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Abstract: As a representative of sampling-based planning algorithms, rapidly exploring random tree
(RRT), is extensively welcomed in solving robot path planning problems due to its wide application
range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to
plan the path for configuration space with narrow passages. As a variant algorithm of RRT, rapid
random discovery vine (RRV) gives a better solution, but when configuration space contains more
obstacles instead of narrow passages, RRV performs slightly worse than RRT. In order to solve
these problems, this paper re-examines the role of sampling points in RRT. Firstly, according to the
state of the random tree expanding towards the current sampling point, a greedy sampling space
reduction strategy is proposed, which decreases the redundant expansion of the random tree in space
by dynamically changing the sampling space. Secondly, a new narrow passage judgment method
is proposed according to the environment around of sampling point. After the narrow passage is
identified, the narrow passage is explored by generating multiple subtrees inside the passage. The
subtrees can be merged into the main tree that expands in a larger area by subsequent sampling.
These improvements further enhance the value of sampling points. Compared with the existing
RRT algorithms, the adaptability for different environments is improved, and the planning time and
memory usage are saved.

Keywords: path planning; RRT; narrow passage; complex environment

1. Introduction

With the rising use of applications such as unmanned aerial vehicles (UAV), au-
tonomous driving, and mobile robots, path planning as an essential part of their technology
have long been a research hotspot of scholars [1,2]. The main task of path planning is to
find an optimal or sub-optimal path from the initial configuration to the goal configuration
in the configuration space according to specific performance criteria, such as path length,
planning time, and whether the vehicle kinematics are satisfied.

Among many types of algorithms, the graph-based search method represented by
A* [3] and Dijkstra’s algorithm [4] divides the configuration space mapped from the real
environment into multiple grids according to the size of the resolution and then uses the
graph search method to find feasible paths. The resolution size has a decisive impact on
this type of algorithm’s performance. An overly complex and sizeable real environment
often causes an exponential increase in computing time and memory usage [5]. As another
important class of planning algorithms, sampling-based planning algorithms, represented
by RRT [6] and Probabilistic Road Map (PRM) [7], simplify the configuration space by
random sampling. Therefore, they do not require complex geometric modelling and
perform better in high dimensions or large environments. Probabilistic completeness
guarantees that if at least one feasible path exists, the probability of this class of methods
finding the path will be 1 [8,9].

Although sampling-based methods have many advantages for path planning, the
performance of such algorithms still has challenges when the configuration space contains
multiple narrow passages [10,11]. As a single-query, RRT plans a path by constructing a
random tree extending from the initial configuration to the goal configuration by continuous
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random sampling. As a multi-query, the PRM needs to generate several random sampling
points at the preprocess stage and then connect these points to each other to form a
connectivity graph, thus capturing the configuration space’s connectivity. Due to the special
property of random sampling, both RRT and PRM are affected by the volume limitation
of free space in the random sampling process. Specifically, the branches generated when
RRT constructs a random tree are almost impossible to expand in narrow passages, and
PRM is difficult to generate random sampling points in the collision-free configuration
space with small volumes, thus affecting the construction of connected graphs. To solve
the problem that the sample-based algorithm has insufficient planning ability for narrow
passages, scholars have given many solutions. For PRM, in [12], the author proposes an
extended-retract map that makes the sampling points all fall on the central axis of free
space. In [13], the author proposed a strategy based on Gaussian sampling. This strategy
will increase the sampling points located at the boundary between the obstacle and the free
space and eventually generate many sampling points around the obstacle. However, it is
not considered that the sampling point is around the obstacle but not necessarily inside
the narrow passage. In [14], the author proposes a bridge connection test method to detect
narrow passages. In this method, a bridge is built by sampling points located on two
different obstacles. If the midpoint of the bridge is in free space, it means that it has passed
the bridge test. Obviously, narrow passages make it easier to build such bridges. In [15], the
author uses an artificial potential field to make the sampling point located on the obstacle
move to free space under the action of repulsive force. In [16], the authors coordinately
map both the obstacle space and the free space at the same time, increasing the connectivity
of the graph inversely through failed connections.

