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Abstract: The complexity in predicting the damage initiation and failure propagation controlling in
composite structures is challenging. The focus of this paper is to design a potential component for
new ship gunnels to make the composite canister affordable in structural applications by using a
damage tolerant design approach. The design of a new tailgate configuration was investigated, taking
into account the correct fragmentation of the structure to ensure a clear ejection while reducing the
weight of the panels by exploiting the properties of the composite material. The complex geometry
of the tailgate, the high impulse load, the energy transferred to the tailgate during missile impact,
and how to safely break large panel flaps are elements that characterize the sizing of the composite
component to meet the stringent ejection requirements in the life cycle of a missile during takeoff.
The numerical simulations were performed using the LS/Dyna code and its explicit formulation was
contemplated to take into account the geometrical, contact, and material non linearities.

Keywords: controlled rupture; progressive failure; composite material; FE analysis: nonlinear

1. Introduction

A canister cover protects a missile from foreign object intrusion, shock, and weather
effects such as rain and waves, and facilitates smooth ejection during missile launch. The
first covers were represented from rigid doors [1] or covers that are ruptured by explosive
means prior to missile launch [2].

Doane [3] introduced a breakable cover using glass/epoxy laminae so that with
the passage of the missile the cover would break, however, this solution didn’t prevent
the surface of the missile from being damaged during the launch, while Choi et al. [4]
numerically estimated the degradation of launch performance caused by the remnants of
a missile canister cover with a sabot interface. An alternative solution aimed at ensuring
the integrity of the missile during launch has been proposed by Wu et al. [4]; this solution
was validated by experimental tests and it consisted of a number of laminated composite
canister covers fabricated and subjected to static burst pressure testing.

Recently, the preferred canister cover is usually the rupture-type, which is easily man-
ufactured and provides excellent handling, even though it could potentially compromise
the adjacent structure if the missile canister cover does not break during launch.

An innovative concept for a canister, consisting of a single carbon fiber composite
laminate, is investigated, and by varying the geometric configuration, it is possible to
optimize the fracture path and the contact force, as done with scaled panels subject to impact
loads on the composite material [5,6]. To trigger the fracture, some areas without fibers
called carvings were formed to delineate triangular fragments, which were named petals.
The approach used in this work is based on the Chang-Chang failure criterion [7], which
was used for damage initiation and failure propagation controlling of the canister cover,
the first-ply failure prediction of laminated composite plates was verified in several work
comparing the experimental results [8,9]. Davies et al. in the work [10] applied the Chang-
Chang criterion in analyzing the quasi-isotropic carbon/epoxy composite laminates under
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low-velocity impact, conversely Ghasemnejad [11] used it for high velocities. Meanwhile, a
failure analysis of a frangible cover was studied based on transient dynamics via the finite
element method in comparison with the experimental results [5].

The aim is to design a suitable tailgate shape that improves reliability and ensures the
safe launch and good protection during the life of the missile. The goal of this work is to
develop a scientific and methodological approach to the study of the controlled fracture
structure for the design and optimization of the missile tailgate.

The state of the art with regard to the sea canister consists of the enclosure that contains
the missile on the deck of the ship and is the only protection from external impact. The
canister is usually made of metal, while the cover is made of polymer or ceramic materials,
as shown in Figure 1. To prevent damage to the missile tip, in some cases a sabot is inserted
between the missile and the cover to reduce the impact force.
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Figure 1. Overview of a similar canister for a Harpoon missile [4].

Usually, the tailgate type varies according to size, velocity envelopes and environment.
Small size missile covers consist of flexible or breakable tabs, while medium and large
size missile tailgates have a mechanical opening or are the rupture-type which have a
programmed break. Common configurations have a four-pavilion dome, and the missile is
placed on a trolley in the canister as shown in Figure 2 below.
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Figure 2. Aspide 30 system (left) and Aster system (right).

