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Abstract: In practice, the drilling path of horizontal directional drilling (HDD) projects is usually
constructed by trial and error based on a preliminary designing trajectory. This study aimed to pro-
pose and test a method to predesign and optimize the drilling paths automatically, with the view of
improving the efficiency of HDD design preparations. Alternating straight and curvilinear segments
is a commonly used method for designing drilling paths, especially the “straight—curvilinear—
horizontal straight—curvilinear—straight” five-segment arrangement. The catenary method was
proposed to design the drilling path with the advantage of lower friction for the mechanical con-
straints. However, it is difficult to be implemented with technology limitations due to its continuously
changing curvature. In this study, five-segment trajectories were combined with the catenary trajec-
tory to utilize their advantages using the improved radial movement optimization (IRMO) algorithm.
Drilling mud pressure was considered in the processes of the mechanical design to avoid collapse
or possible instability. Two different examples were tested in different scenarios, theoretical and
practical. The results show that the IRMO algorithm has a great potential for automatically designing
and optimizing preliminary drilling paths with low time-consumption and high feasibility.

Keywords: trenchless; horizontal directional drilling; drill path design; improved radial movement
optimization (IRMO) algorithm; mud pressure

1. Introduction

Horizontal directional drilling (HDD) is a trenchless technology applied to install
underground pipelines with minimal impacts on the environment or damage to existing
infrastructure such as roadways and other surface structures [1]. According to the pre-
designed drilling trajectory, a small pilot hole is drilled first, and then the pilot hole is
enlarged by a reamer that replaces the drilling head. The pipes or installations of the well
are pulled back into the reamed hole from the exit toward the entry. Due to its lower
cost, higher flexibility, and weaker surrounding influence, HDD has gradually become
more popular than the conventional excavation methods adopted to install and replace
or repair pipelines in a city [2]. The development of HDD in China has continued in the
past two decades due to the broad market and stable economic growth of China. Up till
November 2020, the longest known HDD in China had reached 5.2 km [3,4]. The geological
conditions of the crossing area are much more complex in longer-distance crossing HDD
practices, which results in more engineering problems and costs. In practice, most of the
HDD drilling paths are determined by seeking or tracking the moving or static drill head
to adjust it from the entry point to the exit simultaneously and iteratively [5]. Scholars
have carried out various studies on improving the accuracy or efficiency of the seeking or
tracking systems [6–9]. However, this method of iterative trial and correction is difficult to
apply in complex practices, such as crossing rivers or buildings which may hinder the sen-
sors. On the other hand, many scholars have focused on the predesign and optimization of
HDD trajectories to ensure suitability and efficiency. For conventional trajectory design, the
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theoretical geometric model of trajectory was mainly developed to ascertain the accurate
position of the wells, such as the “Improved Tangential Method” [10]. Moreover, some
scholars added more factors in the model to realize more complex designs closed to actual
projects [11–13]. In China, Zhou [14] took the drilling rate in meters per hour as the opti-
mization object to establish a dynamic trajectory design optimization model, which could
find the optimal drilling path with the minimum drilling time. Lu [15] focused on complex
underground pipelines and obstacles and presented an optimization method for avoiding
pipelines and obstacles in trajectory design. Niu [16] conducted research on the theory
of the guide strength of the drilling path, which analyzed the contribution of the curved
segment to the drilling path design. When it comes to artificial intelligence applications,
an optimization algorithm is more intuitive and reliable than repetition tests and traditional
human-computer interaction techniques [17]. The drilling path design and optimization
were also developed further by several optimization algorithms. The catenary trajectory
design method was introduced by Wiśniowski [18–20], who tried to fit the five-segment
trajectory with the catenary trajectory to design the drilling path geometrically. The genetic
algorithm (GA) was used to realize the fitting of the two trajectories efficiently. In another
study, the ant colony optimization (ACO) algorithm was used to optimize HDD alignment
by Patino-Ramirez, et al. [21], which ensured the minimal drill path length and the reduced
cost associated with it. Notably, the ACO optimization method added consideration of
mechanical constraints (drilling mud pressure and pipe integrity) and geometric constraints
(remaining in the construction domain) simultaneously in the design.