For RRT, since RRT is more goal-oriented than PRM, it is planning a path while
constructing a tree, which makes the improvement of RRT have greater potential. In [17],
the authors propose a Voronoi bias-based planner and improve the sampling strategy
according to the visibility of the regions by nodes in the tree. In [18], the authors regress
the sampling points located on the obstacle so that the tree can expand around the edge of
the obstacle, thus ensuring the exploration inside the passages. In [19], the author reduces
the total number of samples by rejecting nodes located in the repeated sampling area and
proposes a random steer strategy for the narrow passage area, as well as the fusion and
adjustment of the path to make the path close to the optimal path. In [20], the authors use
a simple heuristic to generate additional subtrees in the configuration space and control
the expansion of the subtrees through parameters. In [21], a modified bridge test is used
to identify narrow passages and relies on multiple subtrees to explore narrow passages.
In [22], the author balances the exploration of global and local random trees through
Markov chains. In [23], the authors use PRM globally and rely on special sampling points
to activate RRT and use RRT to explore the complex environment. Based on this idea, RRT
can be combined with various variants of PRM.

In particular, with the development of machine learning methods in recent years,
learning-based path-planning methods have been extensively developed. In [24], for dy-
namically changing environments, the authors build a predictive model using Support
Vector Machine (SVM) to capture the connectivity of narrow passages. In [25], the authors
learn by analyzing the density of samples around special regions, using semantic informa-
tion to guide the distribution of sampling points in random sampling. In [26], the authors
model the expansion of random trees as a multi-armed bandit problem and learn action
values through reinforcement learning. In [27], the author uses a large number of asymp-
totically optimal paths planned by A* as a dataset to train convolutional neural network
(CNN) model, which can predict the optimal path on the map and guide the distribution of
sampling points. In [28], the authors perform local sampling around the sampling point
that are difficult to expand, and by performing principal component analysis (PCA) on
these local sampling points, the local surrounding environment is divided into narrow
passage entrances, narrow passage interiors, and obstacle edges, so random trees can climb
obstacles in different environments like vines to expand. This method has achieved good
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results in the environment with narrow passages. However, due to its dependence on the
environment, the performance is slightly worse than RRT in an environment with many
obstacles but no narrow passages.

In addition, when solving the problem of narrow passages, the above methods mostly
ignore the randomness of whole configuration space sampling, which often leads to part
of sampling points in space that are not helpful for the final path construction so that
increasing the total planning time and wasting memory resources. This paper proposes a
new planning algorithm based on the RRT named Reduce-Judge RRT (RJ-RRT). Specifically,
the new algorithm includes two improvements: firstly, based on the greedy idea, a sampling
strategy is proposed to reduce the sampling space to the goal area gradually. Secondly, a
new method of environment judgment is proposed, when a narrow passage is identified, it
can be explored by subtrees expansion inside the passages. The improved environment
judgment method only needs a straightforward calculation to determine the environment
around the current sampling point. Both strategies improve planning efficiency. On the
one hand, random sampling points are used to reduce the sampling space to avoid random
tree expansion in space that does not help with path planning. On the other hand, random
sampling points are used to detect the surrounding environment, and the subtree of narrow
passages helps the random tree expand in the configuration space that is difficult to explore.
The results show that the algorithm has good adaptability to various environments, and
can greatly reduce the planning time and memory usage.

The rest of this paper is outlined as follows. Section 2 formally defines the path
planning problem and introduces the preconditions of the proposed algorithm. Section 3
explains the RJ-RRT method proposed in this paper. Section 4 provides the results and
evaluation of the simulation experiments. Section 5 concludes this paper and discusses
future research directions.

2. Background

This section formally defines the problem that path planning needs to solve and
introduces algorithms such as Basic-RRT.

