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Abstract: Real-time stereo visual odometry (SVO) localization is a challenging problem, especially
for a mobile platform without parallel computing capability. A possible solution is to reduce the
computational complexity of SVO using a Kanade–Lucas–Tomasi (KLT) feature tracker. However,
the standard KLT is susceptible to scale distortion and affine transformation. Therefore, this work
presents a novel SVO algorithm yielding robust and real-time localization based on an improved
KLT method. First, in order to improve real-time performance, feature inheritance is applied to
avoid time-consuming feature detection and matching processes as much as possible. Furthermore,
a joint adaptive function with respect to the average disparity, translation velocity, and yaw angle
is proposed to determine a suitable window size for the adaptive KLT tracker. Then, combining
the standard KLT method with an epipolar constraint, a simplified KLT matcher is introduced to
substitute feature-based stereo matching. Additionally, an effective veer chain matching scheme is
employed to reduce the drift error. Comparative experiments on the KITTI odometry benchmark
show that the proposed method achieves significant improvement in terms of time performance than
the state-of-the-art single-thread approaches and strikes a better trade-off between efficiency and
accuracy than the parallel SVO or multi-threaded SLAM.

Keywords: stereo visual odometry; feature inheritance; adaptive KLT tracker; veer chain matching

1. Introduction

As an essential simultaneous localization and mapping (SLAM) front end, visual
odometry (VO) has been developed over the past decades [1]. The VO fundamental is
incrementally estimating the rotational and translational changes of consecutive image
frames [2]. Since monocular VO cannot determine the scale information of motion, stereo
VO (SVO) with an extra camera means that depth information is available through triangu-
lation of a well-calibrated stereo rig. Although existing methods can provide very accurate
and robust trajectory estimates with a relative position error better than 2% [3], their
practical usage is limited because of the computational burden. For instance, SOFT2 [4]
accomplished the optimal performance on the KITTI leaderboard in terms of rotational and
translational accuracy thus far, while the processing speed was only 10 Hz on a 2.5 GHz
CPU with four cores.

Currently, this challenging problem has been extensively studied in VO work. Most
SVO methods typically consist of feature detection, stereo matching, feature tracking, and
motion estimation [5]. In general, improvements in time performance can be divided
into three groups. First, since one of the main reasons for the aforementioned problem is
that the feature detector and robust motion estimator tend to take most of the SVO time,
as reported in [6], real-time SVO can be achieved by employing a more compact feature
detector or motion estimator. With a much simpler Sobel filter as the feature detector, the
work in [7] developed a real-time SVO at a minimum computational complexity using the
KITTI odometry dataset. Although their system is able to run at 0.05 s per frame on a single
CPU core @ 2.5 GHz, the simplified detector and matcher are susceptible to scale distortion
or affine transformation. Second, given prior knowledge of ego-motion from other systems,
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such as an inertial measurement unit and wheel encoder-based odometry [8–10], the range
of searching for features and matching can be greatly reduced. However, this method is
prone to a large error accumulation, especially for vehicles losing traction on large rocks
and steep slopes [9,10]. Another common solution is parallelization through multithread
programming [11], FPGA, or GPU acceleration [12,13]. The four-thread architecture of
OV2SLAM [14] can run at 200 Hz on a 3.0 GHz CPU with eight cores. A real-time SVO
that relies on heavy parallelism can limit its applications in mobile vehicles [7]. Therefore,
the main purpose of this work was to develop a single-thread SVO without any prior
knowledge of the motion to produce real-time and robust localization on a standard CPU.

According to the publicly available KITTI leaderboard, the fast and robust visual
odometry (FRVO) in [6] exceeds all other validated methods in real-time performance. In
their implementation, a pruning corner detector and an improved Kanade–Lucas–Tomasi
(KLT) tracker are able to reduce the computational complexity of SVO. The speed of FRVO
is 0.03 s per frame on a 3.5 GHz CPU, with an average translation error of 1.26% and
a rotation error of 0.0038 deg/m. However, to determine a suitable window size for
the KLT tracker, FRVO requires a dense disparity map to be provided beforehand and
the abovementioned time performance does not include the time for a dense disparity
computation, which is usually a time-consuming process. In this paper, the proposed
approach achieves better real-time performance on a lower-speed processor with similar
localization accuracy. Instead of the three improvements mentioned above, a new approach
is proposed to reduce computational complexity through both feature inheritance (FI) and
an improved KLT method. The KLT improvements include an adaptive KLT tracker (AKT)
and a simplified KLT matcher (SKM). The proposed approach is most similar to the SVO
in [15]. A KLT tracker [16] is also used in a similar way to avoid both feature detection and
matching in a new frame, but with several important distinctions that are summarized in
the following steps:

1. By analyzing the relationship between the motion experienced by the feature, the av-
erage disparity, the translation velocity, the yaw angle, and the adaptive window size
for the AKT must by necessity be jointly determined, which can significantly improve
the tracking accuracy in the presence of scale distortion and affine transformation.

2. The AKT tracks the inherited features between only the left images of two consecutive
frames, and the SKM is performed in a new stereo frame, which can avoid computa-
tionally expensive feature detection and feature-based stereo matching processes as
much as possible.

3. To limit the drift error, an effective veer chain matching (VCM) scheme is introduced.
4. A systematic evaluation using the KITTI dataset [17] was performed. The experimen-

tal results show that the proposed SVO can achieve better real-time performance in
comparison to the other state-of-the-art approaches without deteriorating the localiza-
tion accuracy.

The rest of the paper is organized as follows. Section 2 concisely outlines the proposed
SVO, which is explained in detail in Section 3. Section 4 outlines several comparative ex-
periments that were conducted to demonstrate the effectiveness of the proposed approach,
and the conclusions are made in Section 5.

2. Method Overview

Figure 1 depicts the workflow of the proposed SVO which can be outlined in the
following steps:

1. Searching for a series of SURF key points in the first stereo frame and computing their
normalized descriptors with 64 dimensions.

2. With the epipolar constraint, stereo matching is performed using the Euclidean dis-
tance between the SURF descriptors.

3. A subset of the matched features is selected by means of bucketing to ensure the
features are uniformly distributed over the image plane.



Appl. Sci. 2022, 12, 12124 3 of 13

4. The three-dimensional (3-D) coordinates of the selected features are computed us-
ing triangulation.

5. The two-dimensional (2-D) features are tracked between the left images in frames
k− 1 and k using the AKT.

6. The SKM is performed by combining the standard KLT method [16] with the epipo-
lar constraint. Then, the 3-D coordinates of the matched features are computed
through triangulation.

7. The perspective-3-point (P3P) algorithm [18] is carried out in a random sample con-
sensus (RANSAC) framework [19] to estimate the ego-motion from the 3-D-to-2-D cor-
respondences.

8. The maximum likelihood estimator (MLE) [9,10] is applied to produce a robust ego-
motion estimation.

9. The features inherited from Step 5 between the left images in frames k and k + 1
are continuously tracked. If the number of new tracked features is smaller than
a predefined threshold N, repeat from Step 1. Otherwise, the features are inher-
ited successfully and repeat from Step 6. The threshold is set to 30 to ensure both
computational accuracy and efficiency. This process is called FI.

10. After Step 8, for a turning maneuver, the drift error is reduced via a VCM scheme.
This scheme consists of a veer frame detection process and a veer frame matching
process. If this is the first time through the corner or the intersection, a veer frame
update will collect the current frame as the unique keyframe of this corner. If not,
the motion between the current veer frame and the first veer frame of this corner
is estimated and the drift error is corrected. This novel scheme will be described
in Section 3.
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Figure 1. Flowchart of the proposed approach.

3. Detailed Description of the Method

A detailed description of the steps required in the proposed SVO algorithm is provided
in this section.