The Marte ER in Figure 3 is one of the most successful missiles produced by MBDA,
and has a four-pavilion configuration with an internal stiffener at the tip which puts it
in contact with the missile tip and the tailgate top. The stiffeners and the tailgate design
provide a proper tailgate fragmentation, reducing contact force and accelerating the petals,
as shown in Figure 4.
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2. Best Practices for the Design of Rupture-Controlled Structures

The expected conditions used for the canister design verification are presented in
the diagram reported in Figure 5. Here all possible processes are discussed, and relevant
loading processes are identified. As a result, mechanical loads are then processed into
a series of fracture load, strength and toughness analyses, and are finally summarized
in this research study. The canister must be designed and handled so that the operating
conditions postulated during encapsulation, storage, transport and deposition do not cause
any damage or change in properties that could affect the ability of the container to isolate
its contents from the environment and external for the analysis period, in addition to the
normal operating loads when the break occurs to allow the missile to escape.

The first phase requires the creation of a FEM model that describes the product and can
simulate the behavior of the structure, as depicted in Figure 5. The validated computational
model of the structure has to predict the failure initiation location and load, thanks to the
failure theories and the progressive failure patterns, sizes, and final failure loads.

The goal is to obtain a strategic design of the structure by establishing guidelines and
design criteria. For this purpose, it is very important to determine the probable impact
conditions, considering impact velocities and angular velocities. The following conceptual
map presents a possible workflow for designing a structure that achieves all objectives.
Once the impact scenario and boundary conditions are determined, the impact force is
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estimated, and the allowable motions are defined, as shown in Figure 6. These represent
the spatial structure design criteria and the hardness design criteria. If both requirements
are met, a structure can be idealized in the first attempt, but the weight is still a constraint.
By iterating the procedure, the structure will meet all of the targets.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 5. Modelling impact scenario. 

The goal is to obtain a strategic design of the structure by establishing guidelines and 
design criteria. For this purpose, it is very important to determine the probable impact 
conditions, considering impact velocities and angular velocities. The following conceptual 
map presents a possible workflow for designing a structure that achieves all objectives. 
Once the impact scenario and boundary conditions are determined, the impact force is 
estimated, and the allowable motions are defined, as shown in Figure 6. These represent 
the spatial structure design criteria and the hardness design criteria. If both requirements 
are met, a structure can be idealized in the first attempt, but the weight is still a constraint. 
By iterating the procedure, the structure will meet all of the targets. 

 
Figure 6. Concept Map: Design of Rupture-Controlled Structures Flow Chart. 

Figure 5. Modelling impact scenario.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 5. Modelling impact scenario. 

The goal is to obtain a strategic design of the structure by establishing guidelines and 
design criteria. For this purpose, it is very important to determine the probable impact 
conditions, considering impact velocities and angular velocities. The following conceptual 
map presents a possible workflow for designing a structure that achieves all objectives. 
Once the impact scenario and boundary conditions are determined, the impact force is 
estimated, and the allowable motions are defined, as shown in Figure 6. These represent 
the spatial structure design criteria and the hardness design criteria. If both requirements 
are met, a structure can be idealized in the first attempt, but the weight is still a constraint. 
By iterating the procedure, the structure will meet all of the targets. 

 
Figure 6. Concept Map: Design of Rupture-Controlled Structures Flow Chart. Figure 6. Concept Map: Design of Rupture-Controlled Structures Flow Chart.

Failure Criteria

Failure criteria for composite materials are often classified into two groups:
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• non-interactive failure criteria (associated with failure modes) or the limit criterion
is defined as one having no interactions between the stress or strain components. In
detail, it means that the failure criterion evaluates failure based on a single stress
component and does not take into consideration a multi-axial stress state in a structure
and how the combination of different stress components affects the failure initiation in
a composite ply.

• interactive failure criteria (associated with failure modes and not) involve interactions
between stress or strain components. The objective of this approach is to allow for the
fact that failure loads when a multi-axial stress state exists in the material may well
differ from those when only a uniaxial stress is acting. Interactive failure criteria are
mathematical in their formulation. Interactive failure criteria fall into three categories:
polynomial theories, direct mode determining theories, and strain energy theories.
The strain energy theories are based on local strain energy levels determined during a
nonlinear analysis.

