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Abstract: The street sign text information from natural scenes usually exists in a complex background
environment and is affected by natural light and artificial light. However, most of the current text
detection algorithms do not effectively reduce the influence of light and do not make full use of the
relationship between high-level semantic information and contextual semantic information in the
feature extraction network when extracting features from images, and they are ineffective at detecting
text in complex backgrounds. To solve these problems, we first propose a multi-channel MSER
(Maximally Stable Extreme Regions) method to fully consider color information in text detection,
which separates the text area in the image from the complex background, effectively reducing
the influence of the complex background and light on street sign text detection. We also propose
an enhanced feature pyramid network text detection method, which includes a feature pyramid
route enhancement (FPRE) module and a high-level feature enhancement (HLFE) module. The two
modules can make full use of the network’s low-level and high-level semantic information to enhance
the network’s effectiveness in localizing text information and detecting text with different shapes,
sizes, and inclined text. Experiments showed that the F-scores obtained by the method proposed in
this paper on ICDAR 2015 (International Conference on Document Analysis and Recognition 2015)
dataset, ICDAR2017-MLT (International Conference on Document Analysis and Recognition 2017-
Competition on Multi-lingual scene text detection) dataset, and the Natural Scene Street Signs (NSSS)
dataset constructed in this study are 89.5%, 84.5%, and 73.3%, respectively, which confirmed the
performance advantage of the method proposed in street sign text detection.

Keywords: street sign text detection; maximally stable extremum region; differentiable binarization
network; feature enhancement; natural scenes

1. Introduction

Text detection technology in natural scenes is currently a popular research area in the
field of image processing, and it has been widely used for street sign recognition, translation
of scene images, and text recognition of license plates and billboards [1]. The detection
and recognition of the text information of street signs in natural scenes have received
widespread attention from scholars in various countries [2]. The current work [3] mainly
focuses on the text detection of road signs in fields and on highways, whose backgrounds
are mostly large areas of sky and highway. The single background makes it easy to detect
text information. However, in crowded city streets, the text information of street signs
usually exists in a complex background. Tall buildings, pedestrian vehicles, and many

Appl. Sci. 2022, 12, 12120. https://doi.org/10.3390/app122312120 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312120
https://doi.org/10.3390/app122312120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4958-2043
https://doi.org/10.3390/app122312120
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312120?type=check_update&version=1


Appl. Sci. 2022, 12, 12120 2 of 19

other objects with similar appearances to street sign text are often mistaken as street sign
text by the detection network, which reduces the accuracy of the text detection, Eliminating
the complex background beyond the target to be detected is also a concern of scholars in
various countries [4]. In addition, natural scene street sign text is significantly affected
by factors of the natural environment, such as lighting, obstructions, and shooting angles,
making text detection in street sign images very challenging.

With the advancement of deep learning text detection algorithms, the focus of text
detection has shifted from horizontal scene text detection [5] to more challenging slanted
text detection and arbitrary shape text detection [6]. Network frameworks such as Mask
R-CNN [7] have achieved good results in scene text detection, but most Mask R-CNN-based
methods use simple single-scale convolutional layers for stacking, which does not make
full use of high-level semantic information for the detection of multi-scale and arbitrarily
shaped text. In addition, some methods incorporate the attention mechanism in feature
pyramid networks (FPNs) and replace ordinary convolution with inflated convolution [8],
but they still do not make full use of the low-level information of the network. This
approach ignores the importance of low-level information for smaller text and text edge
detection. In summary, the current methods for detecting street sign text in natural scenes
still have the following problems: (1) it is not possible to remove the influence of complex
backgrounds on street sign text detection, and (2) the high-level semantic information
of the feature extraction network and the contextual information in the network are not
fully utilized. Therefore, this study aimed to obtain a natural scene text detection method
that can effectively reduce the influence of complex backgrounds and make full use of the
contextual information of the feature pyramid network to achieve the effective detection of
street sign text.

Through observation, it was found that although the shape of the text changed due to
inclination and bending, the relationship between the pixel values of the same text region
did not change. We used the maximally stable extremum region (MSER) [9] method to
pre-process the image, classify the text region and non-text region of the image, and remove
a large number of non-text regions, thereby reducing the impact of the complex background
on the detection of this text region. On this basis, a differentiable binarization network [10]
(DBNet) was used as the base network. Its feature pyramid component was improved to
make full use of the high-level semantic information of the feature extraction network and
the contextual information in the network to enhance the capability of the DBNet for image
feature extraction based on the feature that the DBNet can set the binarization threshold
adaptively and simplify the post-processing. Finally, the text regions classified by the MSER
method were put into the improved DBNet network for further detection.

