −72.50
0.6 100 5 1 1 0 −10.12
0.6 300 5 1 1 0 −19.10
0.6 500 5 1 1 0 −29.22
0.6 700 5 1 1 0 −49.44

0.57 100 5 1 1 0 −27.91
0.57 300 5 1 1 0 −27.91
0.57 500 5 1 1 0 −52.33
0.57 700 5 1 1 0 −82.56
0.57 100 5 1 1 0 −11.77
0.57 300 5 1 1 0 −16.67
0.57 500 5 1 1 0 −16.67
0.57 700 5 1 1 0 −31.38
0.46 100 5 1 1 0 −28.26
0.46 300 5 1 1 0 −32.81
0.46 500 5 1 1 0 −39.34
0.46 700 5 1 1 0 −45.83
0.46 100 5 1 1 0 −16.14
0.46 300 5 1 1 0 −23.61
0.46 500 5 1 1 0 −30.21
0.46 700 5 1 1 0 −35.07
0.43 100 5 1 1 0 −18.63
0.43 300 5 1 1 0 −30.15
0.45 100 5 1 1 0 −19.47
0.45 300 5 1 1 0 −29.08
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[70]

0.5 200 5 2 1 3 −4.00
0.5 400 5 2 1 3 −20.00
0.5 600 5 2 1 3 −36.00
0.5 800 5 2 1 3 −77.00
0.5 200 5 2 0 3 −16.00
0.5 400 5 2 0 3 −37.00
0.5 600 5 2 0 3 −53.00
0.5 800 5 2 0 3 −82.00

[71]

0.55 150 10 2 1 0 8.05
0.55 500 10 2 1 0 25.12
0.4 150 10 2 1 0 2.30
0.4 500 10 2 1 0 46.93

0.55 150 10 2 1 0 −6.44
0.55 500 10 2 1 0 −7.92
0.55 750 10 2 1 0 −57.18
0.4 150 10 2 1 0 −9.70
0.4 500 10 2 1 0 −6.84
0.4 750 10 2 1 0 −65.97
0.5 150 10 2 1 0 −14.49
0.5 500 10 2 1 0 −21.74
0.5 750 10 2 1 0 −77.97
0.5 1000 10 2 1 0 −91.01
0.4 150 10 2 1 0 −8.07
0.4 500 10 2 1 0 −16.14
0.4 750 10 2 1 0 −67.37
0.4 1000 10 2 1 0 −89.65

[72]

0.33 200 1 3 1 0 4.42
0.33 400 1 3 1 0 −17.33
0.33 600 1 3 1 0 −49.08
0.33 800 1 3 1 0 −75.24
0.33 200 1 3 1 0 −0.92
0.33 400 1 3 1 0 −16.38
0.33 600 1 3 1 0 −52.87
0.33 800 1 3 1 0 −77.30
0.33 200 1 3 1 0 −1.33
0.33 400 1 3 1 0 −21.29
0.33 600 1 3 1 0 −48.69
0.33 800 1 3 1 0 −79.14
0.33 200 1 3 1 0 −3.56
0.33 400 1 3 1 0 −22.85
0.33 600 1 3 1 0 −51.80
0.33 800 1 3 1 0 −79.68
0.33 200 1 3 1 0 1.22
0.33 400 1 3 1 0 −18.47
0.33 600 1 3 1 0 −49.37
0.33 800 1 3 1 0 −76.34
0.33 200 1 3 1 0 0.60
0.33 400 1 3 1 0 −15.82
0.33 600 1 3 1 0 −47.50
0.33 800 1 3 1 0 −75.72
0.33 200 1 3 1 0 3.57
0.33 400 1 3 1 0 −18.66
0.33 600 1 3 1 0 −47.10
0.33 800 1 3 1 0 −77.03
0.33 200 1 3 1 0 −3.77
0.33 400 1 3 1 0 −20.64
0.33 600 1 3 1 0 −50.32
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[72]