The LS-DYNA software has within its library several material models (constitute law
and failure criteria) specifically designed for composite materials when they are simulated,
exploiting a macro homogenous approach. In this case, the fibre and matrix are not
reproduced separately but in a unique assembly [12]. Therefore, it is fundamental to
have reliable criteria that allow mimicking both the constitutive behaviour and the failure
mechanisms. From literature, good results were obtained using MAT_54, therefore this
material model was selected and used in the present activity [13].

MAT54 is designed to specifically simulate orthotropic materials with greatly dif-
fering properties in the longitudinal and transverse directions, such as unidirectional
(UD) composite laminates and not fabric materials [14]. For this reason, it implements a
matrix-specific failure criterion in the transverse direction that would not be appropriate to
evaluate a fiber-dominated material. Nevertheless, MAT54 has been used to simulate fabric
composite structures in crash simulations [15,16]. The LS-DYNA Keyword User’s Manual
entry for MAT54 provides little information other than defining the failure criterion and
the degradation scheme, as reported in the Table 1.

Table 1. Material properties.

Property Symbol

density ρ

Modulus in 1-direction E1

Modulus in 2-direction E2

Shear modulus G12

Major Poisson’s ratio ν12

Minor Poisson’s ratio ν21

Strength in 1-direction, tension Ftu
1

Strength in 2-direction, tension Ftu
2

Strength in 1-direction, compression Fcu
1

Strength in 2-direction, compression Fcu
2

Shear strength Fsu
12

MAT54—MAT_ENHANCED_COMPOSITE_DAMAGE was developed from MAT22
—COMPOSITE_DAMAGE. It is based on the Chang-Chang failure criteria for the damage
onset and it has a linear elastic behaviour before reaching the materials strength [8]. As a
consequence, before the damage occurs, the model has a linear elastic behaviour. When
the maximum stress is reached, damage initiates. Basically, this model assumes three
different in-plane failure modes: matrix cracking, fibre-matrix shearing, and fibre breakage.
In addition to this, for material model 54 a compressive failure is considered. Below,
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the failure criteria used to predict in-plane failure for the corresponding failure modes
are reported:

Tensile fibre mode:

σ11 > 0 then e2
f =

(
σ11

X f

)2

+ β

(
σ12

Sc

)2
− 1
{
≥ 0 failed
≤ 0 elastic

(1)

Upon failure E1 = E2 = G12 = ν12 = ν21 = 0
Compressive fiber mode:

σ11 < 0 then e2
c =

(
σ11

Xc

)2
− 1
{
≥ 0 failed
≤ 0 elastic

(2)

Upon failure E1 = ν12 = ν21 = 0
Tensile matrix mode:

σ22 > 0 then e2
m =

(
σ22

Yt

)2
+

(
σ12

Sc

)2
− 1
{
≥ 0 failed
≤ 0 elastic

(3)

Upon failure E2 = ν21 = 0→ G12 = 0
Compressive matrix mode:

σ22 < 0 then e2
d =

(
σ22

2Sc

)2
+

[(
Yc

2Sc

)2
− 1

]
σ22

Yc
+

(
σ12

2Sc

)2
− 1
{
≥ 0 failed
≤ 0 elastic

(4)

Upon failure E2 = ν21 = 0→ G12 = 0.
Parameter β, allows the introduction of the effect of the shear into the failure modes of

the fibres. If β is equal to 1, the Hashin criteria would be implemented while if β is defined
as 0 the maximum stress criteria would be used.

The material is considered to be failed and thus the indicated elastic modulus are
subjected to degradation or it is considered to be completely unable to bear loading. The
degree of property loss is strongly dependent upon the failure mechanisms and localized
to the damaged elements.

