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Abstract: Any number that can be uniquely identified and varied by a graph is known as a graph
invariant. This paper will talk about three unique variations of bridge networks, sierpinski networks,
honeycomb, and hexagonal networks, with great capability of forecast in the field of software
engineering, arithmetic, physics, drug store, informatics, and chemistry in setting with physical and
chemical properties. Irregularity sombor invariant is newly introduced and has various expectation
characteristics for various variations of bridge graphs or other networks, as mentioned. First, find the
irregularities in the networks with the help of the Irregularity sombor index. This will be performed
in a step by step procedure. The study will take an existing network, associate it with a graph after
finding their vertices and edges, then solve the topology of a graph of a network. Graphical results
demonstrate the upper and lower bounds and irregularities of certain networks, and mathematical
results are used for modeling purposes. The review settled the topologies of graphs/networks of
seven distinct sorts with an Irregularity sombor index. These concluded outcomes can be utilized for
the demonstration and modeling of computer networks such as local area networks, Metropolitan
area networks, Wide area networks, memory interconnection networks, processor interconnection
networks, the spine of the internet, and different networks/designs of Personal computers, power
generation networks, mobile base station and chemical compound amalgamation and so on.

Keywords: bridge networks; invariant; sierpinski; irregularity sombor index; maple; network graph;
memory interconnection network

1. Introduction

Bridge graphs are introduced by T. Mansour and M. Schork, which is a combination of
networks that bridge together in a single network [1]. A bridge graph is a graph obtained
from the number of graphs G1, G2, G3 . . . .Gm by associating the vertices vi and vi + 1 by
an edge ∀, i = 1, 2 . . . m − 1 [2].

Sierpinski graphs comprise a broadly concentrated class of graphs of fractal nature
appropriate in topology, mathematics of Tower of Hanoi, computer science, and somewhere
else. An enormous number of properties such as physical-substance properties, thermo-
dynamic properties, compound movement, and organic action, and so are not entirely set
in stone by the synthetic utilization of graph theory. These properties can be described by
specific graph invariants alluded to as topological indices. In QSAR/QSPR concentrating
on these graphs, invariants play a crucial impact [3].
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Honeycomb networks are used in IoT framework development. Wireless Sensor
Network (WSN) is viewed as one of the crucial advances utilized in the Internet of things
(IoT), consequently empowering different applications for doing continuous perceptions.
Robot route in such networks was the primary inspiration for the presentation of the idea of
tourist spots. A robot can recognize its area by conveying messages to obtain the distances
between itself and the milestones. By believing networks to be a sort of graph, this idea was
reclassified as a metric component of a graph which is the base number of hubs expected to
recognize every one of the hubs of the graph. This thought reached out to the idea of the
edge metric element of graph G, which is the base number of hubs required in a graph to
distinguish each edge of the organization exceptionally. Ordinary plane networks can be
handily built by rehashing customary polygons. This plan is of outrageous significance as
it yields high generally speaking execution; thus, it very well may be utilized in different
systems administration and IoT areas. The honeycomb and the hexagonal networks are two
such famous lattice-inferred equal networks. In this paper, it is demonstrated that the base
milestones expected for the honeycomb network HC(n) and the hexagonal organization
HX(n) are 3 and 6 separately [4].

A Honeycomb network is a network in which n-number of layers of hexagonal net-
works exist and are utilized in versatile base station organization. Each cell has 6 vertices
and 6 edges. Each cell is encircled by 6 other hexagonal cells, which makes it the design of
the honeycomb network for the mobile base station and many chemical constructs.

The study presented the hexagonal network containing triangles, and such sorts of
graphs are regularly known as oxide networks in numerical science. Different layers of
triangles outline the simple development of the hexagonal network of aspect 2 HX(2),
aspect 3 HX(3), and aspect 4 HX(4). Going on along these lines, by putting the furthest
layer of triangles, we can obtain the hexagonal network HX(n) with n aspect [5].