0.33 800 1 3 1 0 −78.25
0.33 200 1 3 1 0 −7.45
0.33 400 1 3 1 0 −21.48
0.33 600 1 3 1 0 −48.42
0.33 800 1 3 1 0 −78.80
0.33 200 1 3 1 0 −8.13
0.33 400 1 3 1 0 −20.35
0.33 600 1 3 1 0 −46.98
0.33 800 1 3 1 0 −79.88
0.33 200 1 3 1 0 −11.34
0.33 400 1 3 1 0 −24.47
0.33 600 1 3 1 0 −57.89
0.33 800 1 3 1 0 −82.37
0.33 200 1 3 1 0 −21.10
0.33 400 1 3 1 0 −30.10
0.33 600 1 3 1 0 −59.90
0.33 800 1 3 1 0 −80.70
0.33 200 1 3 1 0 −23.19
0.33 400 1 3 1 0 −33.41
0.33 600 1 3 1 0 −57.96
0.33 800 1 3 1 0 −83.53
0.33 200 1 3 1 0 −20.04
0.33 400 1 3 1 0 −35.07
0.33 600 1 3 1 0 −62.28
0.33 800 1 3 1 0 −85.19
0.33 200 1 3 1 0 −16.13
0.33 400 1 3 1 0 −23.44
0.33 600 1 3 1 0 −56.93
0.33 800 1 3 1 0 −84.02
0.33 200 1 3 1 0 −21.02
0.33 400 1 3 1 0 −26.56
0.33 600 1 3 1 0 −57.50
0.33 800 1 3 1 0 −81.73
0.33 200 1 3 1 0 −21.84
0.33 400 1 3 1 0 −26.69
0.33 600 1 3 1 0 −59.45
0.33 800 1 3 1 0 −86.14
0.33 200 1 3 1 0 −17.50
0.33 400 1 3 1 0 −24.21
0.33 600 1 3 1 0 −59.22
0.33 800 1 3 1 0 −84.31
0.33 200 1 3 1 0 −19.78
0.33 400 1 3 1 0 −35.83
0.33 600 1 3 1 0 −62.77
0.33 800 1 3 1 0 −85.42
0.33 200 1 3 1 0 −24.77
0.33 400 1 3 1 0 −42.63
0.33 600 1 3 1 0 −62.38
0.33 800 1 3 1 0 −84.96

[73]

0.61 150 1 1 1 0 −0.13
0.61 300 1 1 1 0 −0.17
0.61 450 1 1 1 0 −0.51
0.61 600 1 1 1 0 −0.86
0.57 150 1 1 1 0 −0.09
0.57 300 1 1 1 0 0.17
0.57 450 1 1 1 0 −0.44
0.57 600 1 1 1 0 −0.80
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[73]

0.54 150 1 1 1 0 −0.21
0.54 300 1 1 1 0 −0.04
0.54 450 1 1 1 0 −0.55
0.54 600 1 1 1 0 −0.83

[74]

0.35 300 5 4 1 0 −19.55
0.35 500 5 4 1 0 −53.22
0.35 600 5 4 1 0 −65.49
0.35 800 5 4 1 0 −84.41
0.35 300 5 4 1 0 −10.25
0.35 500 5 4 1 0 −49.50
0.35 600 5 4 1 0 −65.00
0.35 800 5 4 1 0 −83.50
0.35 300 5 4 1 0 −15.75
0.35 500 5 4 1 0 −51.38
0.35 600 5 4 1 0 −66.58
0.35 800 5 4 1 0 −82.60
0.35 300 5 4 1 0 −17.52
0.35 500 5 4 1 0 −56.32
0.35 600 5 4 1 0 −66.66
0.35 800 5 4 1 0 −80.46
0.35 300 5 4 1 0 −18.60
0.35 500 5 4 1 0 −54.81
0.35 600 5 4 1 0 −66.67
0.35 800 5 4 1 0 −78.53
0.35 300 5 4 1 0 −7.84
0.35 500 5 4 1 0 −50.39
0.35 600 5 4 1 0 −61.88
0.35 800 5 4 1 0 −80.16
0.35 300 5 4 1 0 −6.87
0.35 500 5 4 1 0 −47.39
0.35 600 5 4 1 0 −59.15
0.35 800 5 4 1 0 −77.78
0.35 300 5 4 1 0 −5.08
0.35 500 5 4 1 0 −46.78
0.35 600 5 4 1 0 −61.02
0.35 800 5 4 1 0 −77.63
0.35 300 5 4 1 0 −7.92
0.35 500 5 4 1 0 −49.81
0.35 600 5 4 1 0 −56.60
0.35 800 5 4 1 0 −74.72
0.35 300 5 4 1 0 −15.29
0.35 500 5 4 1 0 −54.12
0.35 600 5 4 1 0 −65.88
0.35 800 5 4 1 0 −72.94

