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Abstract: Globally, large-scale natural disasters are occurring more frequently due to climatic and
environmental changes. In addition, the disaster risk for infrastructures, mainly bridges, has become
a vulnerability issue because reinforced concrete bridge structures are being directly exposed to the
natural environment. Bridge structures linking cities or prefectures are destroyed in the aftermath of
natural disasters and must be rebuilt. As a post-disaster measure, rapid reconstruction of damaged
bridges and the reconnection of transportation systems between impacted locations and urban
areas are the main problems encountered. This study aims to solve these problems through the
application of a novel concept of an emergency bridge based on origami-inspired post-buckling
theory, in conjunction with previous studies investigating the optimal deployable structure of scissors-
type bridges. This study applied a novel design method for scissor-type bridges that use influence
line diagrams and equilibrium equations. The proposed methods can determine the size of each
member appropriately while providing the minimum and maximum values of the influence line
border when carrying light vehicles by analyzing variations in the live load distribution on the
structure. In the case of heavy vehicles passing over a bridge, the fundamental internal axial forces
and bending moments were obtained, which provided design parameters for improving the load-
carrying capacity of the structure. The proposed emergency bridge has a lower theoretical stress than
that of a double-Warren truss.

Keywords: smart structure bridge; emergency bridge; coupling scissors-type bridge; scissors structure;
deployable structure

1. Introduction

Natural disasters occur frequently. However, their impact is worsening and is becom-
ing a challenging issue affecting global development.

Global warming has been noted as a factor in the increasing frequency of natural
disasters, owing to development-related activities, such as industrial manufacturing, trans-
portation, energy supply, and deforestation. Kumamoto (2020) and Hiroshima (2018) in
Japan witnessed flooding and overflow of rivers, which led to the destruction of bridges
(refer to Ario et al. (2021) [1,2]) and severed the mode of transportation between the two
regions, as shown in Figure 1. The impact and probable reasons for demolition were
investigated by Ario (2006) [3].

Previously, there were many kinds of temporary bridges in Japan that used different
construction methods, such as the pre-girder bridge, kiln-dried truss, HS truss, Hi-BRIDGE
construction, Hi-RoRo construction, double-Warren truss (hereinafter DWT) [4], and dry
support bridge methods; these techniques for Accelerated Bridge Construction require
between one and ten weeks for bridge assembly WFEL (2012) [5], Unibridge (2015) [6] (see
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Figure 2a). The Army Forces Bridge required approximately 8 h and 80 soldiers for assembly
(see Figure 2b). Bridge assemblies require extensive labor as well as high-capacity cranes.

Figure 1. Collapsed bridges due to flooding in Kumamoto, Japan (July 2020).

(a) (b)

Figure 2. Types of temporary bridges and a military bridge in Japan. (a) A temporary bridge built by
a company. (b) A temporary bridge built by the military.

Historically, the first emergency bridge, the Bailey Bridge, was proposed in 1943 by D.
Bailey and was a modularized truss bridge. Studies have been conducted to evaluate the
usability of lightweight materials such as fiber-reinforced plastic (FRP) (R. Wight (2006) [7]).
Generally, the scissors-type structure (hereinafter SCI) uses FRP for domes and roofs (Perez
(1965) [8], Zeigler (1976) [9], Escrig (1985) [10]), as shown in Figure 3b,c [11]. Harris
(1975) [12] proposed a space structure for bridge construction. The deployable structures
have demonstrated more complexity, such as the matrix formulation of macro-elements
(Kwan & Pellegrino (1994) [13]), smart deployable skeletal structures for safety engineering
(Pawłowski & Graczykowski et al. (2013) [14]), and a rapidly deployable bridge system
(Thomas (2013) [15]).