2.1. Problem Definition

Let X ∈ Rd be the the configuration space of the path planning problem,where d ∈ N,
d ≥ 2. Let Xobs ∈ X be the obstacle space, which is an impassable space, and denotes
the obstacle-free space as X f ree = X \ Xobs, which is a passable space. xinit ∈ X f ree and
xgoal ∈ X f ree are the initial configuration and the goal configuration, respectively, and the

goal region is defined as a circle with radius r: Xgoal =

{
x ∈ X

∣∣∣∣||x− xgoal || < r
}

. A path

is defined by continuous function σ : [0, T]→ X f ree, and σ(0) = xinit , σ(T) = xgoal . If the
path is feasible, then σ(τ) ∈ X f ree for all τ ∈ [0, T].

The path planning problem is to find a feasible path. Problem 1 defines the feasibility
problem of path planning.

Problem 1 (Feasible Path Planning) Given a configuration space of planning problem
X ∈ Rd, a free space X f ree, an initial state xinit ∈ X f ree, and a goal region Xgoal ∈ X f ree, find
a path σ : [0 : T]→ X f ree if one exists. If no such feasible path exists, return failure.

The cost from the initial configuration to the goal region is not necessarily the same
each time planning or on each path. Let c(·) be the cost function. The optimization problem
of path planning is to find the path with minimum (non-negative) path cost. Its formal
expression is given by Problem 2.

Problem 2 (Optimal Path Planning) Given a configuration space of planning problem
X ∈ Rd, a free space X f ree, an initial state xinit ∈ X f ree, a goal region Xgoal ∈ X f ree and cost

function c. Find a feasible path σ∗, such that c(σ∗) = min
{

c(σ) : σ ∈ ∑ f easible

}
.

The path planning algorithm usually takes some time to plan the path. Let t ∈ R be
the set of times it takes to find a set of paths. Problem 3 defines finding the best path in
Problem 2 in the least amount of time possible.
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Problem 3 (Fast Path Planning) Minimum time t ∈ R required to plan the Optimal
Path.

2.2. Basic-RRT

The Basic-RRT algorithm is described in Algorithm 1 and the Basic-RRT is the basis
of RJ-RRT, an underlying tree data structure is maintained in Basic-RRT. As shown in
Figure 1. Firstly, Basic-RRT creates a tree rooted at the xinit (Line 1 in Algorithm 1). In
each subsequent iteration, xrand is obtained by randomly sampling in the configuration
space X, traversing the existing nodes in the tree, selecting the node xnear closest to xrand,
and generating xnew through the steering function with a certain expand size (Lines 3–5
in Algorithm 1). If the edge {xnear, xnew} is not located in Xobs, then xnew is added to the
tree with xnear as the parent node, and the edge {xnear, xnew} will be recorded (Lines 6–8
in Algorithm 1). When xnew is within the range of Xgoal , the planning is ended, and the
tree is returned. The return fails when the time-out or the number of iterations is exceeded
(Lines 9–11 in Algorithm 1).

Figure 1. Expand of Basic-RRT.

Algorithm 1 Basie-RRT

1: Tree← xinit
2: for i = 1 to n do
3: xrand ← Sample()
4: xnear ← Nearest()
5: xnew ← Steer(xrand, xnear)
6: if FreeCollision(xrand, xnear) then
7: Tree.addEdge(xnear, xnew)
8: Tree.addNode(xnew)
9: if xnew ∈ Xgoal then

10: return Tree
11: end if
12: end if
13: end for

RRT-Biased [29] is an efficient method to improve RRT. By the premise of a certain
probability, the xgoal is set as the sampling point so that the tree can expands faster to the
goal area. In Algorithm 2, given a brief description of RRT-Biased.
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Algorithm 2 Biased-RRT

1: prand← RandomNumber()
2: if prand ≤ K then
3: xrand = xgoal
4: else
5: xrand ← Sample()
6: end if

In this paper, the tree is rooted at xinit denoted as main tree. The rest of the trees
denoted as subtrees.