The artificial intelligence algorithm is an excellent way to figure out a single or multi-
dimensional nonlinear objective optimization problem which the design or optimization of
trajectory can be transferred to. On the basis of previous studies, this paper tested a new
numerical method, using improved radial movement optimization (IRMO) to preliminarily
design and optimize the HDD trajectories and its parameters. According to the theory of
catenary trajectory in previous literature, its shape is closed to the natural stress distribution
of pipelines along the length so as to enable a lower drilling or pullback force during the
process [18–20]. So, a five-segment trajectory was attempted to be realized by fitting with
the catenary trajectory to get the largest similarity in shape. What is more, the drilling mud
pressure is calculated in each iteration step simultaneously for consideration of the well-
bore stability evaluation. The use of the IRMO algorithm can make the whole construction
processing automatic with the intention to reduce the time-consuming manual adjustment.
Section 2 introduces the concepts of the catenary trajectory design and five-segment trajec-
tory design for HDD projects. Then we present the design method based on the geometrical
constraints for the whole construction and each parameter. The objective functions for this
method used in the IRMO algorithm are also summarized. Besides, the mechanical design
is also introduced for the borehole stability consideration based on drilling mud pressure.
Section 3 summarizes the framework and implementation of the IRMO algorithm applied
to the trajectory design. Section 4 presents two design examples to compare and analyze
the results determined by IRMO. The conclusion of this study is presented in Section 5.

2. HDD Trajectory Designs
2.1. Geometric Designs

The catenary trajectory is a chain curve with natural deflection, such as seen with
ropes, cables or chains with uniform weight suspended between two points (Figure 1a). In
petroleum engineering, the well path in the catenary profile has been proved to reduce the
wellbore friction and torque compared to conventional trajectories [22,23]. The method for
planning the catenary well path was proposed in later studies, which avoided a trial-and-
error procedure and provided excellent maneuverability of planning requirements [24]. In
1985, McClendon [25] proposed an HDD trajectory design method based on a catenary
trajectory. However, its gradient curvature made it difficult to be implemented in practice.
Therefore, Wiśniowski et al. [20] proposed a new method that combined the catenary
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trajectory with a five-segment trajectory (Figure 1b) to design a drill path that was easier to
be implemented using the available technology.
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The catenary trajectory is actually a hyperbolic cosine, whose standard mathematical
formula is written as the following:

z = a × cosh(x/a) (1)

a = Np/q (2)

where, a is a parameter determined by the unit weight of pipeline q (N/m) and pullback
force Np (kgf) [20]. So, the shape of the catenary trajectory is mainly associated with the
crossing pipelines and the capacity of the pulling back equipment. By Equation (3), the
catenary trajectory can be described in a specific coordinate, where the left point of the
catenary trajectory is set as the origin point. Therefore, the depth of each point on the
catenary trajectory (zci) can be fully calculated with increments. As shown in Figure 2, A
and H are the horizontal and vertical distances of the exit and the entry points, respectively.
(x0, z0) is the catenary vertex coordinate.{

xi= i × dx
zci = (Np/q) × cosh((xi − x0)/(Np/q) − 1) − z0

(3)

Another concept for HDD trajectory design is the segment trajectory method, com-
bining the most conventional methods of straight and curvilinear segments. Mostly, the
geometric profile of segment trajectory (shown in Figure 1b) commonly consists of an entry
straight segment (L1), an entry curved segment (L2) with bending radius (R2), a central
horizontal straight segment (L3), an exit curved segment (L4) with bending radius (R4),
and an exit straight segment (L5) respectively. Based on this combination form, the point
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coordinates of each segment can be calculated clearly by geometric constraints. As shown in
Figure 3, once the angle γ and radius R of the curved segments are set, the increments of the
trajectory depth dz and horizontal distance dx can be determined according to Equation (4).
Furthermore, combining the inclination angle θ and length L of the adjacent straight seg-
ments, the depth zi of another adjacent segment can be fully determined with increasing
horizontal distance dx (Equations (5) and (6)).{

dx = R × (sinγ − sin(γ − dγ))
dz = R × (cosγ − cos(γ − dγ))

(4)

