
Citation: Aladhadh, S.; Alwabli, H.;

Moulahi, T.; Al Asqah, M.

BChainGuard: A New Framework

for Cyberthreats Detection in

Blockchain Using Machine Learning.

Appl. Sci. 2022, 12, 12026. https://

doi.org/10.3390/app122312026

Academic Editor: Xiaoyang Liu

Received: 13 October 2022

Accepted: 18 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

BChainGuard: A New Framework for Cyberthreats Detection in
Blockchain Using Machine Learning
Suliman Aladhadh * , Huda Alwabli, Tarek Moulahi * and Muneerah Al Asqah

Department of Information Technology, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia
* Correspondence: s.aladhadh@qu.edu.sa (S.A.); t.moulahi@qu.edu.sa (T.M.)

Abstract: Recently, blockchain technology has appeared as a powerful decentralized tool for data
integrity protection. The use of smart contracts in blockchain helped to provide a secure environment
for developing peer-to-peer applications. Blockchain has been used by the research community as a
tool for protection against attacks. The blockchain itself can be the objective of many cyberthreats.
In the literature, there are few research works aimed to protect the blockchain against cyberthreats
adopting, in most cases, statistical schemes based on smart contracts and causing deployment and
runtime overheads. Although, the power of machine learning tools there is insufficient use of these
techniques to protect blockchain against attacks. For that reason, we aim, in this paper, to propose a
new framework called BChainGuard for cyberthreat detection in blockchain. Our framework’s main
goal is to distinguish between normal and abnormal behavior of the traffic linked to the blockchain
network. In BChainGuard, the execution of the classification technique will be local. Next, we embed
only the decision function as a smart contract. The experimental result shows encouraging results
with an accuracy of detection of around 95% using SVM and 98.02% using MLP with a low runtime
and overhead in terms of consumed gas.

Keywords: blockchain; Ethereum; cyberthreats; machine learning; MLP; SVM; smart contract

1. Introduction

The concept of blockchain was firstly proposed by Satoshi Nakamoto in [1] as a
decentralized system for money transfer.

Blockchain is a system that consists of a network of multiple blocks where each block
contains several transactions, and each block connects to its previous block through a
hash-based procedure. This hashing procedure and the utilization of other cryptogra-
phy methods have given blockchain technology its property of protecting block content
integrity [1]. Figure 1 shows the list of blockchain characteristics [2], which are:

• Block: contains a list of information such as the block number, nonce, time stamp, data,
the hash of the previous block, and the hash of block itself.

• Ledger: a list of block forms a ledger.
• Distribution: is an important characteristic of blockchain, as blockchain architecture is

based on P2P network, and each miner contains the whole blockchain.
• Transaction: the data in the block are a list of transaction
• Confirmation: is needed by at least 51% of miners to validate the list of transactions in

the block.
• Proof of work: is the right value of nonce giving a block hash starting by a list of zeros.
• Result: add a new block to the blockchain.

1.1. Motivation and Problem Statement

Blockchain has attracted the research community, as well as the industry. Actually,
blockchain is used in serval domains such as the Internet of Things [3,4] and also in
healthcare [5,6], in addition to other fields such as finance [7].

Appl. Sci. 2022, 12, 12026. https://doi.org/10.3390/app122312026 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312026
https://doi.org/10.3390/app122312026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4349-8710
https://doi.org/10.3390/app122312026
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312026?type=check_update&version=2

Appl. Sci. 2022, 12, 12026 2 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 17

Figure 1. Blockchain characteristics.

1.1. Motivation and Problem Statement

Blockchain has attracted the research community, as well as the industry. Actually,

blockchain is used in serval domains such as the Internet of Things [3,4] and also in

healthcare [5,6], in addition to other fields such as finance [7].

Blockchain characteristics ensure content and operations safety, making it a suitable

choice for system security, although its characteristics are the subject of many cyberthreats

such as DDoS, eclipse, 51% attack, and so on. Therefore, developing a cyberthreats detec-

tion system on the blockchain is highly needed.

Although many efforts have been made by the research community to tackle block-

chain threats, this domain needs more investigation. Most of the proposed framework in

this context is using statistical methods or simple algorithms, but machine learning tech-

niques are lowly used. Furthermore, there are many limitations in existing related works

such as the overheads due to deployment and runtime. More details will be given later in

this paper.

1.2. Objectives

The main objective of this paper is to develop a framework called BChainGuard for

cyberthreats detection in Blockchain. BChainGuard will be based on smart contracts in

order to assure safe execution and on machine learning tools in order to provide high-

accuracy detection. This will help to distinguish between normal and abnormal behavior

of the traffic linked to the blockchain network. This choice will decrease the deployment

and the runtime overhead. In the proposed framework, the execution of the classification

technique will be in a local machine. Next, we embed only the decision function as a smart

contract. This will create a new layer in blockchain for cyberthreat detection.