The main contributions of this paper are as follows: (1) A multi-channel MSER method
is proposed, which uses R, G, B, and S channels to extract the natural scene street sign
text area, effectively reducing the impact of strong light and complex background on the
street sign text extraction; (2) A feature pyramid route enhancement (FPRE) module was
proposed to improve the feature extraction network of DBNet model and enhanced the
transmission of semantic information at the lower layers of the network; (3) A high-level
feature enhancement (HLFE) module was proposed to make full use of the high-level
semantic information of the network; (4) This paper constructed a natural scene street sign
(NSSS) dataset for natural scene street sign text detection and used this dataset to evaluate
the effectiveness of the method proposed in this paper.

2. Related Work

In recent years, researchers in related fields have conducted a considerable amount of
work, and the existing deep learning-based methods can be broadly classified into three
categories: regression-based methods, segmentation-based methods, and methods based
on a mixture of regression and segmentation.
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Regression-based methods predict text regions through strategies such as convolution
and linear regression. Naiemi et al. [11] introduced a pipeline based on a convolutional neu-
ral network to obtain more advanced visual features, and they proposed a new algorithm
for encoding pixel values that highlighted the texture of characters. Liu et al. [12] proposed
a grouped channel combination block to implement data-driven anchor design and adap-
tive anchor assignment, and they proposed a uniform loss weighting model to mitigate
the inconsistency between classification scores and localization accuracy. Lu et al. [13]
improve the shrinkage algorithm of the bounding box, making the model more accurate in
predicting the short edges of the text area, and add Feature Enhancement Module (FEM) to
increase the receptive field of the model and enhance its detection ability for long text areas.
Wan et al. [14] used self-attention-based text knowledge mining (STKM) in the training
model to induce the convolutional neural network (CNN) backbone to display the feature
information ignored by the original pre-trained model, thus improving the detection perfor-
mance of the backbone network. Although the regression-based approaches have achieved
good results in the detection of horizontal text, they are less effective at the detection of
curved and slanted text.

The segmentation-based approach treats text detection as a semantic segmentation
problem and achieves text detection by segmenting irregularly shaped text regions. Pix-
elLink [15] was the first to propose this idea and conduct related research. Pixels in the same
text instance were first connected without regressing the text position and then text boxes
were extracted directly from the segmentation results to achieve segmentation-based text
detection. Zhu et al. [16] proposed a text component extraction network for text detection in
arbitrary shape scenes is proposed, which can detect different text components through two
parallel branches. These two branches are the Feature Redistribution Module (FRM) and
an improved Transformer decoder, which generate accurate text components to detect text
instances. Zhu et al. [17] proposed a Fourier contour embedding method, which predicted
the Fourier vector of text instances in the Fourier domain and then reconstructed the text
contour point sequence through the inverse Fourier transform in the image space domain.
This approach could accurately approximate any closed shape. Hu et al. [18] proposed
a text contour attention detector that could accurately locate the text of any shape in any
direction. Qiao et al. [19] proposed a recursive segmentation framework that expanded the
recursive path and refined the previous feature mapping into internal states to improve the
segmentation quality. Cai et al. [20] proposed a text detector, which dynamically generates
independent text instance perceptual convolution parameters for each text instance from
multiple features, thus overcoming some insurmountable limitations of arbitrary text de-
tection and effectively formulating text detection tasks for arbitrary shape scenes based on
dynamic convolution.

The methods based on a mixture of regression and segmentation combine the features
of regression and segmentation models to improve the performance of text detection. The
EAST model proposed by Zhou et al. [21] could generate word- or line-level predictions
directly from the complete image using a single neural network, simplifying the intermedi-
ate steps, and leading to a substantial improvement in the accuracy and precision of the
model. Li et al. [22] proposed an origin-independent coordinate regression loss and text
instance accuracy loss on a pixel-based text detector, which alleviated the impact of the
target vertex ordering and predicted the location of text instances more accurately. Liu
et al. [23] proposed a semi-supervised scene text detection framework (Semi Text) using a
pre-trained supervised model and an unlabeled dataset to train a scene text detector that
was both robust and accurate.