α = θ + γ (5){
xi= i × dx

zi= L1 × sinθ + R × (cosθ − 1) + xi − L1 × sinθ − R × (cosθ+cosα)
tan α

(6)
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According to Equations (4)–(6) above, the designed alternating straight and curvilinear
segments can be detailed with tiny segments with coordinates. The whole geometry can
be constrained only by four kinds of geometric parameters within the assigned domain,
including the inclined angle of the straight segment θ (clockwise is positive and coun-
terclockwise is negative), the length of segment Li, the angle of curved segment γ, and
the curved segment radius R. If the central segment of the trajectory is considered to be
horizontal and straight in design, the geometric parameters curve angle γ and deviation
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angle θ will be united (θ1 = γ1, θ2 = γ2), so that the geometrical design parameters of the
five-segment trajectory can be simplified and containing the following:

• Length of entry straight segment, L1
• Inclined angle of entry inclined straight segment, θ1
• Radius of entry curved segment, R2
• Central straight segment length, L3
• Inclined angle of exit inclined straight segment, R4
• Radius of exit curved segment, θ2

In practice, the straight segments of drill path, L1, L3, and L5, are generally determined
by the gyratory drilling processes of the drill head, while the curved segments are deter-
mined by the direct jacking [16]. The entry angle θ1 (for the entry straight segment L1) and
exit angle θ2 (and the exit straight segment L5) of the trajectory are commonly restricted in
valid ranges. Patino-Ramirez et al. [21] suggested the ranges could be defined between 5
and 18 degrees for trajectory design, while Wiśniowski et al. [19] recommended it could be
set between 6 and 16 degrees. Another study gave higher acceptable values of deviation
angles between 8 and 30 degrees [26]. Its determination is usually constrained by con-
structability limitations which impart conditions of geometric design. The central straight
segment L3 is commonly the core part of the trajectory, which must satisfy the requirements
of specific burial depths and crossing distance for the engineering. To avoid surface distur-
bance and damage to installed products or pipelines, the minimum depth of cover along
the trajectory should not be less than the minimum allowable H in the standards.

The bending radius (R2 and R4) of curved segments mostly depends on the pipeline
strength which is limited by the material properties or diameter. To prevent excessive
bending stress in the pipelines, the radius of the curved segments should be limited to the
minimum bending radius. More details of the minimum bending radius can be found in
the published literatures [16,19,21]. In this study, the bending radius adopted was between
2000 and 3000 m for pipelines with diameter over 1000 mm.

After preliminary investigation, the assigned domains of the locations of entry and exit
points are decided upon for the predesigns. Project risks are evaluated as well, which might
result in more stringent limitations in the predesigns. Based on these limitations, possible
trajectories are designed (fitted) to ensure the maximum similarity with the catenary
trajectory in unifying the plane coordinate system by the least squares method. The sum
of squares SOS is determined as the similarity measurement function to find the best fit
(Equation (7)). zi and zci are the depths of the five-segment trajectory and catenary trajectory
determined by Equations (3)–(6) above. The lower the difference between the depths, the
higher is the similarity of the two trajectories.

Fitness_S = SOS = Σ(∆zi)
2 = Σ(zi − zci)

2 (7)

According to the six parameters obtained above, the length of the preliminary design
trajectory can be given in Equation (8) with specific geometric constraints.

Fitness_L = ΣLi = L1 + R2 × θ1 + L3 + R4 × θ2 + (A −L1 × sin θ2 −L3 −R4 × cos θ2)/sin θ2 (8)

2.2. Mechanical Design Considering Drilling Mud Pressure

Taking into account the collapse and instability of the drill paths, we tested, step
by step, the feasibility and rationality of each geometrically possible trajectory based on
drilling mud pressure theory. The engineering geological conditions of the crossing area for
calculation are simplified in this study. The drilling fluid is a non-Newtonian fluid mixed
HDD process. It is necessary to exceed the minimum required mud pressure (MRP) to
maintain the recirculation of the drilling mud. The minimum mud pressure consists of the
static drilling mud pressure Ps and the drilling mud pressure loss Pl [27,28], as shown in
Equation (9) [27,28].