The contributions of this research work can be summarized as follows:

• Build a novel framework to detect cyberthreats on blockchain by merging machine

learning and deep learning to increase the accuracy of detection and the blockchain

itself.

• Propose a new layer in the blockchain-based on smart contracts for cyberthreats de-

tection in order to protect the blockchain.

• Measure the effectiveness of the proposed technique by comparing it with an existing

solution [8] in terms of accuracy, deployment, and execution overhead.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 outlines the literature review

including a study of recently proposed techniques that deal with the issue of blockchain

attacks and protection. Section 3 describes the BChainGuard contribution. Section 4 pre-

sents the experimental study. Finally, the conclusion is given in Section 5.

2. Literature Review

This section is divided into three subsections. First, a study on the most relevant at-

tacks on the blockchain is given. Next, it goes through a literature review to outline the

Block Disrubution Confimation Tansaction Ledger
Proof of

Work
Result

Figure 1. Blockchain characteristics.

Blockchain characteristics ensure content and operations safety, making it a suitable
choice for system security, although its characteristics are the subject of many cyberthreats
such as DDoS, eclipse, 51% attack, and so on. Therefore, developing a cyberthreats detection
system on the blockchain is highly needed.

Although many efforts have been made by the research community to tackle blockchain
threats, this domain needs more investigation. Most of the proposed framework in this
context is using statistical methods or simple algorithms, but machine learning techniques
are lowly used. Furthermore, there are many limitations in existing related works such
as the overheads due to deployment and runtime. More details will be given later in
this paper.

1.2. Objectives

The main objective of this paper is to develop a framework called BChainGuard for
cyberthreats detection in Blockchain. BChainGuard will be based on smart contracts in
order to assure safe execution and on machine learning tools in order to provide high-
accuracy detection. This will help to distinguish between normal and abnormal behavior
of the traffic linked to the blockchain network. This choice will decrease the deployment
and the runtime overhead. In the proposed framework, the execution of the classification
technique will be in a local machine. Next, we embed only the decision function as a smart
contract. This will create a new layer in blockchain for cyberthreat detection.

The contributions of this research work can be summarized as follows:

• Build a novel framework to detect cyberthreats on blockchain by merging machine
learning and deep learning to increase the accuracy of detection and the blockchain itself.

• Propose a new layer in the blockchain-based on smart contracts for cyberthreats
detection in order to protect the blockchain.

• Measure the effectiveness of the proposed technique by comparing it with an existing
solution [8] in terms of accuracy, deployment, and execution overhead.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 outlines the literature review
including a study of recently proposed techniques that deal with the issue of blockchain
attacks and protection. Section 3 describes the BChainGuard contribution. Section 4 presents
the experimental study. Finally, the conclusion is given in Section 5.

2. Literature Review

This section is divided into three subsections. First, a study on the most relevant
attacks on the blockchain is given. Next, it goes through a literature review to outline the
framework and system for intrusion detection in the blockchain. Finally, we discuss and
compare these frameworks.

2.1. Review of Blockchain Cyberthreats

Many cyberthreats and their countermeasures have been studied by research commu-
nities. In what follows, we outline the most relevant works in this context.

In [9], the authors studied (Distributed Denial of Service) DDoS attacks. This attack
can cause an increase in mining fees, and it can have an effect on the cryptocurrency

Appl. Sci. 2022, 12, 12026 3 of 17

systems’ memory pools. The authors use Bitcoin mempools to study DDoS and to observe
its effect. To tackle DDoS attacks, the authors propose fee-based and age-based designs.
The proposed technique is validated through simulation studies with different kinds of
attack conditions.

In [10], the authors discussed a DAO attack. They proposed a framework called
VeriSolid to be used to formally verify smart contracts, which are using a transition system-
based model. This will help developers to check, at a high level of abstraction, the contract
behavior. The proposed framework helps in generating the Solidity code from the verified
models. This allows the development of smart contracts based on correct-by-design concept.

Another type of BC attack was studied in [11]. The authors showed that the most
widely used Ethereum implementation called Go Ethereum (Geth) is exposed to eclipse
attacks. For that reason, they study the fundamental properties of Geth’s node discovery,
which can be the cause of false friends’ attacks, and they propose countermeasures to avoid
the eclipse attack.

In [12], the authors proposed a countermeasure for a malleability attack. This attack
happens when the malicious tries to change some byte in the signature, while it may still
be effective, so that the attacker can control bitcoin transactions. To tackle this, attack the
authors suggest modifying the specification of bitcoin by calculating the transaction hash
deprived of its input script.