Although deep learning methods that can acquire high-level features through convolu-
tional operations have achieved good results in recent years, these methods rely excessively
on the adjustment of network parameters and lack flexibility. Some researchers still rely on
traditional methods, such as MSER methods, for preliminary text region extraction from
images. He et al. [24] developed a contrast-enhanced maximally stable extremum region
algorithm (CE-MSER) and combined it with CNNs to increase the robustness of the detec-
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tion network. Mittal et al. [25] used the characteristics of DCT, important information in
the image is found by selecting multiple channels, and texture distribution is studied based
on statistical measurement to extract features. Then a deep learning model is proposed
to eliminate false positives and improve the performance of text detection. Hua et al. [26]
used a combination of MSER and cloud of line distribution (COLD) approaches to extract
candidate regions of image text, and the extracted features were then sent to the CNN for
extraction. This method exhibited better detection effects under low light.

Although the above methods have made some progress in the field of text detection,
they still have the following problems in the detection of severely slanted and different-
sized texts in complex scenes.

(1) Constrained by the candidate frame, regression-based networks are less effective
at detecting text with large tilt angles.

(2) Segmentation-based methods do not work well for detecting small text instances
with low contrast and text instances with complex layouts in images.

(3) Most of the methods are not able to effectively remove the interference of complex
backgrounds and strong light on text detection, resulting in false detection.

For street sign text detection in natural scenes, compared with existing methods, our
proposed method was designed to eliminate the impact of complex backgrounds and
illumination on detection, as well as the effects of different sizes and shapes of text regions
in the images during detection. The detection process is shown in Figure 1. Although
the text in natural scenes is greatly affected by the lighting and shooting angles, the pixel
values and pixel relationships between text remain constant during character changes, so
a multi-channel MSER method is proposed to preprocess the image. Compared with the
traditional MSER method, the method in this paper uses multiple channels are used to
extract the maximally stable extremal regions, reducing the impact of complex scenes and
strong light on text area detection. In addition, an improved DBNet network is proposed to
further detect the image of the text area preliminarily extracted by the multi-channel MSER
method. Compared with the previous works, the newly added FPRE module and the
HLFE module can make full use of the information of the feature extraction network, and
improve the detection effect of the network on different shapes, sizes, and oblique texts.
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3. Proposed Method

The proposed method includes a multi-channel maximally stable extremum region
(MSER) model and an enhanced feature pyramid network text detection method.

3.1. Multi-Channel Maximally Stable Extremum Region (MSER) Model

The pixels of the natural scene street signs have a certain relationship, which motivated
us to explore the extraction of the maximally stable external regions in the natural scene
street signs image. However, due to the influence of illumination in natural scenes, the
brightness of different areas of the image is quite different, and only a single channel
extracts a large and extremely stable area of natural scene images, which will cause some
missed detections and false detections. The MSER method that is only under a single
channel is difficult to adapt to the detection of street sign text affected by illumination and
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complex background. Therefore, in addition to selecting the most commonly used RGB
color channel of the image, we also studied the influence of the HIS color channel of the
image on the extraction of the maximally stable external regions.

There are many color spaces for images, and the RGB color space is the most widely
used color space. In addition, the HIS color space is often used in image processing.
Therefore, in addition to selecting the most commonly used RGB color channel of the image,
the experiment also studied the HIS. RGB and HIS color channel images are extracted,
respectively, as shown in Figure 2. It can be found that the image in the S channel can
effectively reduce the influence of strong light, and the text area is more obvious in the
S color channel. The image under the H channel is greatly affected by the strong light,
and the text area has been blended with the background under the influence of the strong
light. The I-channel image can be replaced by different ratios of the R, G, and B channel
information, as shown in (1). so the rendering effect of the image under the I channel is also
similar to the effect of the RGB channel. Therefore, in the case where the maximally stable
extremum region of the RGB three-channel has been extracted, it is of little significance to
study the I-channel image. To explore the characteristics of the MSER method in different
color channels, the Canny [27] operator was used to perform edge enhancement processing
on the images of the RGB and HIS channels of the image, respectively, so that the text
edges in the image become more obvious, thereby increasing the accuracy of the MSER
algorithm, and then extracting the maximally stable extremum region from the image
after edge enhancement, as shown in Figure 3. It can be found that the S channel can
effectively extract the maximally stable extremum region under strong light, while the
H channel is affected by strong light, and cannot effectively extract the maximally stable
extremum region of text under strong light, and also introduces more non-text areas, which
is not conducive to the further extraction of text areas using the deep learning framework.
Therefore, it can be concluded that the S channel is very helpful for the initial extraction
of the text area extracted by the MSER method, and the H and I channels are of little
significance for the MSER method to extract the text area. Therefore, in the process of using
the MSER method to extract the text area in multiple channels, we use R, G, B, and S color
channels that contain important color information.