MRP = Ps + Pl (9)
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Simultaneously, the injected pressure of the drilling fluid must be controlled below the
maximum allowable drilling mud pressure (MAP) to avoid cavity shear failure (blowout)
of the drill path [21]. The MAP is calculated by the Delft equation [27,29], which assumes
that the soil surrounding the borehole experiences perfectly elastic deformation and that
the far-field stress around the borehole is isotropic. Once the deformation reaches the
plastic threshold defined by the Mohr–Coulomb criterion (the internal pressure reaches the
limited pressure), shear failure of the borehole will occur as a blowout. Although the Delft
equation has been continuously revised to obtain more accurate analytical solutions [30],
Delft equation-based formulations are still the most commonly accepted formulations and
are therefore adopted in this study, Equation (10) [29].

MAP = Plim (10)

Once the geometrically possible trajectory is determined, the MRP and MAP of the
whole construction can be calculated predictably for the mechanical considerations. For all
of the steps, the maximum allowable pressure (MAP) of the fluid is predicted to avoid the
triggered blowout.

3. Improved Radial Movement Optimization
3.1. Concepts of IRMO

The IRMO algorithm [31–34], which can quickly solve multidimensional objective
functions of nonlinear constraint problems, is a global optimization algorithm that further
improves the data structure of the traditional radial movement optimization (RMO) algo-
rithm [34]. The IRMO algorithm simulates a group of particles [Xi,j] moving in a gradually
shrinking solution space. In IRMO, one particle position, which contains the information
of variables, represents a solution vector referring to a complete HDD trajectory in this
study. All of the solution vectors form a solution matrix [Xi,j]. After the expression of the
objective function and the range of the variables are determined, a group of initial particles
are generated randomly in the IRMO algorithm. The position of each particle is evaluated
by the value of the fitness function (the value of the sum of squares SOS or total length L);
therefore, the local optimal solution Rbest (radial best) and global optimal solution Gbest
(global best) can be obtained by one-by-one comparisons. The particle corresponding to the
best value of the function is chosen as the initial center. To avoid the algorithm overreliance
on the central particle and the loss of potential good particles of the previous generation,
which contribute to deviation from the optimization direction of the global optimal solution,
IRMO proposed generating prepositioned particles [Yi,j]. The fitness values of [Yi,j] are
compared with those of [Xi,j], pre-Rbest and pre-Gbest to evaluate the optimal information
that will be updated or persist. As the iteration progresses, the solution space (ranges of
variables) will be narrowed so that the central particle, determined by Rbest and Gbest,
will move toward the optimum. When the positions of the particles are narrowed to the
smallest solution space, the optimum solution is output. The principle of updating the
central particle is shown in Figure 4.

3.2. Implementation of IRMO

According to the studies above, one solution of the five-segment trajectory can be
determined by an M dimensional vector containing six variables: L1, θ1, R2, L3, R4, and θ2.
The N trajectories form a standard matrix [XN,M] with N rows and M columns (M = 6). The
standard matrix [XN,M] realizes the connection between the IRMO algorithm and the HDD
trajectory optimization (shown in Equation (11)).

[XN,M ] =

 L1
1,1 θ1

1,2 R2
1,3 L3

1,4 R4
1,5 θ2

1,6
...

. . .
...

L1
N,1 θ1

N,2 R2
N,3 L3

N,4 R4
N,5 θ2

N,6

 (11)
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After setting the ranges of each variable and the constraint conditions, optimization
begins with the initial matrix [XN,M] initiated by Equation (12).

Xi,j = Xmin j + (Xmax j − Xmin j) × rand(0, 1) (12)

where Xmax j is the upper limit of the j-th variable in [Xi,j], and Xmin j is the lower limit.
The initial central particle cp1 is chosen from the initial [XN,M] which has the best

fitness value. The central particles cpk will be updated by Rbest and Gbest, as shown in
Equation (13). c1 and c2 are proportional coefficients that affect the convergence speed and
accuracy of the calculation. The values of c1 and c2 are set as 0.5 and 0.4, respectively, in
this study.

cpk = cpk−1 + c1 × (Gbeatk−1 − cpk−1) + c2 × (Rbeatk−1 − cpk−1) (13)

Following Equation (14), prepositioned particles [Yi,j] are generated by the previous
central particles.