Regular hexagonal networks are utilized in mobile base station networks, IoT net-
works, and numerous chemical compounds constructs with six sides continuously joined.
Regular Hexagonal Cells Network has vertices of both degrees 2 and 3. By assessment, we
obtain that it has 4 mn + 4m + m − 2 vertices and 6 mn + 5m + n − 4 edges. There are three
sorts of edges considering the degree of end vertices of each edge gives a definite portrayal
of the edge set.

On the other hand, Gutman, in 2021, define the idea of sombor indices. A new vertex
degree-based invariant graph named Sombor Index is used to capture the sharp lower and
upper bounds of the connected network and the characteristics of the network reaching
the boundaries [6]. V. R. Kulli derived a new irregularity index by taking an idea from
sombor indices called the Irregularity sombor (ISO) index, which has the quality to predict
irregularities present in computer networks [7].

For the most part, networks of various topologies are performed well and productive
independently; however, the mix of at least two effectiveness split the difference. For the
conventional explanation, the study talks about and settles the topology of bridge networks
with the assistance of the graph hypothesis mathematically [8].

As one more emerging science is created with the assistance of computer sciences,
mathematics, and chemistry called cheminformatics, whose critical sections integrate
Quantitative structure-activity relationship (QSAR) and Quantitative structure-property
relationships (QSPR), and the fragments can include the assessment of physicochemical
attributes of manufactured combinations. QSAR is a modeling instrument used to settle
the topology of networks or structure of mixtures and display the productive and best
entertainer networks or structures. QSPR is likewise a modeling device that corresponds
to the properties of a network structure with the assistance of numerical conditions or
articulation. It additionally gives the quantitative relationship between the properties of
networks or chemical structures. Points of topology as the numeric worth can be depicted
with the assistance of a graph in light of invariance. It is finished because of the auto-
morphism property of the graph. In the fields of computer sciences and chemistry, there
are a ton of uses for graph hypothesis [9].
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A topological index is arranged by changing a network structure into a number.
Initially, our point is to present new computer models and networks that benefit from
both effectiveness and advance with the help of topological indices. An interconnection
network’s structure can be numerically shown by a graph. The geography of a graph
chooses the way where vertices are related by edges. From the geography of a network,
specific properties can undoubtedly be settled. The greatest distance is settled between
any two centers in the network. The degree of the center is recognized by the number
of associations connected with it. Computer networks from intranet to overall networks,
electric power interconnection, interpersonal organizations, the sexual affliction of networks
of transmission, and genome networks are tantamount to graph hypothesis with the
assistance of intricate networks examination contraption. This multitude of networks
is at the top level of their utilization and enhanced. In this heap of cases, this study
can register boundaries called Topological invariants (TIs) that numerically portray the
connectedness plans (structure) between the center points or performers in a network. So,
this study can develop a mind-stunning network of general arrangements of regulations
accomplice regulations (centers) that direct regular natural subjects, for example. QSAR
and QSPR are giving the establishment of these models. The last comment is that the use
of the estimation in the network plane works with a quantitative assessment of different
geography-protecting planning calculations [10].

This paper initially presents the issue articulation with a bridge graph and ISO index.
In addition to auditing the writing, the third examines objectives, significance, research gap,
and technique in the research system segment, the fourth area breaks down information,
and the last area composes results and finishes up the research. The review has suggestions
in the fields of computer science, physics, chemistry, mathematics, and bioinformatics for
modeling reasons for networks, memory interconnections networks, power generation
interconnection networks, and chemical mixtures. ISO invariant permits us to aggregate
data about logarithmic structures and numerically foresee stowed-away properties of
different structures, for example, certain computer networks.

Topological invariants draw us to collect information about logarithmic designs and
give us a mathematical methodology to calculate the hidden properties of different certain
computer networks and other constructs. Different techniques are accessible in history
to look at the idea of a topological index. There are two chief contentions of topological
indices; first one is the degree based topological, and the sub-optimal is known as distance-
based topological indices. There are numerous such invariants are accessible in history.
Irregularity Sombor Index has an extraordinary capacity of assumption in the field of
computer science, math, chemistry, drugs, informatics, and power age in setting with
physical and substance designs and organizations.

