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Abstract: We demonstrate an optofluidic laser using DNA microdroplets, an intercalating dye, and
a glass capillary ring resonator. Only the target DNA emits the laser signal, while the non-target
DNA, including those with single-base mismatches, exhibits zero optical signals. Subsequently, a
single laser emission detected within a few milliseconds can distinguish the target DNA from others,
allowing for truly digital DNA sequence analysis from an optical point of view. In addition, the
microdroplets could be individually investigated using our optofluidic system. These advances in
laser-based DNA analysis make our proposed scheme a promising, rapid, and high-throughput DNA
sequence analysis platform.
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1. Introduction

A DNA sequence holds the most fundamental information about an individual life
form; thus, its analysis offers significant potential for a variety of studies related to bi-
ology and medicine [1–14]. Traditional DNA sequence analysis, such as high-resolution
melting (HRM) [3,15], is widely used not only in lab-scale research but also in real-world
applications for pathogen diagnostics. During the recent coronavirus disease of 2019
(COVID-19) pandemic, real-time polymerase chain reaction (PCR), which is based on HRM,
has been utilized as the standard diagnostic tool since it is the most powerful and reliable
technique available.

However, laser-based DNA analysis schemes have been introduced in the last few
years, challenging the traditional PCR technique in simplicity, sample consumption, and
particularly in detection speed [16–22]. Since a laser is a nonlinear optical phenomenon
with a laser threshold, DNA sequences can be analyzed with a single laser emission. When
compared with traditional DNA analysis, which takes at least a few hours, laser-based
analysis has a huge advantage in rapid, high-throughput DNA sequential detection.

DNA detecting lasers that have been described mostly utilize optofluidic platforms,
and laser gain has been obtained using dyes labeled with DNA or intercalating dyes.
Similarly to traditional fluorescence-based analyses, dye-labeled DNA molecules, such as
molecular beacons, have allowed for efficient DNA detecting lasers; however, they include
complex DNA labeling sample preparation processes [16,18,20]. The use of intercalating
dyes rendered laser-based DNA analysis simple and cost-effective, and lasers were obtained
with several different laser cavities/schemes [17,21]. While an optofluidic platform with
a Fabry–Perot cavity implemented laser-based DNA detection [22], a few different ring
resonator cavities exhibited superior laser characteristics owing to an intrinsically higher
Q factor. The very first form of the optofluidic ring resonator (OFRR)-based DNA laser
was introduced in 2012 [17]. This technique utilizes a glass capillary filled with a DNA
sample mixed with intercalating dye, demonstrating that DNA sequences can be simply
and rapidly detected using DNA laser emission. However, since the non-target DNA still

Appl. Sci. 2022, 12, 12143. https://doi.org/10.3390/app122312143 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312143
https://doi.org/10.3390/app122312143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122312143
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312143?type=check_update&version=1


Appl. Sci. 2022, 12, 12143 2 of 7

emits fluorescence, which does not contribute to the laser feedback, the analysis cannot
be regarded as a “digital-like” scheme from an optical standpoint. DNA probe molecules
functionalized on the surface of the OFRR enabled a truly digital-like optical detection
of DNA sequences, suppressing the fluorescence background from the non-target DNA
molecules [21]. A drawback of this novel method is that pretreatment of the OFRR with a
DNA probe hinders the performance of a rapid, high-throughput DNA analysis platform,
which is the most desirable trait of laser-based DNA analysis to replace existing traditional
DNA analysis.

In this study, we propose an OFRR laser scheme using microdroplets of a DNA/
intercalating dye and investigate optically true, digital-like DNA sequence detection to
yield a realistic, rapid, high-throughput DNA analysis platform. The nL-sized micro-
droplets filled with a simple mixture of DNA and intercalating dye are individual reaction
chambers for high-throughput analysis, and the glass-capillary-based OFRR laser con-
nected downstream detects the DNA laser by analyzing their sequences. The laser emission
was subsequently detected by the fiber taper to reject the unwanted fluorescence back-
ground. This resulted in a truly digital optical signal similar to the DNA laser with the
surface-functionalized OFRR.