The paper of [13] dealt with time hijacking attacks that happened due to the vulnera-
bility of the time stamp process in bitcoin. The attacker alters the bitcoin time counter, as
well as the node’s time. This can lead to a perturbation of times. To avoid this attack, the
authors propose to not accept time ranges or not utilize the system time of nodes.

Sybil attack was discussed in [14]. This kind of attack occurs when the malicious try
to control the blockchain network by creating a great number of pseudonymous identities
and manipulating blockchain redundancy and anonymity. The authors proposed to avoid
this attack by proving identities using a trusted agency. This credible agency is responsible
for certifying identities. Before being part of a Peer-to-Peer network, a third party will be
used to authenticate it.

In [15], the authors outlined the phishing attack which happens when the attacker
tries to steal user credentials through websites or using untrue emails or both of them
simultaneously. To defend against this attack, the authors suggest adopting a strategy
based on excluding the unreasonable behavior of the user in addition to detecting and
filtering phishing resources. This will help to avoid the stolen of phishing infrastructure
elements such as passwords.

Border Gateway Protocol (BGP) attacks can target blockchains [16]. This attack is
linked to routing protocols. It happens when a malicious system creates and broadcast
fake advertisements to its neighbors. This can result in the redirection of traffic to specified
destinations. In this case, the attacker may control the node traffic destroying the consensus
mechanism. To defend against BGP attacks, the authors propose a new Bitcoin relay
network with great extensibility and safety denoted as SABRE, where blocks are relayed
using a list of connections that can resist attacks on routing.

In [17], the authors discussed selfish mining attacks. This attack occurs when selfish
miners use selfish techniques for getting non-deserved incomes. As an example, the
malicious miner pool decides to not disseminate the block after finding the next block and
to continue the hashing process in order to create a new valid chain and neglect the right
one. To tackle this attack, the authors proposed to neglect blocks that are not achieved in
time and give awards to blocks merging links into their previous competing blocks.

Another serious attack targeting blockchain is called the integer overflow attack [18].
This attack is a serious problem linked to Ethereum smart contracts, which are program
codes. The integer in these codes has an upper and lower limit. The integer overflow attack
can happen essentially in the value-type conversion, which can cause a big loss. To tackle
this kind of attack, the authors propose the Osiris framework in order to control integer
overflow in a smart contract by combining taint analysis and symbolic execution.

Appl. Sci. 2022, 12, 12026 4 of 17

2.2. Intrusion Detection System in Blockchain

Although blockchain has been widely used as a tool for IDS in other environments,
there is an extreme lack of IDS solutions on the blockchain.

In [19], the author proposed to use a GPU solution based on TRS (Target Rooted
Subgraph) to detect anomalies in transactions by using a part of the data. Through an
experimental study, the proposed techniques archive 195 times faster than the existing
method. Furthermore, it outperforms the existing method in terms of accuracy and true
positive rate, due to the use of subgraphs to detect local anomalies in the case of transactions
on a small scale. This rate is near the existing method in the case of transactions on a
large scale.

The authors In [20] proposed a method to detect anomalies in bitcoin transactions.
They use a dataset including a list of bitcoin transactions with normal behavior. The authors
created another list of transactions with abnormal behavior by including three types of
attacks, which are: DDoS, 51% attack, and Double spending attack. For the detection, they
used SVM (support vector machine) and K-means. Through experimental study, they show
that both techniques give good accuracy.

Since smart contracts are vulnerable to attacks, in [21], the authors discussed tackling
these vulnerabilities by proposing ContractGuard as the first intrusion detection system
for smart contracts in Ethereum. After deploying the proposed system with real smart
contracts in Ethereum, the authors showed the effectiveness of their solution in terms of
protection with low execution overheads (only add 28.27%) and with light deployment
(only add 36.14%). The vulnerabilities decreased by a rate of 83%.

In [22], the authors proposed SODA as a new framework for the online detection of
many attacks. The authors showed that SODA outperforms existing solutions in terms of
efficiency, compatibility, and capability. The aim of SODA is to let users rapidly develop
a new application for cyberthreat detection. To show the effectiveness of SODA, the
authors developed 8 applications, including new detection methods for the detection
of attacks focusing on smart contract vulnerabilities. SODA is also embedded into the
EVM-based blockchain. Through experiments, SODA shows effective attack detection with
low overhead.

Another proposed IDS was denoted BAD: Blockchain Anomaly Detection [23]. BAD
can detect only two types of attack: eclipse attack and zero-day attack. The main goal
of BAD is to detect anomalies in transactions in addition to preventing their spreading.
The prevention is based on the collection of malicious activities in addition to building
a distributed database of threats. The authors make an analysis of BAD overhead, its
implementation, and in order to show its effectiveness in the detection of eclipse attacks, as
well as zero-day attacks.