In this paper, we propose the influence line method for a smart bridge engineering
that employs the SCI to expand and fold itself within an hour with the requirement of
only a few people (see Figure 3). This makes it possible to evacuate people from the
bridge within a short time. Many types of mobile bridges (hereinafter MB), structures with
expanding and folding equipment, have been patented previously by Ario (2006) [3]. A
prototype deployable bridge based on origami principles was also developed by Ario &
Nakazawa et al. (2013) [16]. Studies were conducted on the theory and design of a full-scale
SCI (Chikahiro & Ario et al. (2016) [17]) and bridge design for scissors-type bridges based
on Origami engineering (Hama & Ario et al. (2017) [18]). This study investigated the
influence line (hereinafter I.L.) of axial forces, bending moments, and shear forces on the
scissors structure to establish a practical design theory. The I.L. of the SCI was compared
with the standard DWT model and advanced couple scissors-type bridge (hereinafter
CSCI) models [19]. The concept involves moving live loads along the structure using a
truck model.
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(a)

(b)  
(c)

Figure 3. Types of emergency bridges. (a) Double Warren truss (DWT). (b) The scissors-type bridge
(SCI). (c) The smart bridge [20].
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Figure 4. Definition of the coordinate system and sectional forces in a scissors unit structure.

2. The Equilibrium Theory
2.1. The Mechanism of the Scissors Structure Using the Cantilever Model

The two-unit scissors model depends on its boundary condition and the position of
the applied load to each nodal point (see Figure 4). This model is based on a cantilever
that consists of a pinned support point on the left-hand side BL

1 and AL
1 and P at point BR

2 .
The rotation point of the scissor is denoted by C1, its length by λ, and its height by η [11]
and/or [17] (see Figure 5).

Figure 5. Two-units scissors structure by cantilever model.
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In the equation, the external forces are on the left-hand side and internal forces (This
implies that the force at the nodal point is (•∗)Φ. (•∗)Φ ≡

[
•∗ |AL, BL, C, AR, BR; ∗ =

{L, R}; Φ = {x, y}
]
, •∗ denotes nodal label.) are on the connection points B1,2 and A1,2 on

the right-hand side. We obtain the following condition:
(B1,2)x
(B1,2)y
(A1,2)x
(A1,2)y

 =


(BR

1 )x
(BR

1 )y
(AR

1 )x
(AR

1 )y

+


(BL

2 )x
(BL

2 )y
(AL

2 )x
(AL

2 )y

 (1)

Therefore, the relevant equilibrium equations are as follows:{
(B1,2)
(A1,2)

}
=

{
(BR

1 )
(AR

1 )

}
+

{
(BL

2 )
(BL

2 )

}
(2)

[L]
{

(BL
1 )

(AL
1 )

}
= −[R]

{
(BR

1 )
(AR

1 )

}
−
{

(C1)
0

}
(3)

[L]
{

(BL
2 )

(AL
2 )

}
= −[R]

{
(BR

2 )
(AR

2 )

}
−
{

(C2)
0

}
(4)

Here,

[L] =


1 0 1 0
0 1 0 1
−η λ 0 0
0 0 η λ

, [R] =


1 0 1 0
0 1 0 1
0 0 η −λ
−η −λ 0 0


At each nodal point, a solution is obtained by applying the equation for each nodal

point in the following order. Then, we obtain their forces in matrix form based on the
following equation [17] and/or [20].{

(B1)
(A1)

}
= −([L]−1[R])2

{
(B2)
(A2)

}
− [L]−1[R]

{
(B1,2)
(A1,2)

}
−[L]−1[R][L]−1

{
(C2)

0

}
− [L]−1

{
(C1)

0

}
(5)

In this solution, the right-hand side is subject to P at point (BR
2 )y = −P and the other

nodal forces (= 0) in Equation (5), the unknown reaction forces for the two-unit SCI can be
expressed as (AL

1 )x = −(BL
1 )x = −P tan θ and (AL

1 )y = P, (BL
1 )y = 0.

A comparison of the theoretical predictions for the one and two-unit SCI shows that
the vertical reaction forces are identical in both; however, the horizontal reaction forces
are double of those in the vertical direction. Therefore, the horizontal reaction forces may
become very high if the number of scissors units is increased [21].

2.2. The Mechanism of Scissors Structure Using Simple Support Model

A two-unit SCI model with nodal forces acting only on the hinge, pivot, and pin was
supported at both ends, as shown in Figure 6. All members have the same length and angle
of inclination θ, measured in the vertical direction. The length and height of the scissor
unit are defined as λ and η. The left-hand scissors unit consists of nodes BL

1 , BR
1 , C1, AL

1 and
AR

1 , and the second scissors unit consists of nodes BL
2 , BR

2 , C2, AL
2 and AR

2 . All nodal points
are considered to be hinges. Loading is applied at nodal locations only; hence no bending
moments were transmitted or applied at these nodal junctions [20,21].