3. RJ-RRT

In the Basic-RRT algorithm, the selection of random sampling points is in the entire
configuration space or can be described as blind, such as in a certain sampling, the current
sampling point is likely very close to the goal region, however, due to the randomness
of sampling, the position of the sampling point in the subsequent sampling process is
biased., the random tree will likely expand to a region that does not have a facilitation
effect on the final path generation. RRT-Biased, although through a forced modification
make the random tree is biased expand towards the goal region, when encountering a
trap or a complex environment, it falls into the same predicament as Basic-RRT. The role
of sampling points for Basic-RRT is to guide the expansion direction of the random tree.
If the random tree can quickly approach the goal region, it needs to expand toward the
goal region while avoiding obstacles. This is also a requirement for an efficient planner can
generate sampling points. To achieve this efficacy and enhance the value of sampling points,
in RJ-RRT, sampling space greedy reduction and environment judgement are performed
through sampling points, and subtrees are expand in special environments. The overall
framework of the RJ-RRT is given by Algorithm 3 and in the subsequent sections detailed
description of each improvement.

Algorithm 3 RJ-RRT

1: MainTree← xinit
2: for i = 1 to n do
3: xrand ← GreedSpaceSampling()
4: SubTrees← Environmental Judgment(xrand)
5: if FreeCollision(xrand, xnear) then
6: MainTree.addEdge(xnear, xnew)
7: MainTree.addNode(xnew)
8: if xnew ∈ Xgoal then
9: return MainTree

10: end if
11: SubTreeExpand()
12: SubTreeMerge()
13: end if
14: end for

3.1. Sampling Space Greedy Reduction Strategy

When there is only the root node xinit in the tree, like the sampling strategy is the same
as Basic-RRT, sampling points will be randomly selected in the entire configuration space
X (Line 1 in Algorithm 3). A space greedy reduction strategy is executed when xnew is
successfully added to the tree, which is shown in Algorithm 4. For ease of description, the
configuration space is denoted as the first OriginalSpace. When a node xnew is successfully
added to the tree, the OriginalSpace will be reduced (Lines 1–2 in Algorithm 4). The
specific process is to take xnew as the boundary point of the new sampling space and use the
boundary point as the benchmark to divide the OriginalSpace in each dimension to obtain
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a subspace containing the goal region. This subspace will be used as the space for the next
random sampling and denoted as NextSpace. In the next sampling, this NextSpace will
replaced by OriginalSpace (Lines 3–6 in Algorithm 4). At this time, the sampling space
completes a reduction. After each sampling space is reduced, record the GapSpace between
NextSpace and the OriginalSpace, where GapSpace is defined as Equation (1):

GapSpace = OriginalSpace \ (OriginalSpace ∩ NextSpace) (1)

As the number of space reductions increases, will generate N GapSpace, denoted as
Gap1, Gap2. . . GapN . Ideally, the sampling space will gradually approach the goal region
as the number of sampling increases, but this situation is often not practical. When the
random tree expansion with random sampling fails in the OriginalSpace, it means that
the current space has failed to be reduced, and the space to sample will fall back to the
GapSpace (GapN) nearest to the OriginalSpace (Line 8 in Algorithm 4). Specifically, when
executing this function, sampling will first take place in the GapSpace and perform multiple
times to provide more node expansion options for the next space reduction. When the
specified sampling times are reached in the GapSpace, forward to the space where the space
reduction failed, that is, the OriginalSpace for sampling. If the expansion is successful
after sampling, the random tree continues to expand according to the above reduction
strategy. If the expansion fails, fall back to the previous GapSpace (GapN−1) sampling of
the GapSpace (GapN). After sampling multiple times, forward to the GapSpace (GapN),
sample again, and finally, forward to the OriginalSpace for sampling. If the reduction still
fails, continue to fall back to sampling in more outer GapSpace, and then sample in the
next GapSpace of each GapSpace in turn. When fall back to the first GapSpace sampling,
namely Gap1, the random tree generated by RJ-RRT in the configuration space is like the
Basic- RRT.