ISO index stands for Irregularity Sombor Index, which is introduced by V. R Kulli after
taking inspiration from Sombor Indices. ISO index has the quality to predict the hidden
properties of a network and find the lower bounds, upper bounds, and irregularities
from the existing networks. The deduced results would be used for the modeling of
certain computer networks, their gradation with best characteristics, finding new network
architectures, and also used as guidelines for the developments of advanced networks used
in different fields of computer science and other sciences.

2. Literature Review

The paper has shown that the star-like tree has the most ludicrous worth of the out-
and-out irregularity index, and the caterpillar trees have the base worth of the full-scale
irregularity index among all vertex trees with a proper number of regions. Anyway, it has
been shown that the caterpillar trees of the most incredible degree three accomplish the
base worth, and the trees with everything considered one developing vertex of degree more
fundamental than three and containing essentially swinging and broadening vertices have
the best [11].
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This paper proposes evaluating the irregularity of a vector-respected morphological
chief by the general opening between the summed-up proportion of pixel-wise distances
and the Wasserstein metric. Other than presenting a degree of irregularity, suggested
as the irregularity index, this paper additionally addresses its computational execution.
Unequivocally, we see the best in general and the reasonable nearby irregularity indexes.
The nearby irregularity index, which can be taken care of significantly more rapidly by
amounting to expected gains of neighborhood windows, yields a lower bound for the
general irregularity index. Computational primers with customary pictures outline the
possibility of the proposed irregularity indexes [12].

Topological invariants enable us to gather information about logarithmic structures
and give us a mathematical system to sort out the mysterious properties of different struc-
tures [13]. Different procedures are accessible in history to check the idea of a topological
index [14]. There are two essential struggles of topological indices; first one is the degree
based topological, and the sub-par is known as distance-based topological indices. There
are many such invariants available in history [15,16]. ISO index has great capability of
expectation in the field of computer science, mathematics, chemistry, pharmacy, informatics,
and physics in setting with physical and chemical structures and networks [17].

Performing similar tests, a few prospects of developing novel degree-and distance-
based graph irregularity indices are examined. By assessing the segregation capacity of
various irregularity indices, it is illustrated (utilizing models) that in specific cases, two
recently developed irregularity indices are more specific [18].

Dental impressions have been supposed to obtain fitting audit models. This framework
is time-and turns out consuming for the orthodontist and could be weakening to the patient,
especially when supports are fitted concerning an exploration project. This study wanted
to assess the precision, steadfastness, and reproducibility of using intraoral photos and
mortar models’ photos in assessing Little’s Irregularity Index (LII), tooth size-curve length
blunder (TSALD), and Bolton’s extents [19].

In this paper, the study describes the previously mentioned graphs with another
option yet relatively straightforward methodology. Additionally, the review described the
graphs having the greatest irregularity esteem among the classes Tn (Tricyclic graphs),
TETn (Tetracyclic graphs), PNTn (Pentacyclic graphs), and HEXn (Hexacyclic graphs) [20].

The study describes irregularities of graphs and their conditions on the size boundaries
as of late, standing out among mathematicians as well as hypothetical scientific experts. It
is observed that these abnormalities are connected with the properties of the substance in
question. Cerium oxide is an interesting earth metal formula, and it is a light yellow-white
powder. In the current article, we are worried about processing the shut types of irregularity
proportions of the general type of gem structure of Cerium Oxide in light of numerical
model and computation [21].

The survey looks at a couple of related proportions of peripherality and centrality for
vertices and edges in networks, including the Mostar index, which was introduced as a
proportion of peripherality for the two edges and networks. The overview discredits a
supposition on the best possible Mostar index of bipartite graphs. It asymptotically answers
another issue on the biggest difference between the Mostar index and the inconsistency of
trees. It, in a similar manner, shows different extremal limits and computational complexity
results about the Mostar index, abnormality, and proportions of peripherality and centrality.
The readings look at graphs where the Mostar index is certainly not an exact proportion
of peripherality. It fosters a general gathering of graphs with the property that the Mostar
index is imperative for edges that are closer to the center [22].