3.1. Feature Detection and Stereo Matching

Many feature detectors have appeared in SVO research, such as Harris [20], Shi-
Tomasi [16], FAST [21], SIFT [22], and SURF [23]. These detectors have their own advantages
and disadvantages. Note that both SIFT and SURF have been proven to be invariant to
certain changes in perspective. The latter builds upon the former but uses box filters to
border on the Gaussian, contributing to a faster computation [3]. Therefore, in this work,
a SURF detector was employed to search for interest points in a first stereo frame and
compute the SURF descriptors, where the stereo frame represents the left and right images
taken at the same time.
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After feature detection, stereo matching was performed on the basis of the similarity
of the SURF descriptors, and an epipolar constraint was imposed. Specifically, with respect
to the similarity measurement, the Euclidean distance between each descriptor in the
left image and all the descriptors in the right image was calculated. Two feature points
are considered to have correspondence only if their descriptors satisfy both conditions.
First, the distance between two candidate points is less than a predefined threshold. In
this case, for the normalized SURF descriptor, the distance threshold was set to 0.35. In
addition, the distance from all other candidate points is larger than a certain threshold.
This is implemented by checking whether the ratio between the closest and the second
closest match is small enough. Typically, the ratio threshold for determining whether the
correspondence is still live is set to 0.6. In addition, the epipolar constraint means that, for
a well-calibrated stereo rig, the row coordinates of the correspondence feature points are
approximately equal to the noise tolerance of one pixel.

3.2. Bucketing and Triangulation

Some studies have found that not all detected feature points are suitable for accurate
tracking [16]. The work presented in [24] confirmed that feature selection can significantly
reduce the number of iterations in the RANSAC scheme. This means that a subset of
carefully selected features can not only prevent estimation bias, but also improve the real-
time performance of SVO. Thus, it is generally required that the feature points should be
uniformly distributed over the image plane, which can be implemented through bucketing
technique [25]. In this case, each image is split into 50 × 50 pixel-sized blocks, i.e., buckets.
In every bucket, only the strongest feature is kept, and the others are discarded.

Afterward, the 3-D coordinates of the selected features are calculated using intersecting
rays projected through the stereo observation models, i.e., triangulation, as shown in
Figure 2. In the absence of error, the rays of the same feature points in the stereo frame
(ql and qr) intersect at point P in the 3-D spatial space. However, due to image noise,
camera model uncertainty, and matching error, they do not always intersect. The shorter
the distance between the two rays is, the more accurate the results that stereo matching can
obtain. In the implementation, the feature correspondences which intersection distance is
greater than 0.1 m is eliminated.
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3.3. Adaptive KLT Tracker and Simplified KLT Matcher

In successive stereo frame k− 1, the AKT tracks the selected features to acquire their
pixel coordinates in frame k. First, the optical flow corresponding to the feature point is
solved in two consecutive left images IL

k−1 and IL
k . In the notation, the superscripts L and
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R index the “left” and “right” images, respectively, and the subscript k indexes the frame.
The AKT minimizes Equation (1) using the Newton–Raphson method:

d = argmin
d

x

Wk−1

[
IL
k (x + d)− IL

k−1(x)
]2

ω(x)dx (1)

where x = (u, v) is a feature point; d = (∆u, ∆v) is the translation of the feature window’s
center; Wk−1 is the adaptive window; and ω(x) is a Gaussian weighting function. The
correct optical flow computation of feature correspondences in frame k− 1 generates the
tracked features in the left image in frame k.

Because the standard KLT tracker assumes that the feature patch undergoes only
translation motion, a fixed-window KLT is susceptible to scale distortion and affine trans-
formation [26]. A small feature window is sensitive to noise, whereas a large feature
window may not exhibit a clear or sharp response. In the following paragraphs, we in-
dicate that it would be better to determine an adaptive window size for the KLT using
the average disparity, the translation velocity, and the yaw angle. From the FRVO discus-
sion in [6], a larger window size should be used for features with large motion, while a
smaller window size should be used for a feature with small motion. FRVO uses disparity
information to represent the motion experienced by the features, as shown in Figure 3;
thus, an adaptive window size for the KLT is employed based on the disparity field. On
a large scale, this must be true. However, for a specific feature, a large disparity does not
mean that a large window is necessarily suitable. Especially for a feature near the road,
a large motion is often accompanied by a large affine transformation. The experimental
results demonstrate that a small window allows for a better tracking accuracy. Therefore,
the proposed method does not pursue the optimal tracking accuracy for every feature, but
for better overall performance. Instead of a dense disparity map, the average disparity is
used as an indicator for the adaptive window size, which also reduces the computational
complexity. On the other hand, disparity alone is not sufficient to characterize the motion
of features. For example, when the translation velocity of the camera is slow, the local
optical flow vector of each feature is small. Alternatively, for a turning maneuver, Figure 4
shows that the feature with a small disparity still has a larger optical flow vector. At this
point, the tracking error tends to increase rapidly if the AKT relies on disparity information.
Therefore, in addition to the average disparity in the current frame, the translation velocity
of the camera and the yaw angle in the previous frame should be used to guide the adaptive
window strategy. This makes it possible to use a small window for the AKT even when the
disparity of features is large. Based on the discussion above, a joint adaptive function (JAF)
is built as follows:

Wk = cd(dk − d0) + cv(vk−1 − v0) + cα(αk−1 − α0) + b (2)

where Wk is the adaptive window size for the AKT in frame k; dk, vk−1, and αk−1 are the
average disparity in frame k, the translation velocity of the camera, and the yaw angle
in frame k− 1, respectively; d0, v0, and α0 are the constant offsets; cd, dv, and cα are the
disparity, the velocity, and the yaw angle weighting coefficients, respectively; and b is
the base window size. The parameters (d0, v0, α0, cd, cv, cα, and b) are empirically set to
be (20 pixels, 1.0 m/frame, 0.02 rad, 1, 10, −100, and 17), respectively. Meanwhile, the
window size Bk has the lower and upper bounds of 5 and 49, respectively. Note that the
adaptive window size is determined using the first-order approximation. An interesting
future direction would be to explore a nonlinear model for the JAF and obtain the above
parameters in a learning framework.
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After the tracking step, for a rectified stereo frame, stereo matching can be conducted
strictly along the epipolar line. Combining the KLT method with the epipolar constraint,
the component of the displacement d in the row direction is approximately equal to zero.
This means that the SKM looks for feature correspondences only in the column direction.
Thus, the SKM between the left and right images IL

k and IR
k in frame k can be represented

as follows:
d = argmin

d

x

W

[
IL
k (u, v + d)− IR

k (u, v)
]2

ω(u, v)dudv (3)

where d is the disparity. The resulting set is also projected to 3-D space via triangulation.
Afterward, when estimating the camera pose in frame k + 1, the input to the new

AKT is no longer the output of the SURF detector but the output of the SKM, i.e., the FI.
This means that the new SURF feature detection will be taken into account only if the
number of new tracked features is lower than a predefined threshold. Due to the FI, the
AKT, and the SKM, the approach presented here can avoid both feature detection and
feature-based stereo matching as much as possible. Consequently, the computational time
is considerably reduced.

3.4. RANSAC-P3P and Maximum Likelihood Estimator

Almost all robust SVO methods employ the RANSAC scheme for motion estimation
when there are noise and outliers with the feature detector, matcher, and tracker. In this
paper, ego-motion is estimated through the RANSAC-P3P reported by Fischler and Bolles
in [19], where a set of closed-form hypotheses on the minimum number of data needed to
obtain a solution is solved, and the hypothesis that shows the highest consensus with the
other data is selected as an initial solution. Then, the MLE [9,10] is applied to produce a
final, corrected ego-motion estimation between the two consecutive frames.

3.5. Veer Chain Matching

As there is scale distortion and affine transformation due to rotation, the KLT tracking
error tends to increase rapidly for a turning maneuver. To limit the drift error, an easy
and effective VCM scheme is proposed, which draws inspiration from the loop closing
of the ORB-SLAM2 [11]. However, this VCM scheme employs a veer frame detector and
matcher, avoiding the time-consuming loop closure detection and achieving high accuracy,
especially for an urban environment with more corner loops.