The horizontal (•∗)x and vertical (•∗)y equilibrium equations for the left-hand side
unit are as follows:



Appl. Sci. 2022, 12, 12170 5 of 16

[R]


(BR

1 )x
(BR

1 )y
(AR

1 )x
(AR

1 )y

 = −[L1]


(BL

1 )x
(BL

1 )y
(BR

2 )x
(BR

2 )y

−


(C1)x + (AL
1 )x

(C1)y + (AL
1 )y

0
η(AL

1 )x + λ(AL
1 )y


(BR

1 )x
(BR

1 )y
(AR

1 )x
(AR

1 )y

 = −[R]−1[L1]


(BL

1 )x
(BL

1 )y
(BR

2 )x
(BR

2 )y

− [R]−1


(C1)x + (AL

1 )x
(C1)y + (AL

1 )y
0

η(AL
1 )x + λ(AL

1 )y

 (6)

Here,

[R] =


1 0 1 0
0 1 0 1
0 0 η −λ
−η −λ 0 0

, [L1] =


1 0 0 0
0 1 0 0
−η λ 0 0
0 0 0 0


From the right-hand SCI, we obtain the equation as below.

[L]


(BL

2 )x
(BL

2 )y
(AL

2 )x
(AL

2 )y

 = −[R2]


(BL

1 )x
(BL

1 )y
(BR

2 )x
(BR

2 )y

−


(C2)x + (AR
2 )x

(C2)y + (AR
2 )y

η(AR
2 )x − λ(AR

2 )y
0


(BL

2 )x
(BL

2 )y
(AL

2 )x
(AL

2 )y

 = −[L]−1[R2]


(BL

1 )x
(BL

1 )y
(BR

2 )x
(BR

2 )y

− [L]−1


(C2)x + (AR

2 )x
(C2)y + (AR

2 )y
η(AR

2 )x − λ(AR
2 )y

0

 (7)

Here,

[L] =


1 0 1 0
0 1 0 1
−η λ 0 0
0 0 η λ

, [R2] =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 −η −λ


At nodes (B1,2) and (A1,2), the external forces (B1,2)y, (B1,2)x, (A1,2)y, (A1,2)x are in equi-

librium with the internal forces (BR
1 )y, (BR

1 )x, (AR
1 )y, (AR

1 )x and (BL
2 )y, (BL

2 )x, (AL
2 )y, (AL

2 )x
(see Figure 6). The sum of the forces for each unit can be expressed as follows:

(BR
1 )x

(BR
1 )y

(AR
1 )x

(AR
1 )y

+


(BL

2 )x
(BL

2 )y
(AL

2 )x
(AL

2 )y

 =


(B1,2)x
(B1,2)y
(A1,2)x
(A1,2)y

 (8)

Substitution Equation (6) and (7) into Equation (8) and rearranging will be as below:

[S]


(BL

1 )x
(BL

1 )y
(BR

2 )x
(BR

2 )y

 =


(B1,2)x
(B1,2)y
(A1,2)x
(A1,2)y

+ [R]−1


(C1)x + (AL

1 )x
(C1)y + (AL

1 )y
0

η(AL
1 )x + λ(AL

1 )y


+[L]−1


(C2)x + (AR

2 )x
(C2)y + (AR

2 )y
η(AR

2 )x − λ(AR
2 )y

0

 (9)

[S] = −[R]−1[L1]− [L]−1[R2] (10)
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If the determinant of [S], which is the coefficient matrix corresponding to the vector{
(BL

1 )x, (BL
1 )y, (BR

2 )x, (BR
2 )y
}T, is not 0, the reaction forces at the supports have a unique

solution. Moreover, if the external forces are known, then Equation (10) can be solved
by [21].