2. Materials and Methods

The microdroplets were generated with plastic tubing (Upchurch, P1476, inner diame-
ter (ID) = 150 µm) and T-junctions (Upchurch, P-890), as schematically shown in Figure 1a,
in accordance with previous studies [23–25]. Silicon oil was introduced upstream as a hy-
drophobic carrier fluid, and an aqueous solution of DNA and intercalating dye (SYTO®-13
Green Fluorescent Nucleic Acid Stain, Life Technologies, Carlsbad, CA, USA) was injected
into the T-junction. The flow rates of the carrier fluid and DNA samples were 10 µL/min
and 3 µL/min, respectively. The immiscible phase forms individual microdroplets, of
which approximately 125 nL can be derived from a generation rate of 0.4 Hz.
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Figure 1. (a) Schematic of microfluidic system for DNA/dye microdroplet generation and optofluidic
ring resonator (OFRR) laser experiments downstream. (b) When the microdroplets passing the glass
capillary OFRR are optically pumped, the DNA/dye gain interacts with light confined in the WGM
in the evanescent field, providing enough feedback for laser emission. The optical signal, excluding
undesired fluorescence background, is coupled into a fiber taper and collected using a spectrometer
at distal end.



Appl. Sci. 2022, 12, 12143 3 of 7

The fused silica glass capillary was fabricated using the existing drawing method with
CO2 laser irradiation and an inner diameter and wall thickness of approximately 70 µm
and 7 µm, respectively. The microdroplets of DNA/dye were infused downstream into the
capillary OFRR. In a capillary with a smaller diameter, the DNA/dye microdroplets filled
the entire cross-section, placing the DNA/dye samples in contact with the capillary wall.
When the microdroplets passed a point of interest, the OFRR was optically pumped using
an optical parametric oscillator (continuum, 488 nm wavelength, 5 ns pulse width, 20 Hz
repetition rate). As the evanescent field of light confined in the OFRR whispering-gallery
mode (WGM) interacted with the DNA/dye solution, a laser was emitted and coupled
into the fiber taper in contact with the OFRR. Only the laser emission was carried into the
spectrometer (iHR550, Horiba Jobin Yvon) connected to the distal end of the fiber taper,
excluding the undesired fluorescence background.

The microdroplets can also serve as high-Q OFRR cavities because they are natural
spheres with smooth surfaces. However, the relatively low refractive index of the aqueous
DNA/dye solution (~1.33) renders it impossible to confine light when the droplets are in
carrier fluid with a higher index. Microdroplets in a carrier fluid are free from evaporation
issues and are individual reaction chambers that can be easily manipulated. Thus, this
platform is ideal for high-throughput biosensors and/or molecular detectors. However, a
low water index significantly limits the choices of the continuous phase for light confine-
ment in the WGM. This is one of the main reasons for utilizing a glass capillary in the laser
cavity. Although most of the WGM-confined light resides inside the glass capillary, there is
enough of an evanescent field inside, resulting in sufficient laser feedback from the laser
gain, which is the DNA/dye mixture in this experiment.

The arbitrary DNA sequences used in this study are listed in Table 1. The target DNA,
which was perfectly matched double-stranded DNA, had 21 base pairs. Sequences 1 and
2 of single-stranded DNA (ssDNA) forming the target double-stranded DNA were com-
plementary pairs. In control experiments, base mismatches in the middle of the sequences
were intentionally introduced to verify that our DNA analysis platform was capable of
distinguishing the non-target DNA with only a single base mismatch. In this study, we
classified the base mismatched DNA described above using the suggested microdroplet
OFRR laser system. Therefore, our DNA detection platform could distinguish any kind of
non-target DNA with a thermodynamic difference larger than a single base mismatch.

Table 1. DNA sequences of target and base mismatched samples.

ssDNA Target Base Mismatched

Sequence 1 5′-ACA ACA AAG AAC ATA CAT AGG-3′ 5′-ACA ACA AAG AAC ATA CAT AGG-3′

Sequence 2 5′-CCT ATG TAT GTT CTT TGT TGT-3′ 5′-CCT ATG TAT ATT CTT TGT TGT-3′

Both samples were mixed with SYTO 13 nucleic acid stain (Invitrogen), and the DNA
intercalating dye was originally dissolved in dimethyl sulfoxide (DMSO) at a concentration
of 5 mM. The final concentrations of DNA and dye were 250 µM when dissolved in a buffer
solution (Tris-acetate ethylenediaminetetraacetic acid [EDTA] buffer, pH = 8.3).