Graph indices have drawn extraordinary interest as they give us mathematical hints
for a few properties of particles. Some indices give important data on the atoms viable
utilizing numerical estimations, as it were. Consequently, the estimation and properties
of graph indices have been the focal point of research. Normally, the qualities taken by a
graph index are significant issues called the inverse issue. It requires information about the
presence of a graph having an index equivalent to a given number. The inverse issue is
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read up here for the Albertson irregularity index as a piece of examination on irregularity
indices. A class of graphs is developed to Show that the Albertson index generally takes
certain even integers. It has been demonstrated that there exists no less than one tree with
an Albertson index equivalent to each even certain integer; however, 4. The presence of a
unicyclic graph with an irregularity index equivalent to m is displayed for each even sure
integer m aside from 4. It is likewise shown that the Albertson index of a cyclic graph can
achieve any even certain integer [23,24].

We compare different studies with our present study in the following Table 1. After
analysis, it found that as compared to others, we found irregularities in the existing
networks, which was the major issue and hurdle in the efficiency, performance, and security
of the networks. It also found sharp upper bounds and lower bounds of different networks.

Table 1. Analytical Comparison of Topological Invariants and their Applications.

Sr. No. Title of Research Paper Year Networks Solved Invariants Used Results

1

Topological Properties Of
Degree-Based Invariants

Via M-Polynomial
Approach

2022 Hexagonal
Networks

Zagreb Indices, Randi’C,
Product Connectivity

Gourava Index and their
Forms

Give valuable
information about the
molecular structure or

network and
applications in QSPR &

QSAR.

2

Contraharmonic
Quadratic Index Of
Certain Nanostar

Dendrimers

2022 Dendrimer
Nanostars

Contraharmonic-
Quadratic Index and

Quadratic-
Contraharmonic

Index

computed the CQ index
for some standard

graphs

3 Some Results On The
Sombor Indices of Graphs 2021 Degree-Regular

Graph/Network

The Sombor Index, The
Reduced Sombor Index
and the Average Sombor

Index

Establishing inequalities
related to the

aforementioned three
graph invariants and

proving a recently
proposed conjecture

concerning the sombor
index

4 Some Basic Properties of
Sombor Indices 2021 Regular Graph or

Network

Vertex-Degree-Based
(VDB) Molecular

Structure Descriptors
(Sombor Index and its

Reduced Form)

Any reduced VDB index
can be viewed as a

reduced sombor-type
index

5
Analysis Of Dendrimer
Generation By Sombor

Indices
2021

Dendrimers
Generation
Networks

Sombor Index and
Reduced Sombor Index

Computed sombor
indices for

phosphorus-containing
dendrimers & types of

dendrimers.

6 Sombor Index of Some
Nanostructures 2021 Nanostructures Sombor Index

Computed explicit
formulae for sombor
index of 2D-lattice,

nanotube, and
nanotorus

7

Polynomials And General
Degree-Based Topological

Indices of
Generalized Sierpinski

Networks

2021 Sierpinski
Networks

Connectivity
Polynomials Such As
m-Polynomial, Zagreb
Polynomials, Forgotten

Polynomial, (A,
B)-Zagreb Index and

Several Other General
Indices

These facts can be
Physicochemical
properties of the

molecules modeled on
the S(k, n) networks can
be forecasted using the

results.
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Table 1. Cont.