Algorithm 4 GreedSpaceSampling

1: OriginalSpace = Con f igurationSpace
2: xrand ← Sample(OriginalSpace)
3: if FreeCollision(xrand, xnear) then
4: NextSpace← Reduce(xrand, Xgoal)
5: GapSpace← Reduce(OriginalSpace, NextSpace)
6: OriginalSpace = NextSpace
7: else
8: xrand ← BackwithForwardSample(GapSpace)
9: end if

Take Figure 2 as an example. Firstly, A is the configuration space and the first
OriginalSpace. After the sampling and steering function, the newly added node is P1.
The sampling space is reduced as the random tree expands, through P1 formed new sam-
pling space B. Sampling in B to obtain node P2, the space is further reduced to obtain
sampling space C, sampling in C, random tree expansion is difficult, indicating that the
current space cannot be further reduced, fall back to the GapSpace between B and C for
sampling, and after multiple samplings, forward to sample in C, the space reduce still fail,
come back to sampling in the GapSpace between A and B to sample multiple times, forward
again to sampling in the GapSpace between B and C, and finally forward to sampling and
expanding in C.
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Figure 2. The sampling space A is reduced to B through P1 and then reduced to C through P2. The
expansion fails in C. The first fall back sampling and then forward sampling.

3.2. Environmental Judgment

The main purpose of environmental judgment is to identify narrow passages and set
the expansion space of subtrees (Line 4 in Algorithm 3). Environmental judgment will
mainly occur during part of the sampling process, and special cases where environmental
judgment is not performed will be described in the next section.

When randomly generating a sampling point xrand in the sampling space, the envi-
ronment around xrand will be judged. As shown in Figure 3. Firstly, if xrand is located in
X f ree, the subsequent judgment will be omitted. If xrand is located in Xobs, then perform
local sampling in the circle with xrand as the center and R1 as the radius to obtain N1
sampling points and determine the space where these sampling points are located (Line 1
in Algorithm 5). If there are sample points located in X f ree, it can be inferred that xrand is at
the boundary of the obstacle and close to free space. Randomly pick a sampling point in
X f ree, denoted as xcir. Divide the circle with xcir as the center and R2 as the radius into
eight equal parts and obtain eight marked points on the boundary of the circle, denoted as
M1, M2, M3, M4, M5, M6, M7, and M8 (Lines 2–3 in Algorithm 5). Through the location of
the marked points, it is further identified whether the current surrounding environment of
xcir is the inside of the narrow passage or the entrance of the narrow passage. The process
of judging the surrounding environment of the sampling point is given by Algorithm 5.

Algorithm 5 EnvironmentalJudgment

1: xcir ← LocalSample(xrand)
2: MarkedPoints← Local Judgement(xcir)
3: SubTreeExpandSpace← Local Judgement(MarkedPoints)
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Figure 3. Locally sample around xrand. xrand1, xrand2, xrand3, and xrand4 show four different
cases, respectively. When there are sampling points in the free space in the local sampling, such as
xrand1 and xrand2, then the surrounding environment of xrand is further judgments, xrand3 and
xrand4 will not make further judgments.

Inside the narrow passage: as shown in Figure 4, when two or four marked points are
located in X f ree, the remaining marked points are located in Xobs, and where each marked
point located in free space is matched with another free point with an angle of 180°. Then,
we inferred that xcir is located inside the narrow passage. In this case, the constructed
subtree expansion space is a rectangle (If the configuration space is 3D, will be a cube). The
center of the rectangle is at xcir, where the long side is parallel to the line formed by the
180° marked points in free space, and the length of the side is L1. The other short side of
the rectangle is L2. This stretched rectangle constitutes the sampling space of the subtree.

(a) (b)

Figure 4. (a,b) are examples of xcir inside the narrow passage.

Entrance of the narrow passage: when the marked points are distributed similarly
to Figure 5, that is, there are three or four consecutive marked points and an additional
isolated marked point (in Figure 5, the isolated marked point is M3) in the free space,
while the adjacent to the isolated marked point or remaining marked points are located
in the obstacle space then it is inferred that xcir is located at the entrance of the narrow
passage, and isolated marked point is used to identify narrow passage entrance and guide
exploration. The constructed subtree expansion space is like that inside the narrow space.
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The difference is that the stretching of the subtree expansion space is only carried out in the
same direction as the isolated marked point.