I =
R + G + B

3
(1)

where the parameter I is one of the channels of the HSI color space; R, G, and B are the three
channels of the RGB color space. According to the following equation [9] to determine
whether they belong to the MSER:

ϕ(i) =
|Ri+∆ − Ri−∆|

|Ri|
(2)

where Ri denotes a certain connected region when the threshold is i, ϕ(i) denotes the
area change rate of the region and ∆ is the step size of the slight change of the grayscale
threshold.
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To make the above statement more convincing, we compare the combination methods
of different channels based on the NSSS dataset combined with the DBNet deep learning
framework, and the experimental results are shown in Table 1. It can be seen from the table
that the S channel does extract important information for the text area provider for the
MSER method. However, H is greatly affected by strong light, and the I channel can be
replaced by RGB channel information, which has little effect on the extraction of the MSER
text area.

Table 1. NSSS dataset combined with DBNet text detection results in different channel combinations.

Channel Precision (%) Recall (%) F-Score (%)

RGB 91.9 83.5 87.5
RGBI 91.8 83.76 87.6
RGBH 92.1 83.7 87.7
RGBS 92.3 84.2 88.1
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3.2. Improved DBNet for Natural Scene Text Detection

Although the multi-channel MSER model has removed most of the non-textual com-
ponents of the image and reduced the complexity of the text detection problem, it is not
sufficient to extract the textual regions of the street sign image, which motivated us to use
an improved DBNet for further text detection. The DBNet algorithm is a segmentation-
based network that can not only detect text in arbitrary directions but also use deformable
convolution to enhance the detection of text with extreme aspect ratios. In addition, DBNet
transforms the non-differentiable fixed binarization segmentation into an approximate
differentiable binarization function, avoiding the problem of non-differentiable gradients,
and it makes the final output image robust to the threshold value. While simplifying the
post-processing, DBNet has better results on the lightweight backbone network, which
accelerates the detection speed of the model. Therefore, we chose the DBNet model as the
base network for street sign text detection in this paper, and the DBNet network structure
is shown in Figure 4. However, the DBNet model adopts an FPN for feature fusion. When
the FPN performs top-down feature fusion, the network expression ability is lost due to
the mandatory reduction in feature channels, and there are missed and false detections for
small-scale texts. In addition, the FPN is limited by the one-way information flow and the
loss of low-level spatial information due to multiple sampling operations, which also have
a certain impact on the accuracy of text detection.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19 
 

3.2. Improved DBNet for Natural Scene Text Detection 
Although the multi-channel MSER model has removed most of the non-textual com-

ponents of the image and reduced the complexity of the text detection problem, it is not 
sufficient to extract the textual regions of the street sign image, which motivated us to use 
an improved DBNet for further text detection. The DBNet algorithm is a segmentation-
based network that can not only detect text in arbitrary directions but also use deformable 
convolution to enhance the detection of text with extreme aspect ratios. In addition, 
DBNet transforms the non-differentiable fixed binarization segmentation into an approx-
imate differentiable binarization function, avoiding the problem of non-differentiable gra-
dients, and it makes the final output image robust to the threshold value. While simplify-
ing the post-processing, DBNet has better results on the lightweight backbone network, 
which accelerates the detection speed of the model. Therefore, we chose the DBNet model 
as the base network for street sign text detection in this paper, and the DBNet network 
structure is shown in Figure 4. However, the DBNet model adopts an FPN for feature 
fusion. When the FPN performs top-down feature fusion, the network expression ability 
is lost due to the mandatory reduction in feature channels, and there are missed and false 
detections for small-scale texts. In addition, the FPN is limited by the one-way information 
flow and the loss of low-level spatial information due to multiple sampling operations, 
which also have a certain impact on the accuracy of text detection. 

 
Figure 4. DBNet model network structure diagram. 

In this study, the Resnet-18 [28] lightweight network was selected as the backbone 
network for feature extraction, which effectively reduced the computational complexity 
of the model. In order to be able to cope with text instances with extreme aspect ratios, all 
3 × 3 convolutional layers were replaced with deformable convolution layers in the conv3, 
conv4, and conv5 stages of the feature extraction network of Resnet-18 [29] to improve the 
network’s ability to focus on relevant image regions. At the same time, the HLFE and 
FPRE modules were introduced to enable the feature pyramid network of this model to 
fully utilize the high-level semantic information and contextual semantic information of 
the network. The structure diagram of the improved DBNet network is shown in Figure 
5. 