Sr. No. Title of Research Paper Year Networks Solved Invariants Used Results

8
The Calculations of

Topological Indices on
Certain Networks

2021 Hexagonal
Networks

ABC Index, AZI Index,
GA Index, The

Multiplicative Version
Of Ordinary First
Zagreb Index, The

Second Multiplicative
Zagreb Index, and

Zagreb Index

Calculating the
correlation index

provides potential help
for scholars to study

networks characteristics
better. for further work,

if the corresponding
networks are replaced

by other networks

9
Discovering Irregularities
from Computer Networks
by Topological Mapping

2022

Bridge Networs,
Hexagonal
Networks,

Honeycomb
Networks and

Sierpinski
Networks

Irregularity Sombor
Index

Finding Sharp upper
bounds, lower bounds

and irregularities

In geography, computer science, and related areas of mathematics, a topological prop-
erty or Topological invariant (TI) is a property of a topological space that is invariant
under homeomorphisms. On the other hand, a topological property is a legitimate class of
topological spaces that are shut under homeomorphisms. That is, a property of spaces is a
topological property if, at whatever point, a space X has that property. Each space homeo-
morphic to X has that property. Casually, a topological property is a property of the space
that can be communicated utilizing open sets. These TI’s are used to solve the network,
and deduced results will be used for the modeling of the new network architectures.

Big data is working on the efficiency of accessing and transferring data fastly. The
theme of this study is also the same to optimize the efficiency of the network through the
evaluation of the topology of a network [25–29].

3. Research Methodology
3.1. Objectives

The principal objective of this study is to research the anomalies in computer networks
through topological invariants. The review figures out the force of earnestness of topolog-
ical indices in specific computer networks such as computer networks, interconnection
networks of processors, memory interconnection networks, mobile base station networks,
power interconnection networks and chemical structures, and so on. In this paper, the
study makes sense of the ISO index and its advantages. Its superb goal is to foster recipes,
so it can look at the anomalies in the topology and execution of specific networks with-
out doing/performing tests. The work derived a few outcomes which are utilized in the
modeling of specific computer networks.

3.2. Significance

The review is exceptionally critical these days since it makes mindfulness about
irregular invariants of specific computer networks. It is likewise finding new and huge
arrangements or expressions for the modeling of specific computer networks because
no satisfactory arrangement has been tracked down till now because of its gradual and
quick nature.

3.3. Method

This methodical review will take a current bridge network or sierpiski network or
hexagonal or honeycomb network, partner it using a graph, and tackle the physical layout
of the graph with the assistance of the ISO index. The disturbing outcomes as recipes will
contrast and existing outcomes. These derived outcomes will be pertinent to numerous
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different networks in the fields of specific computer networks a short time later. This
model is particularly used as it tackled the topologies of specific computer networks in
numeric and graphical structure in step-by-step manner. At first, it takes existing networks,
associates them with graphs, finds vertices and edges, converts them into a graph, solves
the topology of a graph, deduces results in mathematical and graphical forms and at the
end, applies them in different fields. These deduced results are also used in the modeling
of existing networks for upgrading existing networks with the best characteristics and
for creating new network architectures. It gives irregular results. After examination,
a simulation instrument maple is utilized for the confirmation and approval of results.
“Maple tool is a bunch of techniques to do limited geography. The methods were decided
to outline essential topological developments and properties. Maple is a universally useful
instrument for math, computer science, physics, information investigation, representation,
and programming. It contains a huge number of specific capabilities that range from all
areas of design. It is an emblematic and numeric processing climate as well as a multi-
worldview programming language.”

4. Experimental Results

A bridge graph is a network graph found from the number of network graphs G1, G2,
G3, . . . Gm by associating the vertices vi and vi + 1 by an edge ∀, i = 1,2, . . . , m − 1.

ISO(G) = ∑ue

√∣∣∣du
2 − dv

2
∣∣∣ (1)

Equation (1) shows the ISO index, which will be used for the solution of three variants
of the bridge, honeycomb, hexagonal, and two variants of seirpinski networks. This ISO
index equation is used for finding irregularities in the given networks mentioned before.

de = du + dv − 2

Table 2 describes the edge partitions of graph Gr (Ps, v) over Ps of the bridge graph
given in Figure 1. It is shown four distinct types of edges with their frequencies and vertices
in the above table. It explains Figure 1 of the bridge network.

Table 2. Edge partition of Gr (Ps, v) over Ps.