Yi,j
k = cpk + (Xmax j − Xmin j) × rand(−0.5,0.5) × wk (14)

wk = 1.009 × exp(−(1/generation + 0.03307)2/0.2454) (15)

To calculate the fitness values of [Yi,j]: If the fitness values of [Yi,j
k] are better than those

of [Xi,j
k], the [Xi,j

k+1] will be updated to [Yi,j
k], otherwise [Xi,j

k] will persist to the next gen-
eration. The determination of inertia weight wk uses a Gaussian function (Equation (15)).

Based on the objective functions given above (Equations (7) and (8)), the design and
optimization of the HDD trajectories in this study were implemented by IRMO on MATLAB
2021b. The implementation of the IRMO algorithm for HDD trajectory optimization is
shown in detail in Figure 5.
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4. Comparison and Analysis

This study aimed to assess the performance of IRMO in trajectory design by two ex-
amples originating from other literature. The first one gives the details of geometric design
processes which are compared with the genetic algorithm (GA) to highlight the advantages
of IRMO. To ensure the stability of this IRMO method for practicable consideration, the
parameters are discussed based on twenty times calculation. Therefore, a further optimiza-
tion, shortening the total length of trajectories, is proposed and tested to overcome the
limitation of unstable parameter design. Another example tests the IRMO designs with
the actual design using published data from constructed projects. To test the mechanical
design part, predictions of the maximum allowable drilling mud pressure of the geometric
design trajectories are compared with other studies.
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4.1. Comparison and Analysis of Numerical

The first example [19] is used to test the fitting process of this method using the IRMO
algorithm. The catenary trajectory parameters and five-segment trajectory parameters are
shown in Table 1.

Table 1. Parameters and range setting.

Parameters of Catenary Trajectory [19] Parameters of Five-Segment Trajectory

Horizontal distance of exit and entry point: A = 1000 m
Vertical distance of exit and entry point: H = −15 m

Casing unit weight: q = 80 kg/m
Pullback force: Np = 25,000 kgf

Length of the entry straight segment, L1∈[1, 300] m;
Length of the central segment, L3∈[1, 300] m;

Radius of curved segments, R2, R4∈[1, 300] m;
Angle of the entry straight segment, θ1∈[1, 300] ◦;
Angle of the entry straight segment, θ2∈[1, 300] ◦;

To determine the influence of different algorithm parameters on the fitting results, the
value of R2 is used to manifest the similarity of fit. As shown in Table 2, the difference in
the value of R2 is quite minor and is greater than 0.998 in each case. The overlap of the
fitted trajectory images for series 1, 3, and 5 is relatively high (Figure 6). Moreover, the time
resource of each case increases as the calculation becomes more complex.

Table 2. Comparison of goodness of fit for different algorithm parameters.

Series dx [m] N Generation SOS R2 Time [ms]

1 50 100 100 10.25 0.9991 765
2 50 50 100 21.01 0.9981 487
3 5 50 100 70.68 0.9991 532
4 5 50 250 57.27 0.9993 1275
5 1 50 250 287.22 0.9995 1680

Note: R2 = 1 − SSE/SSR, R2∈(0,1); the closer the value of R2 is to 1, the better the goodness of fit.
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The optimal fitting result shows a lower SOS value searched by the IRMO algorithm
(in Table 3), but more time costing. Compared with the results of the genetic algorithm
(GA), the IRMO algorithm can give more accurate calculations with an acceptable extra
time costing.
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Table 3. Comparison of optimal fitting results.

Method SOS Time [ms]

I: Searching the entire solution space [19] 370.19 4183
II: GA [19] 366.53 212.55
III: IRMO (this study) 287.22 1680

During the 100 iterations, the global optimal SOS tends to a stable convergence when
approaching the approximate 50th generation (shown in Figure 7). The optimal result can
be improved when the total number of iterations is increased.
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Figure 7. The convergence process of searching for the optimal SOS: Series 3 in Table 2.

As shown in Table 4, the optimization result of L3 in this study is largely similar to
that of the GA [19]. The other parameter optimization results have θ1, θ2, and R2 that are all
smaller than those of the GA, while R2 is larger. The difference between the optimization
results is attributed to the mutual influence and restriction of each parameter.

Table 4. Comparison of parameter optimization results.