Recently, an important technique called SolGuard was proposed in [24] in order to
prevent all issues linked to smart contracts. The proposed work is based on using multi-
agent robotic systems. The work is based on studying Ethereum smart contracts to show
its vulnerabilities due to several programming problems—in particular, the use of low-
level calls to malicious resources. The proposed technique is performed by implementing
SolGuard, aiming to prevent three serious issues linked to low-level calls to malicious
resources done by smart contracts written in solidity. Through an empirical study, based
on efficiency and accuracy, the proposed technique is outperforming existing tools in the
same context.

In [25], DefectChecker was proposed aiming to detect defects in smart contracts by us-
ing symbolic execution to analyze the bytecode of the smart contract. In fact, DefectChecker
is using various rules in order to detect eight vulnerabilities in contracts. After running it on
a previous work dataset, it accomplishes encouraging results. DefectChecker outperforms
some existing tools for defect detection in smart contracts. The experiment shows that
15.89% of Ethereum smart contracts include at least one example of the eight vulnerabilities
in the contract.

Appl. Sci. 2022, 12, 12026 5 of 17

2.3. Discussion

In this subsection, we make a discussion of the previously outlined system and
framework for intrusion and threats detection in the blockchain. Table 1 presents a general
comparison of them.

Table 1. Comparison of the existing frameworks for blockchain intrusion detection.

Tools Technique of Detection Cyberthreat Coverage Limitations

TRS [17] Using graph theory to detect
anomalies in smart contract Smart contract vulnerabilities

In the case of a transaction having a
large scale this rate of anomalies

detection is similar to the
existing method

ADM [18]
Using one-class SVM and
K-means for transaction

anomalies detection

DDoS, 51% attack, and
Double spending attack

The anomalies are executed by the
authors themselves so they can

be nonrealistic

ContractGuard [19] A mechanism for
intrusion detection

Attempts of
malicious intrusion

Needs more experience with real
smart contract vulnerabilities

SODA [20] On-chain applications to
detect anomalies

DAO attack, time hijacking,
smart contract vulnerabilities

Used only for online detection of a
specific attack list

BAD [21] Blockchain Anomaly
Detection solution Eclipse attack, zero-day attack Used only for online detection of

2 kinds of attacks

SolGuard [22] A solution to detect anomalies
in smart contract

Smart contract vulnerabilities
and DoS attack

High overheads due to deployment
and runtime

DefectChecker [23] Analyzing byte code to detect
anomalies in smart contracts

Detecting if a contract is
controlled by an attacker

functions call issues cannot
be detected

Most of the proposed techniques to deal with attacks on BC are using statistical
methods or simple algorithms, but machine learning techniques are lowly used. There
are many limitations in existing related work such as the overheads due to deployment
and runtime. There is a need for more simulations to measure the effectiveness of some
proposed techniques. Some attacks are difficult to be detected, such as 51% attack, because
it is linked to the consensus protocols themselves. Some other solutions are designed only
for the Ethereum platform by using smart contracts. Consequently, the development of new
techniques to detect abnormal behavior in the blockchain is still needing investigation. For
that reason, it is important to develop a framework for cyberthreat detection in Blockchain.
This framework will be based on smart contracts (to guarantee safe execution) and on
machine learning tools (to ensure high-accuracy detection). BChainGuard’s main goal is to
distinguish between normal and abnormal behavior of the traffic linked to the BC network.
To significantly decrease the deployment and the runtime overhead, our framework will be
a hybrid. The execution of the classification technique will be done locally. Next, we embed
only the decision functions as smart contracts. This will create a new layer in blockchain
for cyberthreat detection.

3. Contribution: BChainGuard

In this section, we describe the proposed framework in Figure 2 in addition to the list
of used algorithms to detect cyberthreats.

3.1. BChainGuard Phases

Phase 1: Selection of the dataset and artificial intelligence tool

In this phase, the dataset of attack on the blockchain is selected which is located in [26].
In addition, we plan to use SVM (support vector machine) as a machine learning tool and
MLP (multi-layer perceptron) as a deep learning tool.

Appl. Sci. 2022, 12, 12026 6 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 17

3. Contribution: BChainGuard

In this section, we describe the proposed framework in Figure 2 in addition to the list

of used algorithms to detect cyberthreats.

3.1. BChainGuard Phases

Phase 1: Selection of the dataset and artificial intelligence tool

In this phase, the dataset of attack on the blockchain is selected which is located in

[26]. In addition, we plan to use SVM (support vector machine) as a machine learning tool

and MLP (multi-layer perceptron) as a deep learning tool.

Phase 2: Linking the dataset to the Ethereum blockchain

To link the dataset from the client to the blockchain, there are two strategies: (1) on-

chain solution, which means uploading the whole dataset in the blockchain, or (2) off-

chain solution, which means uploading only the hash of the dataset to the blockchain.

Both strategies help to protect the integrity of the dataset.