ε ε(du, dv) de ε(du, de) Recurrence

ε1 ε(1, 2) 1 ε(1, 1) R
ε2 ε(2, 2) 2 ε(2, 2) 3r + 2
ε3 ε(2, 3) 3 ε(2, 3) R
ε4 ε(3, 3) 4 ε(3, 4) r − 3
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4.1. Main Results

Figure 1 shows bridge networks in which bus networks and star networks bridge in
a tree-like structure. The bridge network shows the distinct types of vertices and edges
present in the above figure, which are also mentioned in Table 2.
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4.1.1. Bridge Graph Gr (Ps, v) over Path

If the vertex set is V, by the perception of Figure 2, it can arrange this vertex set into
four subsetsV1, V2, V3, and V4, Such that V = V1 + V2 + V3 + V4. Assuming E addresses
the edge set. Figure 2 shows that there are four unmistakable sorts of edges existing in the
graph bridge graph Gr (Ps, v) over the path of hybrid networks. Table 2 explains in detail
the edges partition.
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4.1.2. Theorem 1

Suppose G is a graph of gr (ps, v) over ps. Then, after investigation of bridge graphs by
ISO index, the result is

ISO (G) =
√

5 r (2)

Equation (2) represents the proven results of the graph through edge partitions men-
tioned in Table 2 of Gr (Ps, v) over Ps mentioned in Figure 2.

Table 3 describes the edge partitions of graph Gr (Ks, v) Over Ks of the bridge graph
given in Figure 3 with frequencies.

Table 3. Edge partition of Gr (Ks, v) over Ks.

ε ε(du, dv) de ε(du, de) Recurrence

ε1 ε(2, 2) 2 ε(2, 2) rs − 2r
ε2 ε(2, 3) 3 ε(2, 3) 4
ε3 ε(2, 4) 4 ε(2, 4) 2r − 4
ε4 ε(3, 4) 5 ε(3, 5) 2
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4.2. Main Results

Figure 3 shows the bridge networks in which bus networks and ring networks
bridge together.

4.2.1. Bridge Graph Gr (Cs, v) over Cycle

Assuming V is the arrangement of vertices seen in Figure 3, this arrangement of
vertices can be parted into four subclasses V = V1 + V2 + V3 + V4. When ε addresses an
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edge set. Figure 3 shows a half-and-half network cycle with five distinct kinds of edges in
the network graph of the bridge graph Gr (Cs, v). Table 3 provides a detailed description of
the edge set.

4.2.2. Theorem 2

Let G be a graph of Gr (Cs, v) over Cs, then after investigation of bridge graphs by ISO
indices, the result is

ISO (G) = 8 + 4
√

5 + 2
√

3(2r− 4) + 2
√

5(r− 3) (3)

Equation (3) represents the proven results of the graph through edge partitions men-
tioned in Table 3 of Gr (Cs, v) over the Cycle mentioned in Figure 3.

Figure 4 Shows the results of irregularities found in the topology of a cyclic bridge
network through the ISO index.
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Table 4 describes the edge partitions of graph Gr (Cs, v) Over Cs of the bridge graph
given in Figure 4 with the number of occurrences.

Table 4. Edge partition of Gr (Cs, v) over Cs.

ε ε(du, dv) De ε(du, de) Recurrence

ε1 ε(4, 5) 7 ε(4, 7) 2
ε2 ε(4, S−1) S + 1 ε(4, s+1) 2
ε3 ε(5, 5) 8 ε(5, 8) r − 2
ε4 ε(5, S−1) S + 2 ε(5, s+2) r − 2
ε5 ε(S−1, S−1) 2s − 4 ε(s−1, 2s−4) [rs(r − 1) − 2(r + 1)]/2

4.3. Main Results

Figure 5 shows the bridge networks in which bus networks and fully connected
networks bridge together.
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4.3.1. Bridge Graph Gr (Ks, v) over Complete Graph

Assuming that the vertices set are V, understanding Figure 5 allows us to sort this set
of vertices into three subsets, V1, V2, and V3, so that V = V1 + V2 + V3. If E shows the edge
set, Figure 5 displays the bridge network graph Gr (Ks, v) of the complete graph of the
hybrid network. The bridge graph of the network graph has five different edges. Table 4
provides a detailed description of the edge set.