A possible way to set the behaviour of the material after failure is using SLIMx
parameters. They act on the residual strength of the element as follows: σresidual = SLIMx ∗
{Xt, Xc, Yt, Yc, Sc}

Two other parameters can be used to define the post damage behaviour:
FBRT defines the residual tensile fiber strength after compressive matrix failure

XTresidual = XT ∗ FBRT

YCFAC defines the residual compressive fiber strength after compressive fiber failure

XCresidual = YC ∗ YCFAC

Even if the material has failed, the element is still present. The element is deleted
only after the tensile fibre mode failure. In order to cancel the elements some different
parameters can be used:

If DFAILT—maximum strain for fiber tension—is zero, failure occurs if the Chang/Chang
failure criterion is satisfied in the tensile fiber mode.

If DFAILT is greater than zero, failure occurs if the tensile fiber strain is greater than
DFAILT or less than DFAILC. Other DFAILx parameters might be used to define deletion
for the other failure modes. In Figure 7 the difference between the results obtained using
DFAILx with Chang-Chang criteria is shown.
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If EFS is greater than zero, failure occurs if the effective strain is greater than EFS,
calculated as:

EFS =

√
4
3
(
ε2

11 + ε11ε22 + ε2
11 + ε12

)
(5)

If TFAIL is greater than zero, the element deletion depends on the time step as follows:
0 ≤ TFAIL ≤ 0.1:

element is deleted when its time step is smaller than TFAIL, TFAIL ≥ 0.1,
element is deleted when

current time step
original time step

< TFAIL (6)

The minimum time step is defined by the highest distorted element. The parameters
listed above are useful not only because they are necessary for deleting the elements but
also because it is possible to tune the post damage behaviour. It was noticed that the
contact between plies is a critical aspect regarding composite modelling since inter-laminar
behaviour is complex to model and it plays a fundamental role in impact events.

3. Tail Design

The design of a breaking path begins with the analysis of the impact scenario, paying
attention to the geometric shape, materials, and their speed envelopes. The tailgate has
a square shape considered planar to a first approximation. This is useful to observe
the stress distribution between the impact point and the support, and for this purpose,
several simulations were performed varying the material, geometry and configuration. The
numerical finite element simulations were performed using the commercial code LS/Dyna.

The tailgate presents dimensions of 696 × 696 mm, while the missile presents a radius
of 95 mm and the relative distance between the panel curvature and the end of the rocket
is 94 mm. The missile is supposed to have a spherical nose and an initial acceleration of
about 15 g (150 m/s2), typical of its category.

The requirements for the structural sizing are:

• Max weight 3.5 kg;
• The “Wave-load” is a distributed load of 0.6 bar;
• Failure for internal over-pressure of 1.5 bar;
• Failure for a force of 2500 N in the sphere center.

The missile ejection must be guaranteed without interference and any complications
defining a controlled rupture of the hatch with no fragment along the missile exit direction.
The debris should not be very large and should fall into a restricted area around the canister
at low speed. The launch of the missile must be a safe operation for the ship and the crew on
board and its reliability must be ensured throughout its operational life. Requirement-wise
the structure has the task of protecting the missile, which will be in the canister a long time
before its launch, against external agents.

The launching system operates in a humid environment rich in saltiness, and it is
important to choose suitable materials. Moreover, the tailgate has the task of electromag-



Appl. Sci. 2022, 12, 12220 8 of 15

netically shielding the missile from external threats, so it is covered with shielding paint to
exploit the properties of the carbon-resin material.

The functional requirements must provide:

• Safe ejection.
• Correct fragmentation;
• No damage on the missile nose;
• A waterproof enclosure;
• Electromagnetic shielding.

The sphere strikes the plate at a velocity of 5.3 m/s2 after 0.03535 s. To reduce
the computational cost, the sphere has been placed at 10 mm with an initial velocity of
5.025 m/s. After studying the isotropic material behaviour and its stress distribution path,
it is necessary to introduce the composite material to satisfy the lightness requirement. For
the present work a carbon/epoxy laminate was chosen.