Figure 4. DBNet model network structure diagram.

In this study, the Resnet-18 [28] lightweight network was selected as the backbone
network for feature extraction, which effectively reduced the computational complexity
of the model. In order to be able to cope with text instances with extreme aspect ratios,
all 3 × 3 convolutional layers were replaced with deformable convolution layers in the
conv3, conv4, and conv5 stages of the feature extraction network of Resnet-18 [29] to
improve the network’s ability to focus on relevant image regions. At the same time, the
HLFE and FPRE modules were introduced to enable the feature pyramid network of
this model to fully utilize the high-level semantic information and contextual semantic
information of the network. The structure diagram of the improved DBNet network is
shown in Figure 5.
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3.2.1. High-Level Feature Enhancement Model

For text detection networks, semantic contextual information plays a crucial role in
scene text detection. To be able to detect both smaller and larger text in the same image
and obtain good detection results, rich contextual information must be extracted from
the image.

Resnet-18 first extracts feature maps {C2, C3, C4, C5} from the input images. C5, as
the highest semantic feature map of the FPN, has many channels of information. However,
when the FPN performs feature fusion from the top down, the number of channels of the
top-level feature map must be reduced to the same number of channels of the bottom-
level feature map to which it is fused to be able to fuse with the rest of the feature maps.
Therefore, the number of channels is reduced in the process of downward propagation of
the top-level feature map, resulting in the loss of semantic information in the network. To
solve this problem, we proposed a feature enhancement module to enhance the high-level
semantic information in this study, which reduced the loss of feature information and
improved the detection effect of the net model.

As shown in Figure 6, first, the high-level semantic feature map C5 was used as the
input, and four feature maps of different scales were obtained after applying the following
adaptive average pooling operation:

fk = αkC5 : k = 1, 2, 3, 4 (3)

where k = 1, 2, 3, 4 denotes the four generated feature maps and αk denotes the αk-fold
downsampling operation on f5. In the experiments, α1, α2, α3, and α4 were set to 1, 0.5, 0.4,
and 0.2, respectively.
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Figure 6. Schematic diagram of the network structure of the high-level feature enhancement (HLFE)
module.

After downsampling, the channels of these four feature maps were changed to 256
dimensions through 1 × 1 convolutions, and the four feature maps were, respectively,
normalized to a uniform scale by 1

αk
upsampling through 3 × 3 depthwise separable

convolution and linear interpolation upsampling methods. Then, the four feature maps
were fused into a feature map of the same size as f5 through adaptive feature fusion (AFF),
and finally, feature fusion was performed with f5.

The feature-enhanced network obtained different feature maps through adaptive
pooling with a constant scale, and it obtained perceptual fields of different sizes after the
3 × 3 convolution layers, which increased the amount of information of the image context
obtained by the top-level feature map. This facilitated text detection at different scales. In
order to increase the convergence speed of the network, the parameters of the obtained
feature maps were normalized by using BN layers, and they were finally passed to the
rectified linear unite (ReLU) activation function and fused with f5 for features. In this
way, the more contextual information of different spaces was incorporated into the feature
map f5, so that the bottom-level feature map could obtain more semantic information
propagated by the top-level feature map, thereby improving the text detection ability of
the model.

3.2.2. Feature Pyramid Route Enhancement Module

While strengthening the transmission of high-level semantic information of the model,
the effect of low-level features of street sign images for text detection should not be under-
estimated. The low-level features contain very important information, such as the location
and edge shape of the image. However, the low-level feature map must undergo multiple
convolutions and sampling operations compared with the top-level feature map, which
leads to the loss of useful information in the low-level feature map during the feature
extraction process. In order to make full use of the low-level features and shorten the
spatial information transmission distance, making the bottom-level information better
propagate to the top level, we added a down-scale enhancement module based on the
structure of the original FPN of DBNet. In the up-scale enhancement module of the original
FPN, four feature maps, f1, f2, f3, and f4, with sizes of 1/4, 1/8, 1/16, and 1/32 of the
input image, respectively, were obtained. In the down-scale enhancement module, the four
feature maps obtained from the up-scale enhancement module were sampled and fused to
obtain the feature maps fpre1, fpre2, fpre3, and fpre4 with sizes of 1/4, 1/8, 1/16, and 1/32
of the input image, respectively. With fpre3 as an example, f3 obtained a feature map of the
same size as fpem2 through the upsampling operation and fused with fpem2 by element
summation. The fused feature map was then convolved with a kernel size of 33 and a
stride of 2 to generate fpre3 and then fpre4 was generated from fpre3 in the same way. The
iterations continued until fpre5 was obtained. In the process of down-scale enhancement,
all 3 × 3 convolutions applied depthwise separable convolution [30] instead of the original
standard convolution, which greatly reduced the increase in the operational parameters
and enabled the FPRE to obtain a larger perceptual field with a smaller increase in the
number of parameters.
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3.3. Loss Function