4.3.2. Theorem 3

Let G be a graph of Gr (Ks, v) over Ks. then, after investigation of bridge graphs by ISO
indices, the result is

ISO (G) = 6 + 2
√∣∣∣−16 + (s− 1)2 −

√∣∣∣−25 + (s− 1)2 (r− 2) (4)

Equation (4) represents the proven results of the graph through edge partitions men-
tioned in Table 4 of Gr (Ks, v) over the complete graph mentioned in Figure 5.

Figure 6 Shows the results of irregularities found in the topology of a fully connected
bridge network through the ISO index.
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Table 5 describes the edge partitions with their frequencies of the honeycomb network
given in Figure 7. The study found vertices of G are either 5, 7, or 9 shown in Table 5 and
Figure 7 also. After the calculation, the number of edges formed is 6, 12(n − 1), 6(n − 1),
and 9n2 − 21n + 12, shown in the above table.
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Table 5. Edge partition of honeycomb network.

E ε(du, dv) de ε(du, de) Recurrence

ε1 ε(5, 5) 8 ε(5, 8) 6

ε2 ε(5, 7) 10 ε(5,10) 12(n − 1)

ε3 ε(7, 9) 14 ε(7, 14) 6(n − 1)

ε4 ε(9, 9) 16 ε(9, 16) 9n2 − 21n + 12
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4.4. Main Results of Honeycomb Network

Figure 7 shows honeycomb networks in which n-number of layers of hexagonal
networks exist and are used in mobile base station networks. Every cell has six vertices
and six edges. Every cell is surrounded by six other hexagonal cells, which makes it the
structure of the honeycomb network for the mobile base station.

4.4.1. Honeycomb Graph

Let G = HCn the n-layered honeycomb network with n hexagons among middle and
boundary hexagons by HCn. HCn is developed by adding a layer of hexagon around
HCn−1 (see Figure 7). The order and size of HCn are 6n2 and 9n2 − 3n, separately. Table 5
explains in detail the edges partition.

4.4.2. Theorem 4

Let G be a graph of a honeycomb, then, after investigation of honeycomb graphs by
ISO index

ISO (G) = 2
√

6(12n− 12) + 4
√

2 (6n− 6) (5)

Equation (5) represents the proven results of the graph through edge partitions men-
tioned in Table 5 of the honeycomb mentioned in Figure 4.

Figure 8 Shows the results of irregularities found in the topology of a honeycomb
network through the ISO index.
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Table 6 describes the edge partitions with frequencies regarding them in the graph of
the regular hexagonal cells network given in Figure 9 with frequencies. The study found
vertices of G are either 2 or 3 shown in Table 6 and Figure 9 also. After the calculation, the
number of edges formed is 2n + 4, 4m + 4n + 4, and 6 mn + m − 5n − 4, shown in the
above table.

Table 6. Edge partition of regular hexagonal cells network.

E ε(du, dv) de ε(du, de) Recurrence

ε1 ε(2, 2) 2 ε(2, 2) 2n + 4

ε2 ε(2, 3) 3 ε(2, 3) 4m + 4n + 4

ε3 ε(3,3) 4 ε(3, 4) 6 mn + m − 5n − 4
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4.5. Main Results of Regular Hexagonal Cell Network

Figure 9 shows regular hexagonal networks used in mobile base station networks with
six sides consecutively attached.

4.5.1. Regular Hexagonal Cells Network

Let G = RH(m, n). The vertices of G are both of degree 2 or 3, as referenced in Figure 9.
By estimation, we obtain that G has 4 mn + 4m + m − 2 vertices and 6 mn + 5m + n − 4
edges. In G, there are three kinds of edges in light of the level of end vertices of each edge
Table 6 provides a detailed description of the edge set.

4.5.2. Theorem 5

Let G be a graph of the regular hexagonal network, then, after investigation of honey-
comb graphs by ISO index.

ISO (G) =
√

5(4m + 4n− 4) (6)

Equation (6) represents the proven results of the graph through edge partitions
mentioned in Table 6 of regular hexagonal mentioned in Figure 9. with the help of the
ISO Index.