Generally, in order to form a closed loop in a trajectory, one of the following conditions
should be met: (1) there is a large veer in the trajectory, or (2) there is a long-term cumulative
turn in the same yaw direction. Inspired by this, a vehicle would only be possible to revisit
a site through a corner or after a turning maneuver. Figure 5 shows the path reconstructed
from our SVO method compared to the ground truth data on sequence 00 of the KITTI
odometry dataset. The vehicle leaves corner A on frames 123 and 1271. The VCM scheme
can correct the drift error on the next visit.
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The basic idea of VCM is to detect veer frames using the yaw angle of the current
frame relative to the previous frame. As shown in Figure 6, when there is a large angle
of veer in the trajectory, there must be a large peak in the yaw angle diagram. Thus, if
the yaw angle is larger than some threshold, this demonstrates that a turning maneuver
is underway, and the corresponding stereo frame is regarded as a veer frame. Once a key
veer frame is obtained, the VCM scheme is triggered to reduce the drift error. The key to
the above approach is to determine the yaw angle threshold. A large threshold angle is
likely to lead to missing detection, while a small threshold angle reduces the time efficiency
of the VCM. It can be observed that the size of the yaw angle peak is proportional to the
velocity and the veer angle. Therefore, in this case, 50% of the yaw angle peak is taken
as the threshold when passing through a right-angle corner at a slower speed, which is
0.03 rad. If this is the first time through the corner or the intersection, the last veer frame
will be regarded as the unique keyframe of the corner. These keyframes and their locations
are collected into a set V. The reason for this is that the drift error can always be corrected
when the vehicle leaves the corner. When a key veer frame is detected, this information is
used to reduce the drift in the vehicle path. If the SVO revisits these locations, veer frame
matching is performed between the current veer frame and all the keyframes in the set V.
Here, the ZNCC method [25] is used. If the number of matched features is larger than some
threshold, the motion estimator between the corresponding veer frame pair can correct the
drift error. In the implementation, the threshold is set to 45. Otherwise, a veer frame update
will regard the current veer frame as the unique keyframe of this corner. Although the veer
frame matcher is not triggered the next time the vehicle goes straight through the corner,
due to the introduction of the veer frame detector, the match still has a very high precision
and recall rate, especially in an urban environment with more corner loops. Moreover, the
VCM scheme is obviously much faster than loop closure detection.
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4. Experimental Results

In this section, the proposed approach was evaluated using the publicly available
KITTI odometry dataset, which is composed of captured videos along with an accurate
ground truth. The rectified stereo images with a size of 1241×376 are recorded at a
frequency of 10 Hz. In the following experiments, for each training sequence of the KITTI
dataset except sequence 01, thirty trials were conducted, and the average translational
error et, the average rotational error er relative to the ground truth, and the runtime per
frame were employed as the performance metrics. For sequence 01, a highway scenario
with largely distant image areas driving at high speed does not apply to the KLT tracker.
Therefore, the performance of this method was evaluated on the other 10 training sequences,
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which included urban and rural scenarios. All of the experiments were performed using a
PC with an Intel Core i5 9500 3.0 GHz processor and a 16 GB RAM using a single thread.
In order to prove that the improved algorithm could greatly reduce the computational
complexity without notably compromising the localization accuracy, MATLAB was used
to conduct the simulation experiments on the prototype of the algorithm (there is no code
optimization). Even so, the system could run at 15 Hz.

Considering the trajectory, Figure 7 shows the path reconstructed from our SVO
compared to the ground truth data on several sequences of the KITTI dataset. They have
the same shapes. Table 1 shows the average translation error and rotation error on the
10 training sequences. Although sequences 01 and 05 with corner loops have 3723 m and
2204 m of traveling, respectively, the proposed SVO with the JAF and the VCM can obtain
an average translation error of 0.9496% and 0.5957%, and a rotation error of 0.0008 deg/m
and 0.0016 deg/m, respectively. Meanwhile, sequences 03 and 07 without corner loops
have a shorter path (561 m and 695 m, respectively); hence, the proposed approach also has
a high localization accuracy, with an average translation error of 1.0257% and 0.6460%, and
a rotation error of 0.0005 deg/m and 0.0055 deg/m, respectively. The results in Figure 7e,f
have been obtained without the VCM scheme for a long path, which leads to a slightly
worse error. However, there is no difference in runtime. This means that the proposed
VCM can greatly improve the localization accuracy while not sacrificing time performance.
Furthermore, the proposed method was compared to a version that determines the AKT
window size using only disparity information, as shown in Table 1. One can observe
that both the JAF and the VCM help to significantly improve the localization accuracy.
On average, the translation and rotation errors on the 10 train sequences are (1.1361%,
0.0021 deg/m) and (1.6254%, 0.0023 deg/m), respectively. Therefore, the AKT using the
JAF performs 30% better than the AKT using only disparity information, while the JAF
does not require extra runtime.