The improved DBNet loss function consisted of three components, which were the
loss Ls of the probability map, the loss Lb of the binarized graph, and the loss Lt of the
threshold graph. The loss functions were as follows:

L = Ls + β1 × Lb + β2 × Lt (4)

where β1 and β2 are the coefficients of the loss Lb of the binarized graph and the loss Lt of
the threshold graph, which were, respectively set to 1.0 and 10 in this work. Furthermore,
the loss Ls of the probability graph and the loss Lb of the binarized graph used the binary
cross-entropy loss function to effectively solve the problem of unbalanced positive and
negative samples, as follows:

Ls = Lb = ∑
i∈Rd

yi log xi + (1− yi) log(1− xi) (5)

where xi is the expected output of the sample, yi is the actual output of the sample, Rd
indicates the positive and negative samples that were sampled using OHEM (Online Hard
Example Mining), and the sampling ratio was set to 1:3 based on the positive and negative
sample regions of the image.

The loss Lt of the threshold graph was used to calculate the sum of the distances
between the predicted values and labels in the ground truth (Gd):

Lt = ∑
i∈Rd

|y∗i − x∗i | (6)

where Rd is the index of the pixel values in the Gd, x∗ is the prediction result, and y∗ is the
label of the threshold map.

4. Result and Discussion
4.1. Experimental Steps

To effectively detect street signs in natural scenes and test the effectiveness of our
proposed method, we conducted the following experiments using the NSSS, ICDAR2015,
and ICDAR2017-MLT datasets. (1) The images were directly input into the DBNet network
for the experiments, and the results of this experiment were used as a reference to test
the effectiveness of other methods. (2) The images were input into the DBNet network
with a ratio-invariant feature enhancement module (HLFE). (3) The images were input into
the DBNet network with a fused feature pyramid enhancement module (FPRE). (4) The
images were input into the DBNet network with FPRE and HLFE modules. (5) The data
set processed by multi-channel MSER was input into the modified DBNet network for
the experiments to test the effectiveness of the MSER method. The overall flowchart
of the experiments in this paper is shown in Figure 7, Y means to use this method for
subsequent text detection experiments, and N means not to use this method for text
detection experiments.
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The evaluation of natural scene text detection has three main metrics: precision, recall,
and F-Score, which are defined as follows:

prescision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F− score = 2 ∗ precision ∗ recall
precision + recall

(9)

where TP represents the number of samples that are positive and predicted to be positive
samples, FP represents the number of samples that are negative but predicted to be positive
samples, FN represents the number of samples that are positive but predicted to be negative
samples, and the F-Score is a comprehensive metric based on the accuracy and recall, which
can better characterize the text detection performance of a network.

4.2. Experimental Environment

The experiments of all the datasets were conducted on a Windows 10 system, devel-
oped using Python, and the deep learning framework was PyTorch 1.4.0. The hardware
environment included an Intel Corei9 processor (2.80 GHz), 64 GB of memory, and an
NVIDIA RTX 2080 SUPER graphics card (8 GB of memory). To improve the training
efficiency, all the processed images were adjusted to dimensions of 640 × 640, and the
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batch size was set to eight. We adopted the multiple learning rate strategy, that is, the
current learning rate was equal to the initial learning rate multiplied by (1− epoch

max_epoch )
power

.
Combined with the decay characteristics of this learning rate, we set the initial learning
rate to 0.007 and the power to 0.9.