(a) (b)

Figure 5. (a,b) are examples of xcir in the entrance of the narrow passage.

The generated subtree expansion space roughly depicts the outline of the narrow
passage without the details of the narrow passage configuration, so this method does
not require complex calculations. Using randomness of RRT sampling can obtain the
configuration of free space in subtree extended space. Once a subtree expansion space
is determined according to xcir, the subtree expansion will be performed immediately.
There are two attendant problems. Question 1: How to avoid the unlimited generation of
multiple xcir? Question 2: How to avoid repeated exploration of the same narrow passage
by multiple subtrees due to overlapping subtree expansion spaces? For Question 1, the
unrestricted generation of subtrees is prevented by judging whether the xcir is already
within the expansion interval of some subtree. This method will also cause problems raised
in Question 2. For Question 2, it can be solved by simple subtree merging, and the specific
measures are discussed in the next section.

3.3. Subtree Expansion and Merge
3.3.1. Subtree Expansion

When judging that xcir is located inside a narrow passage or at the entrance, take
xcir as the root of the subtree, randomly sample, and expand in the constructed subtree
expansion space (Line 11 in Algorithm 3), and the expansion method is the same as that
of Basic-RRT. Figure 6 shows the flow of subtree expansion. In addition, the expansion
of the subtree will have a pre-expansion process, firstly sampling N2 times in the subtree
expansion space. These sampling points do not make environmental judgments, and the
external main tree does not expand with these sampling points. For other subtrees, if the
distance between the xnear and xrand is less than D1, it indicates that these subtrees may
be very close, and these subtrees will expand with this sampling. Then, when this space
sampling ends, it will return to the OriginalSpace for sampling, and both the main tree and
the subtrees will expand with each sampling. However the space reduction only happens
in the expansion of the main tree.
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Figure 6. Schematic of SubTree expansion.

3.3.2. Subtree Merge

Subtree merge can be divided into subtree with subtree and subtree with main tree
merge (Line 12 in Algorithm 3). Subtree process of merging is given by Algorithm 6.

When sampling in OriginalSpace, if the distance between the nearest node is less than
D2 after the main tree and the subtrees expand once, the subtrees are merged into the
main tree (Lines 4–5 in Algorithm 6). When sampling in the OriginalSpace or the subtree
expansion space, if there are two or more subtrees after expanding once, the distance
between the nearest nodes is less than D2, then the multiple subtrees are merged into one
subtree (Lines 7–9 in Algorithm 6). This method not only merges multiple subtrees but also
avoids the over-exploration of narrow passages caused by overlapping subtree expansion
spaces.

The premise of merging multiple random trees is that there is no collision between the
nearest nodes.

Algorithm 6 Subtree merge

1: if xrand ← Sample() then
2: MainTreeExpand()
3: SubTreeExpand()
4: if Distance(MainTree, SubTrees) < D2 then
5: MainTree = (MainTree ∪ SubTree)
6: end if
7: if Distance(SubTree, OtherSubTree) < D2 then
8: SubTree = (SubTree ∪OtherSubTree)
9: end if