Initially, the analysis of a planar hatch with four petals and cruciform carvings was
considered, as shown in Figure 8a, but to meet the design requirements, the concept of
asymmetric impact must be introduced, as illustrated in Figure 8b. The latest missile
configurations have a high nose, so the contact between the tailgate and the missile tip
is not centred, which could compromise fragmentation and does not ensure safe ejection.
For the simulation, it was considered that the contact is at the 66.5% of one edge while on
the other side it is symmetric. In this case the lower petal, the largest one, is divided into
two smaller triangular petals by introducing a carving along the height of the triangle, as
shown in Figure 8c.
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smaller triangular shape plates, the Table 2. Carvings become useful in driving the stress 
along the diagonals and this is important to define the fracture path. Afterwards, carvings 
were modelled along the sides of the square to ensure the correct fragmentation of the 
tailgate. 
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Density 0.98 g/cm3 
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Poisson ratio 0.3 
Yield stress 60 MPa 

Tangent modulus 2.34 GPa 

Figure 8. Planar tailgate configuration: (a) 4 petals centred, (b) 4 petals asymetric, (c) 5 petals asymmetric.

Along the diagonal were introduced areas with only epoxy resin E-862 (carvings) of
2 mm that can help the fracture onset and the fragmentation of the square plate in 4 smaller
triangular shape plates, the Table 2. Carvings become useful in driving the stress along
the diagonals and this is important to define the fracture path. Afterwards, carvings were
modelled along the sides of the square to ensure the correct fragmentation of the tailgate.

Table 2. Material characteristics of Epoxy-862.

Density 0.98 g/cm3

Young’s Modulus 8 GPa

Poisson ratio 0.3

Yield stress 60 MPa

Tangent modulus 2.34 GPa

Plastic strain at failure 3%

For the epoxy resin, we usedthe material sheet MAT_024_PIECEWISE_LINEAR_PLAS
TICITY, considering the curve shear.-strain and stress-strain in Figures 9 and 10.
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The values of unidirectional E-8962 are reported in the Table 3.
In all investigated configurations the effective stress distribution of a square plate

in composite material with diagonal carvings during impact was replicated, as shown
in Figure 11. The effective stress is based on the equivalent stress concept derived from
energy principles and is expressed in terms of a single three-variable criterion including
the contribution of stress in the fiber direction.

The areas with only resin start in the point of contact and continue until the corner. The
contact is closer to the upper edge, so due to the constraint condition the stress propagation
path has a fast track in this direction. As a result, it needed to reduce the dimensions of
the upper petal because of an incomplete fragmentation, and this represented an obstacle
for the missile ejection because the debris were too large. To face this issue the bottom
petal, which is the bigger, is divided in two smaller triangular petals introducing a carving
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along the height of the triangle. This represents another fast track for stress propagation
because the carving is directly on traction from the contact start. In addition, the new
smaller bottom petals have lower flexural stiffness because the interlocking area is half
while the arm is the same.

Table 3. Material properties of Carbon fiber E-862 unidirectional tape.

Property Symbol LS-DYNA Parameter Value

density ρ RO 1.5 g/cm3

Modulus in 1-direction E1 EA 134 GPa

Modulus in 2-direction E2 EB 7 GPa

Shear modulus G12 GAB 4.2 GPa

Major Poisson’s ratio ν12 - 0.2

Minor Poisson’s ratio ν21 PRAB 0.1

Strength in 1-direction, tension Ftu
1 XT 1270

Strength in 2-direction, tension Ftu
2 YT 42 MPa

Strength in 1-direction, compression Fcu
1 XC 1130 MPa

Strength in 2-direction, compression Fcu
2 YC 141 MPa

Shear strength Fsu
12 SC 63 MPa
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The stresses are very high in both symmetric and asymmetric impact, but the intro-
duction of a carvings area can mitigate the peak of stress by having a progressive failure, as
reported in Figure 12.
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The numerical simulations underlined how the asymmetric configuration with five
petals achieves a good breaking path, but the stresses are too high, and the petals detach at
the same time, hindering launch, as shown in Figure 13.
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Figure 13. Four Petals Asymmetric VS Five Petals Asymmetric: Impact Simulation.