[75]

0.3 100 2 1 1 0 −0.26
0.3 200 2 1 1 0 −8.74
0.3 400 2 1 1 0 −12.58
0.3 600 2 1 1 0 −53.11
0.3 100 2 1 1 0 −2.12
0.3 200 2 1 1 0 −2.66
0.3 400 2 1 1 0 −19.79
0.3 600 2 1 1 0 −47.94
0.3 100 2 1 1 0 −0.40
0.3 200 2 1 1 0 −3.04
0.3 400 2 1 1 0 −9.51
0.3 600 2 1 1 0 −54.82
0.5 100 2 1 1 0 4.40
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[75]
0.5 200 2 1 1 0 −7.33
0.5 400 2 1 1 0 −21.99
0.5 600 2 1 1 0 −50.73

[76]

0.4 500 4.17 1 1 0 −21.77
0.4 500 5 4 1 0 −26.30
0.4 500 4.17 1 1 0 −9.98
0.4 500 5 4 1 0 −26.52

0.55 500 4.17 1 1 0 −10.14
0.55 500 5 4 1 0 −26.69
0.55 500 4.17 1 1 0 −15.97
0.55 500 5 4 1 0 −32.59
0.7 500 4.17 1 1 0 −15.00
0.7 500 5 4 1 0 −21.82
0.7 500 4.17 1 1 0 −17.54
0.7 500 5 4 1 0 −30.33

[77]

0.28 200 10 3 1 0 1.23
0.28 400 10 3 1 0 −54.30
0.28 600 10 3 1 0 −75.61
0.28 800 10 3 1 0 −88.93
0.28 200 10 3 1 0 0.36
0.28 400 10 3 1 0 −14.92
0.28 600 10 3 1 0 −41.72
0.28 800 10 3 1 0 −67.80
0.28 200 10 3 1 0 −1.91
0.28 400 10 3 1 0 −13.69
0.28 600 10 3 1 0 −40.50
0.28 800 10 3 1 0 −64.26
0.28 200 10 3 1 0 −2.10
0.28 400 10 3 1 0 −48.01
0.28 600 10 3 1 0 −52.20
0.28 800 10 3 1 0 −70.65
0.28 200 10 3 1 0 −0.62
0.28 400 10 3 1 0 −16.54
0.28 600 10 3 1 0 −48.53
0.28 800 10 3 1 0 −72.49
0.28 200 10 3 1 0 −0.96
0.28 400 10 3 1 0 −15.66
0.28 600 10 3 1 0 −43.45
0.28 800 10 3 1 0 −65.02
0.28 200 10 3 1 0 −1.75
0.28 400 10 3 1 0 −14.79
0.28 600 10 3 1 0 −43.00
0.28 800 10 3 1 0 −59.73

[78]

0.6 400 5.2 1 1 0 −25.37
0.6 600 5.2 1 1 0 −61.30
0.6 800 4.14 1 1 0 −82.60
0.6 1000 3.5 1 1 0 −90.08
0.6 1200 2.96 1 1 0 −83.74

0.35 400 5.2 1 1 0 0.38
0.35 600 5.2 1 1 0 −45.05
0.35 800 4.14 1 1 0 −71.31
0.35 1000 3.5 1 1 0 −88.22
0.35 1200 2.96 1 1 0 −86.92
0.28 400 5.2 1 1 0 −0.39
0.28 600 5.2 1 1 0 −47.99
0.28 800 4.14 1 1 0 −74.46
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[78]
0.28 1000 3.5 1 1 0 −88.05
0.28 1200 2.96 1 1 0 −88.12