Method L1 [m] θ1 [◦] R2 [m] θ2 [◦] R4 [m] L3 [m]

GA [12] — −9.3 2473.96 7.44 2378.51 100.78
IRMO (this study) — −8.83 2678.16 6.49 2133.25 100.00

Taking Series 4 in Table 3. as an example, the SOS is calculated 20 times consecutively
(Figure 8), and the 20 trajectories are shown in Figure 9.
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Figure 8. The best SOS calculated 20 times by IRMO: Series 4 in Table 2.
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Figure 9. Trajectories after searching 20 times by IRMO: Series 4 in Table 2.

The calculations completed by the IRMO showed great stability and accuracy, with
the standard deviation of the SOS being 3.61244, consistent with the trajectory images. In
Figure 9, different colors are used to distinguish each segment of the five-segment trajectory.
The fitting results of each segment are highly similar as well.

The parameter collocation of the optimal fitting trajectory cannot be identical here. As
the fitting similarity is higher, the mutual influences and restrictions of each parameter on
the others will be enlarged causing different results. To achieve a high similarity of fitting,
the results of the parameters, especially L1, R2, and R4, fluctuate in a small range after
20 calculations (Figures 10–12), while the fitting results are not much different (Figure 9).
The results of L3, θ1, and θ2 fluctuate relatively consistently, especially the length of the
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central segment L3. The optimization of L3 tends to the lower limit of its initial range (as
shown in Table 1) with no difference in the 20 searches, which indicates that a shorter L3
is beneficial to the trajectory fitting. The results of θ1 and θ2 fluctuate only in the range of
0.5◦ (Figure 10), with standard deviations of 0.29313 and 0.212049, respectively. However,
the optimization results of L1, R2, and R4 contrast obviously with the former findings. This
shows that the fluctuations in the fitting are less correlated with L1, R2, and R4.
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Figure 10. The fluctuations of θ1 and θ2 for 20 calculations.
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Wiśniowski et al. [19] suggested fixing the length of the central segment L3 and
narrowing the ranges of the other parameters to further optimize the five-segment trajectory
in a smaller solution space. The final optimization is clearly to be applied in practice.
However, the optimization result that he obtained is one among numerous possible results.
In this study, to achieve more precise and stable results of parameters, we narrowed the
parameter limitations according to the volatility ranges and set the Fitness_L(Equation
(8)) as the purpose to search the shortest trajectory to reduce the costs associated with the
length of trajectory. The narrowed ranges are concluded in Table 5, and the parameters of
the IRMO algorithm are: N = 50, M = 6, and generation = 250.

Table 5. The narrowed optimization ranges of trajectory parameters.

The Narrowed Optimization Ranges of Trajectory Parameters

Length of the entry straight segment, L1∈[60, 110] m;
Length of the central straight segment, L3∈[100, 120] m;
Radius of curved segments, R2∈[2500, 3000] m, R4∈[1800, 2400] m;
Inclination angle of the entry straight segment, θ1∈[−10, −8] ◦;
Inclination angle of the exit straight segment, θ2∈[6, 8] ◦;

After searching 20 times by IRMO in the narrowed optimization ranges above, the total
length of the trajectory is obviously shortened (Figure 13) compared with Figures 6 and 9,
although the fitting degree is lower.

The values of the shortest length searched 20 times are shown in Figure 14. The
standard deviation is only 0.05813, in which the maximum decrease is 16.92 m, the mini-
mum decrease is 10.62 m, and the average decrease is 14.53 m. The Figure 15 shows the
convergence of the total length when the iteration of the IRMO is set as 250. The global
optimum tends to be stable as well.
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Figure 15. The convergence progress of searching optimal length after 250 iterations.
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A set of trajectory parameters before and after optimization is compared in Table 6.
The results after optimization of θ1 and θ2 are smaller than before, while the results after
optimization of R2, R4, L1, and L3 are larger. Moreover, the length of the exit straight
segment L5 is exhibited, which demonstrates that the optimization effect of the total length
is mainly contributed by the exit straight segment L5.

Table 6. The trajectory design parameters before and after optimization.