4.3. Experimental Datasets

According to the literature survey, so far, no street sign dataset can be used in the
natural scene of the experiment. Having a good dataset is the first step for street sign
text detection experiments, so in this paper, we created our dataset, NSSS, to validate
our proposed method. All of the datasets came from images taken in real environments,
including street signs on both sides of daily streets, street signs in schools and shopping
malls, street signs in scenic parks, and many other scenes, some data set images are shown
in Figure 8. In order to simulate the noise that might be introduced by lighting and weather
in natural scenes, some images were randomly adjusted the brightness and contrast. To
obtain the true text areas (ground truth) of the images, all the images were manually
annotated with text and 2000 images were selected from them for the experiment, of which
1500 were used for the training set and 500 were used for the test set.
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To further test the effectiveness of our proposed method, the publicly available dataset
ICDAR2015 [31] and dataset ICDAR2017-MLT [32] were used for our experiments for
evaluation. ICDAR2015 consisted of 1500 images taken in natural scenes and contained
a large amount of irregular text. Of these images, 1000 were used as the training set, and
500 were used as the test set. ICDAR2017-MLT is a text dataset composed of multiple
languages, including Chinese, English, Korean, Japanese, Italian, French, Indian, Arabic,
and German. There are 9000 images in the data set, of which 7200 are used for the training
set and 1800 are used for the test set.
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4.4. Experiment Results and Discussion

As shown in Table 2, when the HLFE module was added, the high-level semantic
information of the network was fully utilized, thereby reducing the phenomenon of missed
detection of small-scale text instances and false detection caused by the influence of non-
text regions in the model. Therefore, the recall and accuracy were improved to a certain
extent. When the FPRE module was added, the low-level semantic information of the
network could be better propagated and utilized so that the model could better locate
the text location and text boundary, improving the accuracy of the model significantly.
When the HLFE and FRPE modules were applied together, the feature extraction effect was
further improved. When the detection was performed after processing the image using the
multi-channel MSER, the model’s recall was improved more significantly because a large
number of non-text regions were filtered out, which effectively reduced the influence of
non-text regions on the text regions and made the text features more evident, indicating the
significance of the MSER method for image pre-processing. The final precision of the model
was improved from 91.8% to 92.5%, the recall rate was improved from 82.1% to 86.8%, and
the F-Score was improved from 86.7% to 89.5%. As shown in Figure 9, the proposed method
in this paper had a better detection effect for regions with inconspicuous text features, and
it worked better than the original DBNet model in terms of recall, precision, and F-Score.

Table 2. Comparison of results of ablation experiments on the NSSS dataset.

Methods Precision (%) Recall (%) F-Score (%)

DBNet (baseline) 91.8 82.1 86.7
DBNet + HLFE 91.6 83.5 87.3
DBNet + FPRE 92.1 83.3 87.5
DBNet + HLFE + FPRE 91.8 84.1 87.8
DNNet + HLFE + FPRE + MSER (ours) 92.5 86.8 89.5
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The comparison of the effect of the proposed model with the base model on the
ICDAR2015 dataset and ICDAR2017-MLT dataset are shown in Figures 10 and 11, indicating
that the proposed method had improved in terms of missed detection and false detection
compared to the original method. As shown in Tables 3 and 4, the recall and precision
of our proposed method on the ICDAR2015 dataset were improved, which indicates that
our method is also applicable to other datasets of scenes with text. The proposed method
showed good results for different languages, shapes, sizes, scales, and slanted text, and it
could cope with text detection in most natural scenes.

Table 3. Comparison of results of ablation experiments on the ICDAR2015 dataset.

Methods Precision (%) Recall (%) F-Score (%)

DBNet (baseline) 89.5 75.9 82.1
DBNet + HLFE 89.3 76.7 82.5.
DBNet + FPRE 90.1 77.1 83.1
DBNet + HLFE + FPRE 88.2 78.1 83.3
DNNet + HLFE + FPRE + MSER (ours) 90.8 79.0 84.5

Table 4. Comparison of results of ablation experiments on the ICDAR2017-MLT dataset.

Methods Precision (%) Recall (%) F-Score (%)

DBNet (baseline) 81.9 63.8 71.7
DBNet + HLFE 83.1 63.7 72.2
DBNet + FPRE 83.6 63.2 72.0
DBNet + HLFE + FPRE 83.2 63.9 72.3
DNNet + HLFE + FPRE + MSER (ours) 84.1 64.9 73.3
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original DBNet model on the ICDAR2017-MLT dataset: (a) is the result of the proposed method in
this paper, and (b) is the result of the original DBNet model.