Table 1. Comparison of the proposed method to a version that determines the AKT window size
using only disparity information on the KITTI dataset. (deg/m stands for degrees per meter).

SVO + FI + AKT + SKM + VCM + JAF SVO + FI AKT + SKM + VCM + Disparity
Sequence Runtime (s) et (%) er (deg/m) Runtime (s) et (%) er (deg/m)

00 0.0729 0.9496 0.0008 0.0703 1.3844 0.0012
02 0.0734 1.2011 0.0013 0.0650 1.2042 0.0009
03 0.0358 1.0257 0.0005 0.0397 1.7008 0.0010
04 0.0546 0.5361 0.0001 0.0600 1.6663 0.0001
05 0.0597 0.5957 0.0016 0.0599 1.0291 0.0015
06 0.0978 1.1253 0.0006 0.0922 1.7430 0.0011
07 0.0585 0.6460 0.0055 0.0612 0.8742 0.0068
08 0.0635 2.1540 0.0004 0.0674 2.9020 0.0011
09 0.0670 1.3569 0.0015 0.0711 1.9772 0.0015
10 0.0744 1.7708 0.0091 0.0752 1.7731 0.0075

avg 0.0658 1.1361 0.0021 0.0662 1.6254 0.0023

To further evaluate the improvement in time performance, Table 1 shows the average
runtime per frame of the 10 training sequences. Thanks to the FI, the AKT, and the SKM, the
proposed SVO thread runs at 0.0658 s per frame with a standard deviation of 0.0161 s. This
means that the proposed SVO can run in real time at 15 Hz on the KITTI odometry dataset.
The deviation is mainly caused by the differences in the number of scenario features and
corner loops. Because the data in Table 1 are normally distributed, a Mann–Whitney
U nonparametric test was used to further analyze the differences in runtime, et and er,
between the two versions. The test was performed with the help of an SPSS v24 computer
program using a 95% confidence level. The hypotheses of this test are as follows:

• Ha
runtime, Ha

et, and Ha
er represent no significant difference in runtime, et and er, between

the two versions, respectively.
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• Hb
runtime, Hb

et, and Hb
er represent a significant difference in runtime, et and er, between

the two versions, respectively.
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As shown in Table 2, the Mann–Whitney U test results demonstrate that Ha
runtime, Hb

et and
Ha

er are acceptable (Pruntime = 0.7624 > 0.05, Pet = 0.0059 < 0.05, and Per = 0.6224 > 0.05),
which means that the JAF can significantly improve the robustness and accuracy without
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increasing the runtime. This beneficial behavior is mainly because the translation velocity
and the yaw angle in the JAF have already been computed in the previous frame.

Table 2. Hypothesis Testing.

Test Data Runtime et er

Mann–Whitney U 46.0000 25.0000 43.5000
Wilcoxon W 101.0000 80.0000 99.5000

Z −0.3024 −1.8898 −0.4925
Asymp. Sig. (2-tailed) 0.7624 0.0059 0.6224

Moreover, on sequences 05 (with corner loops) and 07 (without corner loops), the
comparison of the average processing times at every stage between our method and
a version without the FI and VCM that performs SURF detection, feature-based stereo
matching, AKT, and SKM at each frame is shown in Table 3. It can observe that the proposed
method helps reduce runtime significantly, and the times spent on feature detection, stereo
matching, and motion estimation are reduced by approximately 3 times. In conclusion, the
total processing times are reduced by more than 40%.

Table 3. Processing time in milliseconds of each stage for sequences 05 and 07 in the KITTI dataset.