L1 [m] θ1 [◦] R2 [m] θ2 [◦] R4 [m] L3 [m] L5 [m] Total Length [m]

Before 94.76 −8.87 2699.64 6.44 2063.20 100.00 289.06 1013.45
After 95.64 −8.00 3000 6.16 2330.27 104.96 131.18 1001.04

Figures 16–21 show the convergence of six parameters over 250 iterations in searching.
The iterative convergence of the parameters carried by the central particle and the average
of each generation of particles are given in the figures simultaneously. We note that the
convergence of the central particle and average is relatively more stable (the fluctuation is
smaller). This means that for the IRMO algorithm, if the searches for the global optimal
value have unstable fluctuations (possibly falling into the local optimum), the central
particle could maintain the optimal position to avoid the result becoming stuck in a local
optimum (the optimum eventually coincides with the convergence of the central particle).

To highlight the optimization trends of parameters, we tagged the upper limit and
lower limit (Table 5) in the following figures for each parameter. In Figures 16 and 17,
both θ1 and θ2 are trending to a lower value of their ranges, which means that the lower
inclination of entry or exit straight segments is more conducive to optimizing the total
length of the five-segment trajectory.
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Figure 16. The convergence progress of inclination of entry straight segment: θ1.

For the curved segments, R2 and R4, perform the different convergence trends in
iteration. As shown in Figure 18, the final R2 is neither close to the upper limit of its
searching range nor the lower limit. Meanwhile, the values of R4 converge to the upper
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limit to obtain the optimum total length (Figure 19). It could be considered that R2 plays
a more influential role in the length optimization.

For the length of entry straight segment L1, an obvious convergence can be observed to
its upper limit, especially after 100 generations. However, the length of the central straight
segment L3 finally trends to nearly 110 m.
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Figure 17. The convergence progress of inclination of exit straight segment: θ2.
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Figure 18. The convergence progress of radius of entry curved segment: R2.
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Figure 19. The convergence progress of radius of exit curved segment: R4.
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Figure 20. The convergence progress of length of entry straight segment: L1.

It is hard to say what are the relations between the lower limit or upper limit with
the optimization of R2 and L3 (Figures 18 and 21), but it could be concluded that the
determinations of R2 and L3 are not of as much importance as the others. To some extent,
their influence on the optimal results is weaker. Therefore, it is advisable to pay more
attention to optimizing other parameters, including L1 R4, θ1, and θ2, in actual projects.
On the other hand, the optimization result of L3 (104.96 m) is larger than the fitting result
(100.00 m) (Table 6), which is conducive to the trajectory in practice if there needs to be
a longer horizontal crossing.
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Figure 21. The convergence progress of length of central straight segment: L3.

This process of length optimization could certainly reduce the total length of the whole
construction, especially when considering the cost associated with the length. As another
possibility, it also proves that the trajectory can be designed and optimized with the purpose
of minimal total length as in the ACO method [21]. However, for the IRMO method, the
outputs of the design parameters are more specific with six parameters available which may
help the engineers’ judgement. However, in this example, the maximum optimized length
is only a fraction of the total length. Its practical value may need to have more practices
to be proved in further study. However, it may provide valuable advice for determining
certain parameters when those parameters are volatile during fitting.

4.2. Comparison of an Actual Drill Path Design

Another example containing mechanical design, the drill path of the Maxi-HDD Qin
River crossing project in China [4], was tested to support this method of predesigning
trajectory. The crossing project, including two parallel HDD crossing with 1016 mm
diameter and 1750 m driven length, was located at an alluvial plain where the Yellow River
and the Qin River intersect. Consisting of a 7◦ entry angle, 8◦ exit angle, 2290 m entry
and exit radius of curved segments, 1015 m horizontal segment, 33.50 m maximum burial
depth and 29.78 m minimum burial depth below the riverbed, the drill path was carefully
designed manually for preventing blowout, as shown in Figure 22.

According to the engineering data provided in the literature [4], the geometrical
design parameters are limited in the ranges given in Table 7. The minimum bending radius
limitation was given differently for two cases, 2000 m and 2300 m, to illustrate its effects on
trajectory design.