Figure 10 Shows the results of irregularities found in the topology of a hexagonal
network through the ISO index.
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Table 7 describes the edge partitions of graph G of the Sierpinski graph with frequen-
cies given in Figure 11.

Table 7. Edge partition of Sierpinski (Sn).

E ε(du, dv) De ε(du, de) Recurrence

ε1 ε(2, 4) 4 ε(2, 4) 6

ε2 ε(4, 4) 6 ε(4, 6) 3n − 6
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Figure 11. Sierpinski Network (Sn).

4.6. Main Results

Figure 11 shows Sierpinski Network with dimension (Sn), which is used in computer
science and electronics for applying the loop concept. It is very much effective in in-
tegrated circuits, memory interconnection networks, power generation interconnection
networks, etc.

4.6.1. Sierpinski Network Graph

Suppose E (G) symbolizes the set of edges. Figure 11 shows two distinct kinds of edges
existing in the network graph of Sierpinski. Table 7 explains in detail the edges partition.

4.6.2. Theorem 6

Let G be a graph of Sn, then, after investigation of Sn graphs by ISO index

ISO (G) = 12
√

3 (7)

Equation (7) represents the proven results of the graph through edge partitions men-
tioned in Table 7 of Sn mentioned in Figure 11. with the help of the ISO index for the sake
of improvements in existing networks and the development of new architectures.

Figure 12 shows the results of irregularities found in the topology of a Sierpinski
network through the ISO index.
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Table 8 describes the edge partitions of graph G of the Sierpinski network graph given
in Figure 13 with frequencies.

Table 8. Edge partition of Sierpinski Network S(n, k).

ε ε(du, dv) De ε(du, de) Recurrence

ε1 ε(2, k) k ε(2, k) 2k

ε2 ε(3, 3) 4 ε(3, 4) (kn+1 − 5k)/2
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4.7. Main Results
4.7.1. Sierpinski Network S(n, k)

Suppose E (G) characterizes the set of edges Figure 13 shows that there are two distinct
classes of edges existing in the Sierpinski network graph of S(n, k). Table 8 explains in detail
the edges partition.

Figure 13 shows the Sierpinski Network S(n, k) with two distinct edges named ‘n’ and
‘k’ for generalizing the network or graph.

4.7.2. Theorem 7

Let G be a graph of S(n, k), then after investigation of S(n, k) graphs by ISO index

ISO (G) = 2
√∣∣∣k2 − 4

∣∣∣ k (8)

Equation (8) represents the proven results of the graph through edge partitions men-
tioned in Table 8 of S(n, k) mentioned in Figure 13 with the help of the ISO index.

Figure 14 shows the results of irregularities found in the topology of a Sierpinski S(n, k)
network through the ISO index.
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5. Conclusions

TIs have loads of purposes and executions in many fields of computer science, chem-
istry, physics, informatics, mathematics, material sciences, and more. Be that as it may, the
greatest possible level of huge application is in the non-definite QSPR and QSAR. TIs are
related to the structure of networks, the spine of the web, LANs, memory structure, mobile
base station structure, and chemical structure. However, the present article talks about
the ISO index, which is newly introduced and has various expectation qualities in setting
anomalies in the topologies of the specific computer networks. The review found anomalies
in the topologies of the various variations of bridge graphs or networks, i.e., Gr (Ps, v),
Gr (Cs, v) and Gr (Ks, v), honeycomb network HCn, hexagonal network H(m, n), Sierpinski
networks, i.e., Sn, S(n, k) networks. Figure 2, Figure 4, Figure 6, Figure 8, Figure 10, Figure 12,
and Figure 14 give the graphical representation of the ISO index for the above-mentioned
graphs of networks. Irregularity Sombor Index found lower bounds, upper bounds, and
irregularities of all mentioned networks well prediction quality of best characteristic. These
reasoned outcomes will be utilized for the modeling of computer networks (like LAN,
MAN, WAN, and the spine of the web), mobile, base station power generation intercon-
nection networks, memory interconnection networks, processor interconnection networks,
chemical structures, picture handling, bioinformatics, and so on.
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