Our Method
SVO

(Without FI and VCM)
Stage Seq. 05 Seq. 07 Seq. 05 Seq. 07

Feature detection 20.4340 19.8128 61.0502 62.4008
Stereo matching 1.8556 1.8549 5.6062 6.3031

AKT 4.1532 3.6080 2.6890 2.8666
SKM 2.5029 2.5025 2.5195 2.5339
VCM 18.1453 17.9953 \ \

Motion estimation 4.1176 5.0820 22.3288 16.9736
Total 59.7044 59.4217 103.0680 100.0306

For completeness, several real-time systems were compared in the subsequent exper-
iments in order to evaluate the performance of the proposed algorithm. They included
the SOFT2 [4], the most accurate SVO; the ORB-SLAM2 [11], a complete SLAM system
that has four parallel threads; the FRVO [7], the fastest single-thread SVO on the KITTI
leaderboard until now; the SVO-FPGA [12], a multiple master-slave FPGA architecture
for a SIFT-based SVO; and the VOLDOR [13], a dense indirect VO based on GPU. Table 4
shows the runtime, the average translation error, and the average rotation error of the
proposed method compared to other methods, using always the results published by the
original authors. Although the proposed approach is slightly less accurate than SOFT2, the
ORB-SLAM2, and the FRVO, all can provide very accurate estimations. In particular, the
proposed method outperforms in terms of runtime. The proposed approach is 34% better
than the SOFT2 and is similar to the ORB-SLAM2. However, the ORB-SLAM2 splits SLAM
into four parallel threads and is more costly, while the proposed SVO is a single-thread
system. For the FRVO, the runtime of 0.03 s does not include the time for the dense disparity
map computation, which is usually a time-consuming process and requires at least an extra
0.03 s. The proposed approach jointly determines the suitable KLT window size using the
average disparity, the translation velocity, and the yaw angle; thus, no time-consuming
computation of a dense disparity map is needed. Although the accuracy of the proposed
method is slightly inferior in terms of relative translation errors, with an error of 1.14%
against the 0.98% of the FRVO, its main advantage is the real-time performance even on a
lower-speed processor. Moreover, Table 4 compares the performance of our method and
two state-of-the-art SVO methods that are implemented in parallel with the FPGA and
the GPU, namely the SVO-FPGA and the VOLDOR. It can be observed that the proposed
method can strike a good trade-off between efficiency and accuracy and can greatly improve
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the computational efficiency, while not needing to sacrifice accuracy. Furthermore, the
results confirm that the proposed algorithm can run much faster in C/C++. This distinctly
demonstrates that the three strategies, i.e., the FI, the AKT, and the SKM, in the proposed
method contribute to a significant improvement in the SVO real-time performance.

Table 4. Comparison of state-of-the-art methods on the KITTI dataset.

Method Runtime (s) et (%) er (deg/m) Environment

SOFT2 0.1 0.71 0.0024 2.5 GHz (C/C++)
ORB-SLAM2 0.06 0.73 0.0022 3.6 GHz (C/C++)

FRVO
0.03 (excluding the
time for disparity

map computation)
0.98 0.0056 3.5 GHz (C/C++)

SVO-FPGA 0.0301 2.7 \ 4.2 GHz +FPGA
VOLDOR 0.1 1.32 0.0042 GPU
Proposed 0.0658 1.14 0.0021 3.0 GHz (MATLAB)

5. Conclusions

This paper presents a novel algorithm for stereo visual odometry that avoids time-
consuming feature detection and matching processes as much as possible based on feature
inheritance, an adaptive KLT tracker, and a simplified KLT matcher, which can greatly
reduce computational complexity without notably compromising the localization accuracy.
Based on the average disparity, the translation velocity, and the yaw angle, the proposed
method can jointly determine a suitable window size for the KLT tracker, which effectively
mitigates the effect of scale distortion and affine transformation. Furthermore, an effective
veer chain matching scheme can be employed to limit the drift error. In the experiments,
the method presented here was tested on the KITTI odometry dataset and compared with
other methods. According to the experimental results, although the translation error of the
proposed SVO is slightly less accurate than some state-of-the-art methods, with an error of
1.14% against an error of 0.71% for the SOFT2, an error of 73% for the ORB-SLAM2, and
an error of 0.98% for the FRVO, the proposed method can strike a good trade-off between
efficiency and accuracy. Efficiency is achieved in that the system is able to run at 15 Hz
on a single-thread CPU @ 3.0 GHz, outperforming even the parallel or multi-threaded
approaches in the balance between high accuracy and low computational complexity.
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