((((AALL
11
))))
yy

((AALL
1111
))
xx

((BBLL
11
))
yyyyyy

((BBLL
1111
))
xx

((CC
11
))))
yy

((CC((CC
1111
))))
xx

((AA
221,1,22
))
xx

((BB
221,1,22
))
yy

((BB
1,1,221,1,22
))
xx

((CC
22
))))
yy

((CC
2222
))
xx

((((AARR
2222
))))
yy

((((AARRRR
22
))
xx

((BB((BBRR
2222
))
yy

((BBRRRR
22
))
xx

LLLL
11 yy

LLLL
11 xx

LLLL
11 yyyyyy

LLLL
11 xx

1111 yyy

11 xx

RR
11 yy

RRRRRRRRRRRRRRRRRR
11 xx

RRRR
11 yyyyyyyyy

RRRR
11 xx

11,,22 xx

RRRR
11 yy

RR
1111 xx

RR
11 yyyyyyy

RRRR
11 xx

11,,2211,,22 yy

11,,22 xx

LLLL
22 yy

LLLLL
22222 xx

LLLLLL
22 yyyy

LL
2222 xx

LL
2222 xx

LL
2222 yy

LL
2222 xx

LL
2222 yyyyyyyyyyyyyy

2222 yyyyyyyyyy

22 xx

RRRR
22 yy

RRR
2
)
x

RRRR
22 yy

RRRRR
2
)
x

((AA
1,1,221,1,22
))
yy

11,,2211,,22 yy

Figure 6. Two-units scissors structure by simple support model.

3. Scissors Bridge Design Method

In this section, we explain the calculation method of the I.L. for the scissors member
using the calculation process described in the previous section. There are no existing studies
on the design of a bridge with a scissor mechanism; therefore, a design method based on
the I.L. for the structure has not yet been established. We attempted to generalize the I.L.
of the scissors member by assuming an underfloor slab constructed using the theory of
equilibrium dynamics of the scissors bridge [20,21], such that it can be generically designed
for arbitrary case parameters.

3.1. Comparison with the Influence Line (I.L.) of a Truss

We confirmed the similarities of the I.L. of the diagonal member of the Warren Truss
structure, which is the most general truss structure and the I.L. of the member of the scissors
structure. The I.L. of Warren truss structure is generalized, and it is possible to design live
loads by the bridge designer. For example, the axial force of the member of interest can be
obtained using the straight line of the gradient of 1/ sin θ for the axial force of the diagonal.
However, the I.L. has not been formulated for the scissors structure. Considering the entire
structure as one large beam and considering the vertical shearing force (Q), in the case of
Warren Truss, the diagonal member resists the shearing force. However, in the case of the
scissors structure, the scissors member resists the shearing force. We compared the I.L.s of
the shear force (Q) of both structures and aimed at grasping and formulating the behavior
of the I.L. of the scissors structure. The I.L.s of both the structures are shown in Figure 7.
Considering the members at the same position, the comparison showed that the phases
were reversed, but an I.L. with the same tendency was obtained using the 0–1 gradient
straight line. Therefore, although the method of solving the section force of the scissors
bridge differs significantly, as a bridge, the characteristics are the same as those of existing
bridges. Therefore, it is possible to design a bridge against moving loads.
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Figure 7. Comparison of examples of the I.L. (a) Sharing force for the scissors bridge. (b) Sharing
force for a Warren truss bridge.

3.2. Design Method Using Influence Line (I.L.)

The I.L. is convenient for carrying out live loads design. The greatest advantage is
that it is possible to easily obtain changes in the values of sectional force and displacement
attributable to the moving loads using the longitudinal distance and area. To determine the
I.L. of the section force and displacement of the scissors structure, the ordinate was first
calculated by applying the unit load P = 1 to the line, assuming the slab (upper, middle,
and lower roads). Further calculations are made by moving the load at interval length λ
and repeating the same calculation. The scissors structure shows different distribution of
sectional force for odd and even numbers. Therefore, between odd numbers with 2n + 1
category (n ≥ 1), it is maximised, as shown below. General equation of the I.L. of the
members of the central unit, where the section force is the maximum in the scissors model
for each case number, as shown below. For odd units (2n + 1), the I.L. of N1

n+1 is expressed
as follows:

ζ =


{cos θ + (n + 1) sin θ tan θ}ξ , ξ ∈

[
0, n

2n+1
]

−n{(2 cos θ + sin θ tan θ)ξ − cos θ − sin θ tan θ} , ξ ∈
[

n
2n+1 , n+1

2n+1

]
(cos θ − n sin θ tan θ)(ξ − 1) , ξ ∈

[
n+1

2n+1 , 1
]

Here, ζ is the ordinate, n is the number of units, θ is the deployment angle, Ls is the
span length, and x denotes the distance from the left support point in the direction of
the bridge axis. χ is the distance of the coordinate transformation in the member of axis
direction. The parameter ξ is the normalized coordinate distance as x/Ls ∈ [0, 1].