Phase 3: Checking the integrity of the data set and executing classification techniques

Before executing the classification techniques on the client side using Python, we can

either: (1) download the dataset from the blockchain in case we choose on-chain strategies

or (2) hash the dataset and compare the hash with that of the dataset in the blockchain in

case of off-chain strategies.

Phase 4: Uploading decision functions to the blockchain

During this phase, classification techniques are executed in the local machine using

Python. Next, we extract the parameters of the decision function for both SVM and MLP.

Finally, upload these parameters to be used by smart contracts on blockchain to segregate

between normal behavior and abnormal behavior. This helps to protect the blockchain

against attack.

Phase 5: Performance evaluation

The performance evaluation of the proposed techniques can be measured following

many parameters, such as the accuracy, the recall, the f1-score, and the time of execution.

The proposed technique will also be compared with an existing technique using the same

dataset [27] to validate the contribution and to show its effectiveness.

Figure 2. Overview of the proposed work.

Phase 1
•Dataset and Machine learning tools selection

Phase 2
•Dataset protection (on-chain solution)

Phase 3

•Checking the integrity of the data set

•Executing classification techniques

Phase 4
•Uploading decision functions to the blockchain

Phase 5
•Performance evaluation

Figure 2. Overview of the proposed work.

Phase 2: Linking the dataset to the Ethereum blockchain

To link the dataset from the client to the blockchain, there are two strategies: (1) on-
chain solution, which means uploading the whole dataset in the blockchain, or (2) off-chain
solution, which means uploading only the hash of the dataset to the blockchain. Both
strategies help to protect the integrity of the dataset.

Phase 3: Checking the integrity of the data set and executing classification techniques

Before executing the classification techniques on the client side using Python, we can
either: (1) download the dataset from the blockchain in case we choose on-chain strategies
or (2) hash the dataset and compare the hash with that of the dataset in the blockchain in
case of off-chain strategies.

Phase 4: Uploading decision functions to the blockchain

During this phase, classification techniques are executed in the local machine using
Python. Next, we extract the parameters of the decision function for both SVM and MLP.
Finally, upload these parameters to be used by smart contracts on blockchain to segregate
between normal behavior and abnormal behavior. This helps to protect the blockchain
against attack.

Phase 5: Performance evaluation

The performance evaluation of the proposed techniques can be measured following
many parameters, such as the accuracy, the recall, the f1-score, and the time of execution.
The proposed technique will also be compared with an existing technique using the same
dataset [27] to validate the contribution and to show its effectiveness.

3.2. SVM Training and Parameters Extraction

To train SVM, we used the Radial Basis Kernel Function (RBF). This function calculates
the Euclidean distance between vectors. After the training process was completed, the
training parameters of the following model were extracted to be kept on-chain, as shown
in Table 2.

Appl. Sci. 2022, 12, 12026 7 of 17

Table 2. Extracted SVM training parameters.

Name Description Size Data Type

support_vectors_ Datapoints defining hyperplane
decision boundaries placements 18 × 395 Decimal

matrix

_dual_coef_ Weights of data points 1 × 395 Decimal
array

intercept The bias 1 Decimal

_gamma The parameter that handles
non-linear classification 1 Decimal

Algorithm 1 describes the steps of SVM execution and the decision parameter extractions.
Those parameters will be sent next to the blockchain to be used for the decision function.

Algorithm 1: SVM execution

Input: dataset
Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute SVM on the dataset
5: Print SVM performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.3. MLP Training and Parameters Extraction

The MLP training process included two hidden layers of sizes 5 and 2 over 1000 epochs.
The feedforward deep learning NN relied on a nonlinear activation function, known as the
Rectifier Linear Unit activation function (ReLu). Indeed, Table 3 shows the MLP parameters
stored on-chain after the training is complete.

Table 3. MLP parameter details.

Name Description Size Data Type

coefs_ Weights of neuron’s inputs in three layers,
two input layers, and the output layer

5 × 18
2 × 5
1 × 2

Decimal
matrices

intercepts_ Biases of each neuron in three layers
1 × 5
1 × 2
1 × 1

Decimal
arrays

Algorithm 2 describes the steps of MLP execution and the decision parameter extractions.
Those parameters will be sent next to the blockchain to be used for the decision function.

Algorithm 2: MLP execution

Input: dataset
Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

Appl. Sci. 2022, 12, 12026 8 of 17

3.4. SVM Decision Function

The values returned by the decision function of an RBF kernel SVM vary between −1
and 1. This function is described in the mathematical representation below.

h∗(x) = (wFφ(x)) +

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

F
0 = ∑

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

∈PS

αF

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

·K(x

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

− x) +

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

F
0

where:

• h∗ is the decision function;
• α

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

F is the value of the coefficients;
•

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

is the support vector output of the kernel function K;
• x is the new data point;
• x

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

is the support vector;
•

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

F
0 is the bias or the intercept of each vector.