An introduction of an angled impact allows for the exploiting of the constant accelera-
tion profile and to reach a higher rotational speed of petals around the sides during the
impact and therefore a greater kinetic energy. Curved structures can absorb large amounts
of energy due to their shape and ability to deform and allow large displacements before
breakage. Two other configurations were investigated: a multifaced pyramid and a pavilion
dome to improve the fracture behaviour and the load distribution, as shown in Figure 14.
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Figure 14. Pyramidal and Pavilion Dome Tailgate Configuration.

The impact angle influences the contact force because the contact is more localized;
nevertheless, the impact duration increases because not every part of the structure is
involved in the impact event from the beginning. For a pyramidal multifaced configuration,
the highly concentrated load produces an indentation on the petal that can damage the
missile tip where sensitive and delicate electrical systems are integrated. The simulation
shows that the fragmentation in five petals occurs and that the petals rotate around the
tailgate’s supports, ensuring a clean ejection. The problem regarding the initial contact
force may be mitigated by the introduction of curvature, which will be investigated in the
dome model simulation.
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Curved structures have excellent characteristics when subjected to pressure load be-
cause bending loads were converted in tensile loads and the stress distribution is almost
uniform. The vault is engineered through 5 arcs of circumference, lying on planes orthogo-
nal to the base-plane, four from the square’s corner and one on the bigger petals from the
vertex to the middle of the base-edge. The four arcs from the corner to the vertex have a
radius of 1 m, while the other arc has a bigger radius of 1.5 m. This architecture anticipates
the contact between the tailgate and the sphere.

The fracture begins in the dome vertex by tensile stress in carving on the smaller
pavilion side and then the whole structure is involved in bending loads until the complete
fragmentation, as shown in Figure 15.
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4. Results

The five simulation models consist of three shape configurations (planar, pyramidal,
dome) respecting the overall dimensions and the weight limitations. The best solution
for the static requirement is the pavilion dome, as reported in the Figure 16, because in
addition to supporting the static “wave load”, it allows for the management of the breakage
by pressure load, but this aspect must be studied further.
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Table 4 summarizes all of the results collected:
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Table 4. Numerical results.

Configuration Time [s] Breakage Time [s] Von Mises Stress [MPa] Weight [kg]

Planar 4 Petals Centred 0.035 7 × 10−4 131 2.02

Planar 4 Petals Asymmetric 0.035 6 × 10−4 139 2.10

Planar 5 Petals Asymmetric 0.035 6 × 10−4 70 2.08

Planar 4 Petals Asymmetric 0.035 6 × 10−4 139 2.10

Pyramidal Multifaced 0.032 1.4 × 10−3 79 2.80

Pavilion Dome 0.033 1 × 10−3 39 3.17

Planar configuration is lighter, but it has a faster and a more sudden breakage, and
this can lead to the uncorking of the tailgate or damaging the missile tip. The petals fail
due to the in-plane bending stresses and shear stresses. The stresses are very high in both
symmetric and asymmetric impact, but introducing carvings can mitigate the peak of stress
by having a progressive failure.

The introduction of an impact angle due to multifaced pyramidal and dome structures
helps to increase the duration of impact and to give rotational speed around the edges to
the petals, as shown in Figure 17. The structures exhibit a smoother behaviour, but for
the pyramidal one the contact force is more concentrated, causing indentations, while the
pavilion dome exhibits a softer and a more gradual contact.
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Figure 17. Planar VS Pyramidal Multifaced Tailgate: Stress evaluation.