The I.L. of N3
n+1 is expressed as

ζ =

{
−(n + 1) sin θ tan θ · ξ , ξ ∈

[
0, n

2n+1
]

n sin θ tan θ(ξ − 1) , ξ ∈
[ n

2n+1 , 1
] (11)

The I.L. of shearing force Q1
n+1 expresses the following:

ζ =

 −n sin θ · ξ , ξ ∈
[
0, n+1

2n+1

]
(n + 1) sin θ(ξ − 1) , ξ ∈

[
n+1

2n+1 , 1
] (12)

The I.L. of M1
n+1 expresses the following:

ζ =

 −nχ sin θ · ξ , ξ ∈
[
0, n+1

2n+1

]
(n + 1)χ sin θ(ξ − 1) , ξ ∈

[
n+1

2n+1 , 1
] (13)
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For even units (2n), the I.L. of N2
n expresses the following:

ζ =

 −n sin θ tan θ · ξ , ξ ∈
[
0, 1

2

]
n sin θ tan θ(ξ − 1) , ξ ∈

[
1
2 , 1
] (14)

The I.L. of N4
n is expressed as

ζ =


−(cos θ − n sin θ tan θ) · ξ , ξ ∈

[
0, n−1

2n

]
{(2n− 1) cos θ + n sin θ tan θ}ξ − (n− 1) cos θ , ξ ∈

[
n−1
2n , 1

2

]
(cos θ + n sin θ tan θ)(1− ξ) , ξ ∈

[
1
2 , 1
]

The I.L. of shearing force Q2
n is expressed as follows:

ζ =

 n sin θ · ξ , ξ ∈
[
0, 1

2

]
−n sin θ(ξ − 1) , ξ ∈

[
1
2 , 1
] (15)

The I.L. of shearing force Q4
n is expressed as

ζ =

 (n + 1) sin θ · ξ , ξ ∈
[
0, n−1

2n

]
−(n− 1) sin θ(ξ − 1) , ξ ∈

[
n−1
2n , 1

] (16)

The I.L. of M2
n expresses the following:

ζ =

 nχ sin θ · ξ , ξ ∈
[
0, 1

2

]
−nχ sin θ(ξ − 1) , ξ ∈

[
1
2 , 1
] (17)

The I.L. of M4
n expresses the following:

ζ =

 (n + 1)χ sin θ · ξ , ξ ∈
[
0, n−1

2n

]
−(n− 1)χ sin θ(ξ − 1) , ξ ∈

[
n−1
2n , 1

] (18)

Based on these general equations, we could design the active load of main structural
members of the scissors bridge, assuming a lower road slab with a single support state of
fixed span length, number of units, and deployment angle.

4. The Influence Line of Scissors and Double-Warren Truss Structures
4.1. I.L. of DWT Structure

For DWT structure, only axial forces occurred at every nodal point of the structure,
as shown in Figure 8. For each nodal point at the four corners and the central point of each
unit, we obtain Equations (19) and (20). We can perform I.L. determination during unit load
(Fi)y = −1 subject to every single nodal point and it can be determined at the truss structure.
The I.L. diagrams of every single node are obtained by moving the unit load along the distance
by λ and calculating for another single nodal point (Hama & Ario et al. (2017) [18]).[

1 cos θ 0
0 sin θ 1

]
Nv

i
Nd

i
Nh

i

 = −
{
±(Fi)y
(Fi)x

}
(19)
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
cos θ − sin θ
cos θ sin θ

0 −1
0 1


T

Nd
i−1

Nd
i

Nh
i−1

Nh
i

 = −
{
±(Fi)y
(Fi)x

}
(20)

(a) (b)

Figure 8. The sectional nodal forces and I.L. of axial force at 3rd unit of DWT. (a) The sectional nodal
forces. (b) I.L. of axial force at 3rd unit of DWT.

4.2. I.L. of CSCI Structure

The CSCI is a combination of many scissors in one set that generates energy through
homogeneous behavior. However, in the method of analysis in this paper, the I.L. of a deck
is considered, and its load is subject to the main scissors structure in an orderly manner.

The I.L. analysis of CSCI is performed by the calculation of its section force members,
and equilibrium equations of all nodal forces are obtained from Equations (21) and (22) by
Hama and Ario et al. (2017) [18].