[79]

0.4 100 3 3 1 0 −14.01
0.4 200 3 3 1 0 −10.81
0.4 300 3 3 1 0 −25.21
0.4 600 3 3 1 0 −67.20

0.35 100 3 3 1 0 −14.29
0.35 200 3 3 1 0 −12.96
0.35 300 3 3 1 0 −22.93
0.35 600 3 3 1 0 −70.10
0.3 100 3 3 1 0 −16.28
0.3 200 3 3 1 0 −15.41
0.3 300 3 3 1 0 −31.10
0.3 600 3 3 1 0 −73.55
0.3 100 3 3 1 0 −14.49
0.3 200 3 3 1 0 −11.23
0.3 300 3 3 1 0 −27.54
0.3 600 3 3 1 0 −68.48

[80]

0.34 200 25 3 1 15 −12.97
0.34 400 25 2.5 1 15 −38.59
0.34 600 25 2 1 15 −49.69
0.34 800 25 2 1 15 −84.06
0.34 200 25 3 1 15 −31.76
0.34 400 25 2.5 1 15 −56.44
0.34 600 25 2 1 15 −69.51
0.34 800 25 2 1 15 −90.38

[81]

0.5 100 5 1 1 0 0.29
0.5 200 5 1 1 0 −0.76
0.5 300 5 1 1 0 −10.18
0.5 400 5 1 1 0 −28.75
0.5 500 5 1 1 0 −51.10
0.5 600 5 1 1 0 −75.61
0.5 700 5 1 1 0 −81.51
0.5 800 5 1 1 0 −91.19
0.5 1200 5 1 1 0 −99.46
0.5 100 5 1 1 0 3.80
0.5 200 5 1 1 0 2.74
0.5 300 5 1 1 0 −6.67
0.5 400 5 1 1 0 −26.06
0.5 500 5 1 1 0 −43.28
0.5 600 5 1 1 0 −53.50
0.5 700 5 1 1 0 −68.85
0.5 800 5 1 1 0 −92.27

[82]
0.3 200 5 3 1 0 −15.00
0.3 400 5 3 1 0 −20.00
0.3 600 5 3 1 0 −42.00

[83]

0.43 100 2 2 1 0 −16.90
0.43 150 2 2 1 0 −11.34
0.43 200 2 2 1 0 −8.21
0.43 250 2 2 1 0 −0.12
0.43 280 2 2 1 0 11.23
0.43 100 2 2 1 0 −8.77
0.43 150 2 2 1 0 −14.85
0.43 200 2 2 1 0 −17.98
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[83]
0.43 250 2 2 1 0 −17.98
0.43 280 2 2 1 0 −11.89

[84]

0.5 100 2 0.75 1 0 −8.59
0.5 200 2 0.75 1 0 −16.90
0.5 400 2 0.75 1 0 −34.06
0.5 600 2 0.75 1 0 −45.81
0.5 800 2 0.75 1 0 −71.56
0.5 100 2 0.75 1 0 −9.00
0.5 200 2 0.75 1 0 −17.64
0.5 400 2 0.75 1 0 −30.35
0.5 600 2 0.75 1 0 −50.17
0.5 800 2 0.75 1 0 −68.89

[85]

0.4 200 3 3 1 0 −2.41
0.4 400 3 2.5 1 0 −13.74
0.4 600 3 2 1 0 −46.12
0.4 800 3 2 1 0 −80.24
0.4 200 3 3 1 0 −4.15
0.4 400 3 2.5 1 0 −9.78
0.4 600 3 2 1 0 −43.40
0.4 800 3 2 1 0 −74.79
0.4 200 3 3 1 0 −0.93
0.4 400 3 2.5 1 0 −6.81
0.4 600 3 2 1 0 −41.67
0.4 800 3 2 1 0 −80.74

[86]

0.3 200 3.3 2 1 0 −7.28
0.3 400 3.3 2 1 0 −10.91
0.3 600 3.3 2 1 0 −28.32
0.3 800 3.3 2 1 0 −61.19
0.3 200 3.3 2 1 0 −3.52
0.3 400 3.3 2 1 0 −2.46
0.3 600 3.3 2 1 0 −23.39
0.3 800 3.3 2 1 0 −56.37