K
(
x, x′

)
= exp(−γ‖x− x′‖2)

The core function of this SVM implementation was the RBF function. Its mathematical
representation is described above.

• The RBF kernel function returns the product of negative gamma with the Frobenius
norm of two input vectors.

• The exp() function is the exponent of Euler’s number,

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

.

‖x− x′‖F =

√√√√

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

∑

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

=1

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

∑

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

=1

|

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

,

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

Algorithm 2: MLP execution
 Input: dataset
 Output: decision parameters

1: Read dataset
2: Read dataset hash from the blockchain
3: Check dataset authenticity
4: Execute MLP on dataset
5: Print MLP performances Accuracy, Precision, F1-score, Recall
6: Extract decision parameters
7: Send decision parameters to smart contract
8: Print Consumed Gaz, Time

3.4. SVM Decision Function
The values returned by the decision function of an RBF kernel SVM vary between −1

and 1. This function is described in the mathematical representation below. ℎ∗(x) = w 𝜙(x) + 𝓌 = 𝛼𝒾𝓊𝒾 · 𝒦(x𝒾 − x)𝒾 ∈ 𝒫𝒮 + 𝓌

where:
• ℎ∗is the decision function;
• α𝒾 is the value of the coefficients;
• 𝓊𝒾 is the support vector output of the kernel function 𝒦;
• x is the new data point;
• x𝒾 is the support vector;
• 𝓌 is the bias or the intercept of each vector. 𝒦(x, x′) = exp(−𝛾‖x − x′‖)

The core function of this SVM implementation was the RBF function. Its mathemati-
cal representation is described above.
• The RBF kernel function returns the product of negative gamma with the Frobenius

norm of two input vectors.
• The exp() function is the exponent of Euler’s number, ℯ.

‖x − x′‖ = |𝒶𝒾,𝒿|𝓃
𝒿

𝓂
𝒾

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection
 Input: V: input vector including list of features
 Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior

|2

The above math representation shows that the Frobenius norm is the square root of
the summation of two input vectors’ squared difference. In this study’s implementation
case, the two input vectors are the new data point and the support vector.

Algorithm 3 shows the steps taken to compute the decision function of an RBF kernel
SVM using the previous procedures.

Algorithm 3: SVM decision function for attack detection

Input: V: input vector including list of features
Output: attack or normal behavior

1: Read SVM decision parameters from Python
2: Create decision function based on RBF kernel and using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is near −1 Then
5: Normal behavior
6: Else
7: Attack
8: End If

3.5. MLP Decision Function

MLP is a supervised classifier that takes an n-dimensional input to return an m-
dimensional output.

In the implementation, the input layer of MLP is 9-dimensional, and the two hidden
layers 5 and 2-dimensional. Additionally, there is a 1-dimensional output layer. Figure 3
shows a visualization of the implemented MLP layers.

Where:

• x denotes the input characteristics;
• a designates the neurons of the first hidden layer;

Appl. Sci. 2022, 12, 12026 9 of 17

• p designates the neurons of the second hidden layer;
• b denotes the bias;
• y denotes the output neuron.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17

6: Else

7: Attack

8: End If

3.5. MLP Decision Function

MLP is a supervised classifier that takes an n-dimensional input to return an m-di-

mensional output.

In the implementation, the input layer of MLP is 9-dimensional, and the two hidden

layers 5 and 2-dimensional. Additionally, there is a 1-dimensional output layer. Figure 3

shows a visualization of the implemented MLP layers.

Where:

• x denotes the input characteristics;

• a designates the neurons of the first hidden layer;

• p designates the neurons of the second hidden layer;

• b denotes the bias;

• y denotes the output neuron.

Figure 3. MLP layers visualization.

MLP’s decision function concludes a series of additions and multiplications to clas-

sify an input. In this calculation, the value of each hidden neuron is equal to the linear

sum of all the neuron values of the previous layer multiplied by their coefficients, know-

ing that the weights between the neuron’s layer and the last layer.

An additional intercept value, or bias, is added to this summation.

where:

• x is the value of the neuron;

• w is the weight of the neuron.

Note that the bias, b, is denoted by x0 with a value of +1, and the w0 is the intercept

value in each layer’s bias table.

ℎ𝑖
(1)

= 𝜙 (∑ 𝑥𝑗𝑤𝑖𝑗
(1)

+ 𝑏𝑖
(1)

𝑗

)

ℎ𝑖
(2)

= 𝜙 (∑ ℎ𝑗
(1)

𝑤𝑖𝑗
(2)

+ 𝑏𝑖
(2)

𝑗

)

𝑦𝑖 = 𝜙 (∑ ℎ𝑗
(2)

𝑗

𝑤𝑖,𝑗
(3)

+ 𝑏𝑖
(3)

)

In the above representation, h in is the neuron, i, value in the nth layer. This imple-

mentation includes two layers and a final output layer with one neuron,

Figure 3. MLP layers visualization.