10: end if

4. Simulation and Result

In this section, to evaluate the performance of the proposed algorithm, RJ-RRT is com-
pared with Basic-RRT and RRV through a series of experiments. Simulation experiments
were tested in three groups of different environments. As shown in Figure 7, three repre-
sentative maps are designed in two-dimensional space: complex environment (containing
many obstacles), narrow passage, and bug trap environment. The map size of each environ-
ment is 10*10. The initial configuration in the first two groups is [0.5, 0.5], the last group’s
initial configuration is [2, 3.5], and the goal configuration uniformly is [9.8, 9.8]. The black
area represents obstacles, the green line represents the expansion state of the random tree,
and the red line represents the final planned path. Each set of experiments is performed
50 times to collect experimental data. In order to clearly describe the differences in the per-
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formance of different algorithms, the average and maximum and minimum execution times
of different algorithms in 50 experiments were calculated, and the number of generated
nodes was used to reflect the memory usage. The number of collision detections for RRV
and RJ-RRT includes additional nodes required for environmental judgment. All-time units
are seconds. All algorithms use Gilbert–Johnson–Keerthi (GJK) [30] for collision detection,
and the maximum number of iterations is 50,000. To speed up the planning, the three
algorithms uniformly set the sampling probability in the goal space as 0.1. The expand
size in the first two sets of experiments was 0.1. In our RJ-RRT, R1 is set to 0.5, N1 is set
to 15, R2 is set to 0.7, L1 is set to 3, L2 is set to 1.5, and D1 and D2 are set to 0.7 and 0.5,
respectively. All experiments were run on Windows 10 with Intel I7-7700, 3.6 Ghz 8 GB
RAM processor, and using MATLAB 2019b as a software platform.

(a) (b)

(c)

Figure 7. Three different maps in the experiment. (a) Complex; (b) Narrow passage; (c) Bug Trap.

4.1. Complex Environment

Figure 8 shows the performance of the three algorithms in a complex environment.
When testing the Basic-RRT algorithm, due to random sampling in the entire configuration
space, the final generated random tree occupies almost the entire space. However, although
the final tree generated by the RRV algorithm produces fewer nodes than RRT, it still
expands in a lot of useless space, and PCA takes a lot of time to calculate. The average
number of samples required by the RRV to plan a path is 29% less than that of the Basic-RRT,
but the final average planning time is 51% higher than that of the Basic-RRT. The RJ-RRT has
the best performance in this environment. The experimental results in the figure show that
only a few redundant nodes are generated during the sampling process, and the planning
time is the shortest. The specific statistical results of the three algorithms are shown in
Table 1. It can be seen that with the setting of the maximum number of iterations, the three
algorithms can find the path 100% in the test. In terms of planning time, RJ-RRT saves



Appl. Sci. 2022, 12, 12033 12 of 17

87% compared to Basic-RRT, and 92% compared to RRV. The memory consumption of the
generating node is 96% lower than that of Basic-RRT and 94% lower than that of RRV.

(a) (b)

(c)

Figure 8. The performance of the three algorithms in complex environments. (a) RRT; (b) RRV;
(c) RJ-RRT.

Table 1. Results of three algorithms in complex environment.

Algorithm Average Time (s) Min Time (s) Max Time (s)
Average Number

of Collisions
Detections

Average Number
of Nodes

RRT 1.982 0.452 2.741 2338 1542
RRV 3.143 1.310 5.593 2975 1094

RJ-RRT 0.239 0.127 0.874 103 55

4.2. Narrow Passage

Figure 9 shows the planning performance of the three algorithms in a narrow passage
environment. The experimental results show that when Basic-RRT faces a configuration
space containing narrow passages, due to the lack of identification of the particular config-
uration of the narrow passage, it is not only challenging to find the entrance of the narrow
passage but also challenging to expand inside the passage, so successful path-planning
usually requires a large number of sampling points and more time. From Table 2, it can
be concluded that, in this environment, both RRV and RJ-RRT perform better than RRT,
while RJ-RRT requires the least amount of time and takes the least number of samples, on
average 1.276 s, and generates an average of 227 sampling nodes. Compared with RRV, it
saves 45% of planning time and 76% of the generation of the number of nodes. This means
that the RJ-RRT can quickly plan a feasible path and occupy fewer memory resources for a
narrow passage environment.
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(a) (b)

(c)

Figure 9. The performance of the three algorithms in narrow passage. (a) RRT; (b) RRV; (c) RJ-RRT.

Table 2. Results of three algorithms in narrow passage.