3. Results

The laser emission spectra from the target DNA assay and base mismatched DNA
samples are shown in Figure 2. While microdroplets of each DNA sample were generated
in separate fluidic tubing systems, both droplet samples were connected to the same
OFRR and optically pumped with an energy density of 2.1 mJ/mm2. The curves were
shifted vertically for clarity. The target DNA samples exhibited a clear laser emission
with typical multi-mode lasing from the OFRR cavity. However, the base mismatched
DNA samples presented virtually zero optical signals. Although a free-space coupled
fluorescence emission from the base mismatched samples can be observed with the naked
eye, there is no observable optical signal from the detection portion. This is because our
system, with a fiber taper coupler, only detects the laser emission, excluding the undesired
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fluorescence background. The pump energy density of 2.1 mJ/mm2 is above the lasing
threshold of the target DNA laser and below that of the base mismatched DNA laser. Thus,
the target DNA was distinguishable from non-target DNA using only a single pulse of
laser emission.
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To further investigate the lasing threshold difference between the target and base
mismatches, the laser emission intensities were measured by varying the pump energy
density. Figure 3 illustrates the spectrally integrated laser emission intensity as a function of
pump energy density. The lasing threshold derived from the linear fit of the laser intensity
was approximately 0.62 mJ/mm2. This is slightly higher than that of the DNA laser with a
continuous phase but comparable to previous reports. When microdroplets of the DNA
sample solution are inserted into the OFRR portion, the droplets are elongated and the DNA
solution comes into contact with the capillary OFRR wall. This is because the hydrophilic
phase of the aqueous solution expels the hydrophobic continuous phase (silicon oil). Thus,
this is likely not the main reason for the slight increase in the laser threshold. In fact, laser
characteristics can be affected by several factors, such as the intrinsic Q factor of the cavity.

The most important caveat of this experiment is that lasing from the base mismatched
DNA (non-target DNA) is not measurable, even at a high pump energy density. How-
ever, the laser threshold of the base mismatched DNA is significantly higher than that of
the target at room temperature. Therefore, distinguishing the 21-base-pair target DNA
from non-target samples is a straightforward process with our laser-based DNA sequence
analysis system.

The most distinctive advantage of our DNA analysis system Is that it can rapidly detect
the target DNA in different samples. To prove this concept, each microdroplet should be
analyzed separately; thus, they can be regarded as individual reaction chambers with small
volumes. We generated alternating microdroplets of the target DNA and base-mismatched
DNA with two T-junctions in the fluidic tubing portion, as previously described. Figure 4
shows the optical signals observed using the spectrometer at the distal end of the fiber taper
as a function of time. When the target DNA sample microdroplets passed the analysis point
of the OFRR, clear laser emission was observed, and there was no optical signal when the
base-mismatched microdroplets were analyzed. This directly proves that our OFRR DNA
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detection platform is suitable for rapidly analyzing multiple microdroplets with different
DNA sequences.
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Figure 4. Laser emission from the OFRR as a function of time when alternating microdroplets of
the target and the base mismatched DNA are introduced. Note that the optical signals from the
target and base mismatched DNA are clearly distinguished. Thus, our platform allows for sequential
analysis of individual microdroplets of different DNA samples.

4. Discussion

Using advanced microfluidic systems, microdroplets of various DNA samples can be
simultaneously generated and manipulated, and each individual microdroplet can be read
if the target DNA is present with a single laser emission. We propose an optofluidic system
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that generates microdroplets of DNA samples and detects the target DNA with only a
single laser emission. This novel DNA analysis platform is based on a glass capillary OFRR
laser cavity, which is capable of lasing in an aqueous DNA solution with a relatively low
index. In addition, only the laser signal was observed in the detection portion despite the
unwanted fluorescence background from the DNA/dye solution, which does not contribute
to the laser emission. This is because the optical signal is coupled into the fiber taper and
measured. These data suggest that our DNA detection scheme is truly digital from an
optical perspective.

More importantly, our DNA analysis platform is capable of rapidly detecting the target
DNA from multiple microdroplets because the DNA laser can be measured separately
using the suggested OFRR system. Recent advances in microfluidics enabled the generation
and manipulation of many individual microdroplets. Combined with this, our laser system
is a promising, novel technology for high-throughput, rapid DNA sequence detection
platforms, resolving the bottleneck of time-consuming traditional DNA analysis.
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writing—original draft preparation, C.S.J. and W.L.; writing—review and editing, W.L.; visualiza-
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