MLP’s decision function concludes a series of additions and multiplications to classify
an input. In this calculation, the value of each hidden neuron is equal to the linear sum of
all the neuron values of the previous layer multiplied by their coefficients, knowing that
the weights between the neuron’s layer and the last layer.

An additional intercept value, or bias, is added to this summation.
where:

• x is the value of the neuron;
• w is the weight of the neuron.

Note that the bias, b, is denoted by x0 with a value of +1, and the w0 is the intercept
value in each layer’s bias table.

h(1)i = φ

(
∑

j
xjw

(1)
ij + b(1)i

)

h(2)i = φ

(
∑

j
h(1)j w(2)

ij + b(2)i

)

yi = φ

(
∑

j
h(2)j w(3)

i,j + b(3)i

)
In the above representation, h in is the neuron, i, value in the nth layer. This imple-

mentation includes two layers and a final output layer with one neuron,

• yi, gives the final summation value.
• φ() is the non-linear activation function that calculates neuron’s value by a weighted

sum.
• xj is the input features vector.
• hj

n is the neurons’ values at layer i − 1.
• wi,j is the weight.
• bi

n is the intercept of neuron i at the nth layer.

f (x) = max(0, x)

This study employed the ReLu nonlinear activation function. The above annotation
shows that the ReLu function returns the maximum between x and 0. Algorithm 4 shows
steps of implementing the MLP decision function.

Appl. Sci. 2022, 12, 12026 10 of 17

Algorithm 4: MLP decision function for attack detection

Input: V: input vector including list of features
Output: attack or normal behavior

1: Read MLP decision parameters from Python
2: Create decision function using decision parameters
3: Execute decision function based on the input vector and get the result
4: If the result is −1 Then
5: Normal behavior
6: Else
7: Attack
8: End If

4. Experimental Results

In this section, we give the description for the dataset and the environment of execution.
We also discuss the experimental results.

4.1. Dataset Description

This study implementation used the dataset stored in Github [27]. It is a website that
makes it easy for programmers and developers to work together to improve application
code. It relies on the principle of version control, which uses branching and merging to
ensure seamless collaboration without affecting the integrity of the original project [26]. In
Table 4, we present the used dataset that contain a list of attack on the Ethereum blockchain.

Table 4. Dataset features.

Features Features Details

Old features

hash Transaction hash
nonce How many transactions did the sender’s account make?

transaction indicator Transaction index in block
From the address Origin account

To the address destination account
The value The transferred value in Wei which is the smallest Ether unit

gas Quantity of gas per source
gas_price The price of gas (Wei) which is provided by the source

input The data sent during the transaction
cumulative gas reception used How much gas was used by this transaction while executing a block

receiving gas used Total gas has been used by this single given transaction
timestamp_block Block timestamp was used by this transaction

block_number Operation block number
block hash Hashing the block used during the transaction

New added
features

Of fraud
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

to sheat
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

from_category Determine if the abnormal activity that occurred from the sender
address is phishing or scamming, and (null) for normal operation

to_category Determine if the abnormal activity that occurred from the sender
address is phishing or scamming, and (null) for normal operation

To evaluate the detection systems that use labeled data (i.e., transactions), the proposed
data set should be labeled. Therefore, the transactions included in the proposed data set
were classified as normal or harmful transactions, so the number “0” indicates that the

Appl. Sci. 2022, 12, 12026 11 of 17

transaction is valid., while the number “1” means that the transaction is an attack. As a
reminder, each transaction has two addresses: (1) for the sender and (2) for the recipient.

The address account has been passed to the Etherscamdb API through the Python
programming language to find out the source of the fraud. Is it the sender or the receiver?
Then, four new columns were added to the transaction table: “of_fraud”, “to sheat “,
“from_category”, and “to_category”; the description of these extensions is found in Table 4.

Additionally, two types of attacks were recorded in relation to the proposed technique
when API response, as there are two main categories, namely phishing and scamming,
as shown in Table 5 and Figure 4. The percentages of abnormal transactions are 22% and
80%, respectively.

Table 5. Ethereum transactions in the dataset.

Type Transaction Ratio

Threat transaction 14,250 20%

Normal transaction 57,000 80%

Total 71,250 100%

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 17

block_number Operation block number

block hash Hashing the block used during the transaction

New added features

Of fraud
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

to sheat
- 1 indicates that the return address is the result of forgery

- 0 indicates that the sender’s address is correct

from_category

Determine if the abnormal activity that occurred from the

sender address is phishing or scamming, and (null) for nor-

mal operation

to_category

Determine if the abnormal activity that occurred from the

sender address is phishing or scamming, and (null) for nor-

mal operation

To evaluate the detection systems that use labeled data (i.e., transactions), the pro-

posed data set should be labeled . Therefore, the transactions included in the proposed

data set were classified as normal or harmful transactions, so the number “0” indicates

that the transaction is valid., while the number “1” means that the transaction is an attack.