[L]bL
i + [R]bR

i + bC
i = 0 (21)

bR
i + bL

i+1 = Pi (22)

Here,

[L] =


1 0 1 0
0 1 0 1
−η λ 0 0
0 0 η λ

, [R] =


1 0 1 0
0 1 0 1
0 0 η −λ
−η −λ 0 0



b∗i = {(B∗i )x, (B∗i )y, (A∗i )x, (A∗i )y}T , ∗ = {L or R}
bC

i = {(Ci)x, (Ci)y, 0, 0}T

Pi = {(PB
i )x, (PB

i )y, (PA
i )x, (PA

i )y}T

The equations are obtained from the equilibrium condition of each nodal force in the
horizontal and vertical axes, as well as the bending moment of the central point (pivot
point C) by considering every member of the scissors unit. Therefore, the axial forces, shear



Appl. Sci. 2022, 12, 12170 10 of 16

forces, and bending moment are calculated by their coordinates reversed to the member
direction and using the following equations.

N j
i = ±(O∗i )x sin θ ± (O∗i )y cos θ (23)

Qj
i = ±(O∗i )x cos θ ± (O∗i )y sin θ (24)

Mj
i = {±(O∗i )x cos θ ± (O∗i )y sin θ}χ (25)

where in the distance coordinate 0 ≤ χ ≤ Le/2 from each corner node.
Then, the letters represent the following: N, axial force; Q, shear force; M, bending

moment; O, point A or B points.
In the case of a four-unit SCI, the load P = 1 is subjected to every single nodal point

substitution from point B1,2 ∼ B3,4. From a simple SCI, we obtained the I.L. of the axial
forces, bending moments, and shear forces (see Figure 9).

In Figure 9a, the small SCI (black scissors structure) will be a deck of the bridge,
and it is calculated using a two-unit simple SCI model, which is subject to a one-unit
SCI (light gray SCI). Through structural analysis, we obtain the reaction forces from the
2-units SCI and its reaction forces are subjected to the main SCI from points BL

1 ∼ BR
4 . The

CSCI is analyzed by assuming load P = 1 subject to the main SCI from points B1,2 ∼ B3,4
(see Figure 10a,b). Subsequently, we can obtain the I.L. of N, Q, and M using the load
distribution by one unit and P-load, as shown in Figure 11a–c.

Furthermore, truck model H-25 in ASSHTO passes in two directions (from the left
to the right side and from the right to the left side), at the highest loading point of this
structure, the front wheel load of H-25 P = 22.236kN and rear-wheel load P = 88.946 kN.
From this, we obtained graphs of the axial forces, shear forces, and bending moments (see
Figure 12a–c). Then, the small SCI will be analyzed with simple equations and reaction
forces are obtained, which are subjected to every nodal point of the main structure. With
the above, we consider the analysis of the five types of structural models in Figure 13.

4.3. Results and Discussions

The structural models shown in Figure 13 are designed using high strength low alloy
steel, and the main hollow member has 400 × 70 × 15 mm (height × width × thickness)
and is 6000 mm in length. Hence, the model had a unit length of 4000 mm and a total length
of approximately 16,000 mm. The Young’s modulus is 200 GPa, shear modulus is 128.7
GPa, and density is 7.85 g/cm3. The yield strength was 275.8 MPa, whereas the tensile
strength was 448 MPa.

The boundary condition was determined using simple pinned supports on both ends
of the structure. The truck model H-25 was simulated using Autodesk Inventor, which
provides the rear wheel (18,140 kgf × 0.5 = 9070 kgf or 88.946 kN) subject to the highest
bending moment point of a single structure (at nodal point B2,3), and the front wheel will
be subjected to nodal point B1,2. Furthermore, the truck also reverses the front wheel at
nodal point B3,4 while the rear wheel is in the same position.

The simulation results in Table 1 show that the von Mises stress (VMS) for the Double
Warren Truss structure (DWT) in Figure 14 was less than that of Coupling scissors-type
structure (CSCI) Model A in Figure 15 by approximately 10%, while its displacement
(hereinafter Disp.) and the structural weights remain lower for the two. Conversely, the
VMS of CSCI Model B in Figure 15 is lower than DWT by approximately 2%, while its
displacement and the structural weights are higher. The VMS of CSCI Model C in Figure 15
were lower than DWT by approximately 2%, while its structural weight is higher, and
displacement is lower. The VMS of CSCI Model D in Figure 15 is lower than DWT by
approximately 20%, while its structural weight is higher, and displacement is lower. The
1st principal stress (1st PS) and 3rd principal stress (3rd PS) are listed in Table 1.
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(a) (b)

Figure 9. Assumptions of unit load P = 1 distributed to the coupling of a scissors-type structure.
(a) The unit load P = 1 acting on the CSCI. (b) The unit load transferring to the main SCI.