As shown in Figure 12, the method proposed in this paper showed better performances
than the Baseline on both the ICDAR2015, ICDAR2017-MLT, and NSSS datasets in that
the trained F-score tended to be stable with the increase in the number of training epochs.
The yellow and green curves represent the F-score curves of our proposed method and
the Baseline of the ICDAR2015 dataset, the purple and cyan curves represent the F-score
curves of the method proposed in this paper and the Baseline of the ICDAR2015 dataset,
respectively, and the blue and red curves represent the F-score curves of our proposed
method and the Baseline on the NSSS dataset, respectively.
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To verify the effectiveness of the methods proposed in this paper, the following meth-
ods were used for a comparative study: the EAST model proposed by Zhou et al. [21], the
PixelLink model based on instance segmentation proposed by Deng et al. [15], the rotation-
sensitive regression detector (RRD) proposed by Liao et al. [33], the short path network
(SPN) proposed by Wang et al. [34], the TextSnake-like detection method (TextSnake) for
irregular text proposed by Long et al. [35] and a path aggregation network (PANet) [36]
is based on an instance segmentation framework. The objective of these methods was
consistent with the goal of the work presented in this paper, which was to detect text in
natural scenes.

The comparison of the detection effectiveness of the proposed method with other
methods on the ICDAR2015 dataset is shown in Table 5. The precision, recall, and F-Score
of the proposed method in this paper were, respectively improved by 7.2%, 5.5%, and
6.3% compared to the EAST. Because the EAST had a small perceptual field and used text
candidate frames, it was less effective in detecting long and slanted text. Compared with
the segmentation-based PixelLink method, the precision and F-Score were improved by
7.9% and 2.2%, respectively. This was because PixelLink required geometric features as
post-processing to detect segmented text and could not effectively handle text regions
with complex backgrounds. Compared with the PANet model, the precision and F-Score
were also improved by 6.8% and 1.6%, respectively. This was because the PANet did not
make full use of the high-level semantic information, resulting in its failure to accurately
detect some text regions with large text size differences. The comparison of the detection
effectiveness of the proposed method with other methods on the ICDAR2017 dataset
is shown in Table 6. Compared with PSENet, the accuracy and F-Score of the proposed
method are improved by 7.9% and 2.2%, respectively. Because the PSENet network does not
exclude the impact of light and complex backgrounds. Compared with the original DBNet
model, the accuracy, recall, and F-Score increased by 2.2%, 1.1%, and 1.6%, respectively.
Although our proposed method did not perform as well as some models in terms of recall,
it outperformed other methods in terms of precision and F-Score, which fully demonstrated
the high precision of our model in classifying textual and non-textual regions of images.
Furthermore, it could fully utilize both high-level and low-level semantic information to
achieve accurate localization of textual instances.

Table 5. Performance comparison of the model proposed in this paper with other models on the
ICDAR2015 dataset.

Methods Precision (%) Recall (%) F-Score (%)

EAST [21] 83.6 73.5 78.2
PixelLink [15] 82.9 81.7 82.3
RRD [33] 85.6 79.0 82.2
SPN [34] 86.6 82.1 84.3
TextSnake [35] 84.9 80.4 82.6
PANet [36] 84.0 81.9 82.9
DBNet [10] 89.5 75.9 82.1
Ours 90.8 79.0 84.5

Table 6. Performance comparison of the model proposed in this paper with other models on the
ICDAR2017-MLT dataset.

Methods Precision (%) Recall (%) F-Score (%)

SCUT_DLVlab1 [37] 80.3 54.5 65.0
ete_ctc01_multi_scale [37] 79.8 61.2 69.3
Corner [37] 83.8 55.6 66.8
Zhang et al. [38] 74.9 61.0 67.3
PSENet [6] 77.0 68.4 72.5
DBNet [10] 81.9 63.8 71.7
Ours 84.1 64.9 73.3
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5. Conclusions and Feature Works

This paper improved the natural scene street sign text detection method with differen-
tiable binarization networks was proposed and created an NSSS dataset to better support
this work. First, to solve the problem that the street sign text is interfered with by complex
backgrounds and strong light in natural scenes, the Canny operator was used to enhance
the text boundaries and used the multi-channel MSER method to remove a large number
of non-text regions, which effectively reduced the interference of non-text regions and
strong light on the text detection. In addition, to address the problem that the original
DBNet model did not make full use of the high-level and low-level semantic information
during the feature extraction network, this paper improved the feature pyramid network
of the DBNet model, so that the low-level and high-level semantic information of the
network could be more fully utilized, enhancing the ability of the network to detect the text
information of street signs. The experimental results showed that the method proposed in
this paper achieved significant improvements in the text detection of natural scenes and
is quite competitive with existing methods, which proved the effectiveness of the method
proposed in this paper.

However, the detection effectiveness of our model decreased when the character
spacing of the same text line was large or the image was severely blurred, and the model
also could not effectively detect other identifiers in the street signs. In addition, it will
be future work to detect text with large character spacings in the same line and other
identifiers in street signs that can provide valid information other than text, providing a
street sign text detection model with more application value.
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