[87]

0.72 300 10 3 1 0 22.59
0.72 600 10 3 1 0 −4.17
0.72 900 10 3 1 0 −68.42
0.71 300 10 3 1 0 34.31
0.71 600 10 3 1 0 10.71
0.71 900 10 3 1 0 −72.26
0.7 300 10 3 1 0 41.52
0.7 600 10 3 1 0 16.71
0.7 900 10 3 1 0 −55.77
0.7 300 10 3 1 0 43.13
0.7 600 10 3 1 0 36.56
0.7 900 10 3 1 0 −48.44
0.7 300 10 3 1 0 37.07
0.7 600 10 3 1 0 24.88
0.7 900 10 3 1 0 −23.41

0.72 300 20 3 1 0 −18.86
0.72 600 20 3 1 0 −30.92
0.72 900 20 3 1 0 −71.93
0.71 300 20 3 1 0 −14.84
0.71 600 20 3 1 0 −30.90
0.71 900 20 3 1 0 −74.70
0.7 300 20 3 1 0 −13.02
0.7 600 20 3 1 0 −23.34
0.7 900 20 3 1 0 −60.20
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Table A1. Cont.

REF.
Input Parameters Output Parameters

W/B T (◦C) V (◦C/min) MD (h) C RD (day) P (%)

[87]

0.7 300 20 3 1 0 −14.69
0.7 600 20 3 1 0 −27.50
0.7 900 20 3 1 0 −53.44
0.7 300 20 3 1 0 −28.29
0.7 600 20 3 1 0 −36.10
0.7 900 20 3 1 0 −28.29

[88]

0.47 200 10 0 1 0 −0.19
0.47 400 10 0 1 0 −15.39
0.47 600 10 0 1 0 −12.68
0.47 800 10 0 1 0 −55.18
0.47 200 10 0 1 0 −5.30
0.47 400 10 0 1 0 −25.88
0.47 600 10 0 1 0 −32.48
0.47 800 10 0 1 0 −47.68
0.47 200 10 0 1 0 2.02
0.47 400 10 0 1 0 −14.72
0.47 600 10 0 1 0 −6.00
0.47 800 10 0 1 0 −30.94
0.47 200 10 0 1 0 −15.88
0.47 400 10 0 1 0 4.28
0.47 600 10 0 1 0 −14.91
0.47 800 10 0 1 0 −34.43
0.47 200 10 1 1 0 −21.77
0.47 400 10 1 1 0 −3.38
0.47 600 10 1 1 0 −16.81
0.47 800 10 1 1 0 −57.13
0.47 200 10 1 1 0 3.42
0.47 400 10 1 1 0 −19.59
0.47 600 10 1 1 0 −39.67
0.47 800 10 1 1 0 −51.77
0.47 200 10 1 1 0 −10.02
0.47 400 10 1 1 0 −3.74
0.47 600 10 1 1 0 −11.44
0.47 800 10 1 1 0 −51.09
0.47 200 10 1 1 0 −30.66
0.47 400 10 1 1 0 2.13
0.47 600 10 1 1 0 −22.09
0.47 800 10 1 1 0 −43.47
0.47 200 10 2 1 0 −11.96
0.47 400 10 2 1 0 −5.09
0.47 600 10 2 1 0 −30.14
0.47 800 10 2 1 0 −60.54
0.47 200 10 2 1 0 −9.17
0.47 400 10 2 1 0 −16.20
0.47 600 10 2 1 0 −39.69
0.47 800 10 2 1 0 −67.80
0.47 200 10 2 1 0 −10.28
0.47 400 10 2 1 0 7.51
0.47 600 10 2 1 0 −26.43
0.47 800 10 2 1 0 −53.69
0.47 200 10 2 1 0 −9.97
0.47 400 10 2 1 0 −12.12
0.47 600 10 2 1 0 −30.34
0.47 800 10 2 1 0 −49.06
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