(a) (b)

Figure 10. The load P = 1 distributes to the CSCI and the truck loading on the CSCI. (a) The truck
loading on the CSCI. (b) The unit load transferring to the main SCI.

(a)

(b)

(c)

Figure 11. I.L. diagram of AFD, SFD, and BMD subject to the normal SCI structure by P = 1 loading.
(a) I.L. of AFD N, P = 1 acting on the SCI. (b) I.L. of SFD Q, P = 1 acting on the SCI. (c) I.L. of BMD
M, P = 1 acting on the SCI.
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(a)

(b)

(c)

Figure 12. I.L. diagram of AFD N, SFD Q, and BMD M of CSCI by H-25 truck. (a) I.L. of AFD N at
the normal CSCI. (b) I.L. of SFD Q at the middle of CSCI. (c) I.L. of BMD M at the middle of CSCI.

Figure 13. The types of structural models.
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Figure 14. The simulation result of DWT model

(a)

(b)

(c)

Figure 15. Cont.
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(d)

Figure 15. The simulation results of CSCI models. (a) CSCI model-A. (b) CSCI model-B. (c) CSCI
model-C. (d) CSCI model-D.

Table 1. The simulation results of DWT & CSCI models A, B, C, D by Autodesk Inventor 2018.

Model Mass Disp. VMS 1st PS 3rd PS Mass Disp. VMS
Names kgf mm MPa MPa MPa Ratio Ratio Ratio

DWT 999.15 7.52 104.96 103.13 12.61 1.00 1.00 1.00
CSCI (A) 1027.46 9.15 114.98 114.01 25.67 1.03 (1.00) 1.22 (1.00) 1.10 (1.00)
CSCI (B) 1111.48 8.22 102.49 104.81 32.47 1.11 (1.08) 1.09 (0.89) 0.98 (0.89)
CSCI (C) 1195.5 6.53 102.49 105.45 28.80 1.20 (1.16) 0.86 (0.71) 0.98 (0.89)
CSCI (D) 1277.83 5.75 83.79 85.63 25.72 1.28 (1.24) 0.76 (0.63) 0.80 (0.73)

5. Conclusions

This study investigated the I.L. diagrams of axial forces, bending moments, and shear
forces on the structure of DWT and CSCI models. The concept involves moving live loads
along the structure using truck model H-25 (22,675 kgf). The maximum axial force, shear
force, and bending moment were obtained. To summarize, we can conclude the following:

1. Using the equilibrium mechanics theory of the SCI, we obtained the equations of
the primary I.L.s of the sectional forces of the frame elements with pin-connections.
Furthermore, their I.L. has been used to design the maximum loading point of a
structure by the equilibrium equations and the assumed loading from the small SCI
to the main SCI.

2. The authors numerically analyzed the CSCI structure, resulting in a normal SCI
structure that is used currently.

3. The I.L. at which the axial force N is higher than P = 1 unit at 2nd, 3rd, 4th nodal
points, is 1.1 unit (+10%); Shear force Q is lower than P = 1 unit at 3rd nodal point,
the I.L. is 0.7 unit (−30%); Bending moment M is higher than P = 1 unit at 3rd nodal
point, the I.L is 2.2 unit (+120%).

4. A comparison between the stress of DWT and CSCI structure showed that the stress
of CSCI (A) is greater than DWT by 10%, while the stress of CSCI (B) is lower than
DWT by 2%, but displacement is only over 10%. Moreover, in the case where the
comparative model is CSCI (A), we can observe that the CSCI (B) clearly shows
potential that when upper reinforcement member is applied, the stress reduces by
11%, while the mass increases by only 8%.

The results in this paper showed that if we develop CSCI (B) as an emergency bridge,
it will be more significant than other models because of its deployment mechanism and
efficiency. However, it is still difficult to deploy CSCI (D). CSCI (D) can be used for other
applications in coupling scissor-type devices in the future.
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