In terms of mechanical design, heavy loam is used to evaluate the maximum allowable
mud pressure, including 1.57 g/cm3 dry density, 20.0 kPa cohesion, 15.0◦ friction angle, and
0.74 coefficient of lateral earth pressure. The MAP predicted at the location of minimum
burial depth is 1.63 MPa, which is very close to the real pressure of about 1.7 MPa [4].
All segments of the trajectory were tested for the pressure predictions through the whole
process of geometric design.
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Table 7. Parameters and range setting.

Parameters of Catenary Trajectory Parameters of Five-Segment Trajectory

Horizontal distance of exit and entry point:
A = 1750 m

Vertical distance of exit and entry point: H = −1 m
Casing unit weight: q = 100 kg/m
Pullback force: Np = 1,000,000 kgf

Length of the entry straight segment, L1∈[1, 100] m;
Length of the central segment, L3∈[1000, 1500] m;

Radius of curved segments, case 1: R2&R4∈[2000, 3000] m;
case 1: R2&R4∈[2300, 3000] m;

Inclination angle of the entry straight segment, θ2∈[−18, 5] ◦;
Inclination angle of the exist straight segment, θ4∈[5, 18] ◦;

As shown in Figure 23 and Table 8, although the fitting similarity is largely reduced
from the last example (mostly due to the difference of parameters ranges), both cases of
trajectory design by IRMO show a great similarity with the actual design. The parameter
design results arrive at similar trends as the previous conclusions. With the different
minimum bending radius, the entry straight segment (L1) is designed with nearly 50 m
difference while the other parameters are not much different in design. It proves that the
fitting similarity has less influence on the design results than we thought. The design
parameters could be designed suitably by fitting with the catenary trajectory. What is more,
there is no need for extra length optimization due to the tiny differences in the total length
of the designs caused by strict limitations, especially for the central segment length L3.

Table 8. Comparison of parameter design results.

L1 [m] θ1 [◦] R2 [m] θ2 [◦] R4 [m] L3 [m] Minimum Burial
Depth [m] Total Length [m]

Actual design — −7 2290 8 2290 1015 29.78 —
Case 1 (IRMO) 100 −7.49 2000 6.04 2000 1000 31.90 1752.99
Case 2 (IRMO) 50.65 −8.00 2300 7.07 2300 1000 31.24 1752.26
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5. Conclusions

1. With the application of intelligence algorithms, specifically the IRMO algorithm, the
design and optimization of HDD trajectories could obviously improve the efficiency
and accuracy in this study. All the calculations and optimizations were tested on
a 2.30 GHz computer (CPU: Intel i5-6300 HQ), and the total time of fitting and length
optimization was stabilized within 60 s, which shows great potential for shortening
the manual adjustment time required in actual projects.

2. This study proposed and tested a new method to design the HDD trajectory combining
five-segment trajectory with catenary trajectory. With two processes, the five-segment
trajectory could be designed with a great similarity to the catenary trajectory, and
simultaneously with the shortest length, thereby reducing the associated costs. Both
processes were verified through data from the literature or from actual projects. It was
proved that the catenary trajectory has great potential to design a traditional drilling
path with precise and achievable parameters.

3. Six concise parameters (L1, L3, R2, R4, θ1, and θ2) were concluded herein to design
trajectories and be optimized by the IRMO algorithm. According to the analysis of
the parameters, it was found that the limits of L3 and R2 have fewer impacts on the
optimization results. Therefore, the optimization ranges of the other four parameters
should be set carefully during the trajectory design.

4. By improving the structure data of the radial movement optimization, the obtained
IRMO algorithm had a great ability to solve the extremum value of the multidimen-
sional nonlinear objective function. Benefitting from the refined parameter matrix
and efficient data structure, the authors believe IRMO has further potential in more
complex trajectory design such as 3D construction or in avoiding obstacles.

5. It should be emphasized that the importance of the accuracy and viability of the
results by algorithm are mostly based on the set of the constraints and validated
ranges of input parameters which largely rely on the experience of trained engineers.
This method hopes to provide more advice in terms of geometrical parameters and
drilling mud pressure for current practice preparations with a large consideration of
site and soil property factors. There are more factors, such as geology, rock properties,
and drilling rigs that should be discussed in further study to ensure the mechanical
design. What is more, the mechanical advantages of the five-segments trajectory
similar to the catenary trajectory also need more experimental studies to be verified.
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