Thanks to the curvature design optimization, the pavilion dome structure shows low
stress levels and longer times for breakage, as shown in Figure 18. The tailgate subjected to
impact has a more gradual breakage and, as seen in the following figure, the Von Mises
stress in an edge element after an initial growth goes down until the whole structure is
involved and the element fails for tensile load.

The pavilion dome structure was more suitable to reach the goal because it resists
better under pressure load and allows the designer to manage the carving curvature to
optimize the structure fragmentation, as shown in Figure 19.



Appl. Sci. 2022, 12, 12220 14 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 15 
 

 
Figure 18. Pyramidal Multifaced VS Pavilion Dome Tailgate: Stress evaluation. 

The pavilion dome structure was more suitable to reach the goal because it resists 
better under pressure load and allows the designer to manage the carving curvature to 
optimize the structure fragmentation, as shown in Figure 19. 

 
Figure 19. Simulation of Dome Tailgate’s fragmentation after impact. 

5. Conclusions 
The analysis of the mechanical behavior of the frangible composite canister has been 

proposed. The frangibility and controlled separation process was simulated using the FE 
model. The numerical deformation of the canister and the breakdown pressure of the fran-
gible plate were determined for five different geometries using three shape configurations 
(planar, pyramidal, dome). 

The study showed that the pavilion dome structure shows low stress levels and a 
longer time for breakage, related to the planar configuration, which is lighter, but also has 
a faster and a more sudden breakage, and this can lead to the uncorking of the tailgate or 
damaging the missile tip. This solution invites the petals to fail to the in-plane bending 
stresses and shear stresses and the mechanical behavior of the breakable canister and the 
failure criteria in predicting failure are reasonable and acceptable for design and optimi-
zation. 

Figure 18. Pyramidal Multifaced VS Pavilion Dome Tailgate: Stress evaluation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 15 
 

 
Figure 18. Pyramidal Multifaced VS Pavilion Dome Tailgate: Stress evaluation. 

The pavilion dome structure was more suitable to reach the goal because it resists 
better under pressure load and allows the designer to manage the carving curvature to 
optimize the structure fragmentation, as shown in Figure 19. 

 
Figure 19. Simulation of Dome Tailgate’s fragmentation after impact. 

5. Conclusions 
The analysis of the mechanical behavior of the frangible composite canister has been 

proposed. The frangibility and controlled separation process was simulated using the FE 
model. The numerical deformation of the canister and the breakdown pressure of the fran-
gible plate were determined for five different geometries using three shape configurations 
(planar, pyramidal, dome). 

The study showed that the pavilion dome structure shows low stress levels and a 
longer time for breakage, related to the planar configuration, which is lighter, but also has 
a faster and a more sudden breakage, and this can lead to the uncorking of the tailgate or 
damaging the missile tip. This solution invites the petals to fail to the in-plane bending 
stresses and shear stresses and the mechanical behavior of the breakable canister and the 
failure criteria in predicting failure are reasonable and acceptable for design and optimi-
zation. 

Figure 19. Simulation of Dome Tailgate’s fragmentation after impact.

5. Conclusions

The analysis of the mechanical behavior of the frangible composite canister has been
proposed. The frangibility and controlled separation process was simulated using the FE
model. The numerical deformation of the canister and the breakdown pressure of the fran-
gible plate were determined for five different geometries using three shape configurations
(planar, pyramidal, dome).

The study showed that the pavilion dome structure shows low stress levels and a
longer time for breakage, related to the planar configuration, which is lighter, but also has a
faster and a more sudden breakage, and this can lead to the uncorking of the tailgate or dam-
aging the missile tip. This solution invites the petals to fail to the in-plane bending stresses
and shear stresses and the mechanical behavior of the breakable canister and the failure
criteria in predicting failure are reasonable and acceptable for design and optimization.
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The main achievement of this research was the collection of results, obtained by both
simplified realistic and full-scale FE model analysis, to define a design “rule of thumb”
assessment about the missile ejection problem. It has permitted the tracing of the guidelines
to perform the design process of a controlled rupture structure during impact.
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