Algorithm Average Time (s) Min Time (s) Max Time (s)
Average Number

of Collisions
Detections

Average Number
of Nodes

RRT 4.937 1.575 10.489 7648 1347
RRV 2.338 1.031 5.944 3327 958

RJ-RRT 1.276 0.475 1.749 678 227

4.3. Bug Trap

The expanded size also affects the number of iterations and memory usage of the RRT
and RRT variants. In RJ-RRT, the magnitude of each reduction in the sampling space is also
determined by the size of the random tree expansion. Therefore, to analyze the influence of
different expand sizes on the performance of different algorithms, we use 0.1/0.3 as the
expand size for discussion in this experiment. Tables 3 and 4 are the experimental data
results when the expand size is 0.1 and 0.3, respectively, and Figure 10 shows the planning
performance when the expand size is 0.3. It can be seen from Tables 3 and 4 that RJ-RRT
and RRV perform better than RRT in various performance aspects under different expand
size settings. When the expand size is 0.1, RJ-RRT is higher than RRV in generating the
total number of nodes. This is because the environment in this experimental, the long
and narrow trap passage and short expand size lead to multiple GapSpaces in the RJ-RRT
planning process, resulting in the need for multiple fallback and forward operations. These
processes increase the number of samples and planning time, so the final performance
is not as good as RRV. When the expand size is set to 0.3, since the expand size increase
reduces the number of Gap Spaces, RJ-RRT can still plan a path using a smaller number of
nodes and a faster time.
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(a) (b)

(c)

Figure 10. The performance of the three algorithms in bug trap. (a) RRT; (b) RRV; (c) RJ-RRT.

Table 3. When extended size is 0.1 , the results of three algorithms in the bug trap.

Algorithm Average Time (s) Min Time (s) Max Time (s)
Average Number

of Collisions
Detections

Average Number
of Nodes

RRT 9.846 6.959 17.707 14596 5579
RRV 5.575 4.945 13.689 5920 2861

RJ-RRT 7.194 5.746 15.145 6218 3347

Table 4. When extended size is 0.3, the results of three algorithms in the bug trap.

Algorithm Average Time (s) Min Time (s) Max Time (s)
Average Number

of Collisions
Detections

Average Number
of Nodes

RRT 7.912 5.457 14.126 9829 2361
RRV 4.587 3.746 10.578 5124 1741

RJ-RRT 3.348 1.841 6.432 2546 967

4.4. Path Length

During the experiment, there was an additional discussion, due to the improvement of
RJ-RRT’s two strategies of greedy space reduction and dependent subtrees exploration, the
length of the final planned path is also reduced to a certain extent. Since the main content
discussed in this paper is to improve the adaptability of the RRT algorithm in complex
environments, especially in the narrow passage, rather than the path length, so only the
path length is briefly discussed in this experiment. Figure 7a is used for the map in this
experiment, and the rest of the settings are the same as those described above. RRT, RRV
and RJ-RRT were tested 50 times, respectively, and the difference between the average
of the planned path length of the three algorithms and the shortest path was compared.
Figure 11 shows the comparison results of different algorithms on path length. It can be
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seen that the difference in length between RRV and RJ-RRT is not obvious, about 82%, 87%
different from the shortest path and they both save much more distance than RRT.
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Figure 11. Approximation of three algorithms to the shortest path.

5. Conclusions

This paper proposes a new planning algorithm RJ-RRT based on the RRT algorithm to
solve the planning problem in narrow channels. A new greedy sampling space reduction
and environment judgment strategy are proposed in RJ-RRT. While accelerating the expan-
sion of random tree toward the goal area and reducing redundant nodes, it can identify
narrow passages and rely on the subtrees expend inside to explore passages.

Compared with RRT and RRV algorithms, RJ-RRT has better adaptability to different
environments and maintains a faster planning speed. In addition, another advantage of
RJ-RRT is that easy to combine with other RRT variant algorithms. However, the RJ-RRT
still has limitations. For example, is easily affected by the expand size. Therefore, in future
research, consider combining adaptive expand size and selectively merging multiple Gap
Spaces, while RJ-RRT should also be extended to 3D environments and incorporate robot
kinematics, making our algorithm closer to practical applications.
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