As a reminder, each transaction has two addresses: (1) for the sender and (2) for the recip-

ient.

The address account has been passed to the Etherscamdb API through the Python

programming language to find out the source of the fraud. Is it the sender or the receiver?

Then, four new columns were added to the transaction table: “of_fraud”, “to sheat “,

“from_category”, and “to_category”; the description of these extensions is found in Table

4.

Additionally, two types of attacks were recorded in relation to the proposed tech-

nique when API response, as there are two main categories, namely phishing and scam-

ming, as shown in Table 5 and Figure 4. The percentages of abnormal transactions are 22%

and 80%, respectively.

Table 5. Ethereum transactions in the dataset.

Type Transaction Ratio

Threat transaction 14,250 20%

Normal transaction 57,000 80%

Total 71,250 100%

Figure 4. Distribution of transactions in the dataset.

0

20

40

60

80

Abnormal Normal Total

Th
o

u
sa

n
d

s

T R A N S A C T I O N S I N T H E
D A T A S E T

Figure 4. Distribution of transactions in the dataset.

4.2. Environment Description

Table 6 shows the development computer system and the specifications of the
development tools.

Table 6. System specifications.

Item Specifications

Computer OS Windows 10

CPU AMD64 3.20 GHz

RAM 8 GB

Ganache v2.5.4

Solidity v0.5.16

Vyper v0.3.0

MetaMask v10.2.2

Python v3.9.7

The experimentation is done as follows:

• We use a smart contract to upload the dataset line by line to Ethereum (Ganache) for
integrity protection.

Appl. Sci. 2022, 12, 12026 12 of 17

• SVM and MLP are executed locally on Python on the same dataset. Next, the decision
parameters are extracted and sent to Ethereum (Ganache).

• We use smart contracts to receive the decision parameters on Ethereum (Ganache).
• We re-write the decision MLP decision function and SVM decision function as a smart

contract on Ethereum (Ganache).
• Finally, we test the performance of MLP and SVM decision functions.

The aim of BChainGurad is to embed the protection on Ethereum (Ganache). BChain-
Guard is using smart contracts which work as a defender by checking the traffic of transac-
tions to decide if abnormal behavior is detected or not based on the training already done.

In the experiment, we use Ganache as a local Ethereum platform. Solidity and Vyper
are used to write the smart contract for decision function and to protect the dataset. Meta-
Mask is a gateway allowing the communication between web applications and blockchain
using ‘web3.js’. The local training and testing of SVM and MLP are executed using Python.
The right values of each item used in the experiment are indicated in Table 6.

4.3. Evaluation Parameters

The evaluation parameters are described by the following equation: The accuracy is in
Equation (1)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

The equation of precision is given in the following:

Precision = TP/(TP + FP) (2)

Equation (3) describes the recall:

Recall = TP/(TP + FN) (3)

Finally, the F1-score is described using the equation below:

F1 Score = 2 × (Recall × Precision)/(Recall + Precision) (4)

4.4. Machine Learning Result Analyses

We compared both models on the same dataset. Table 7 and Figure 5 show the
performance of the MLP and SVM models. We concluded from this comparison that the
two models have distinct performances. In addition, our analysis also showed that the
MLP belonging to the deep learning family outperforms SVM in all metrics with a small
difference (3.02% for accuracy, 3.27% for precision, 5.03% for F1-score and 3% for the recall
metric). In summary, after conducting several experiments, the MLP and SVM networks
have confirmed that they have very distinct solutions for regression, classification and
prediction tasks.

Table 7. SVM vs. MLP performance.

Classifier Accuracy Precision F1-Score Recall

SVM 95 95.03 93 95
MLP 98.02 98.5 98.03 97

Although MLP has the best generalizability, the observed performance differences are
negligible in most cases. The main difference lies in the complexity of the networks. An
MLP network that implements a global approximation strategy typically uses a very small
number of hidden neurons.

4.5. Blockchain Decision Function Result Analyses

Gas fees are payments made by users to pay validators and miners for the computa-
tional energy consumed to process and validate transactions on the Ethereum blockchain.

Appl. Sci. 2022, 12, 12026 13 of 17

Figure 6 shows a graphical representation of the performance of MLP and SVM mod-
els in term of consumed gas in gwei. Figure 7 shows a graphical representation of the
performance of MLP and SVM models in term of decision function elapsed time in seconds.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

models have distinct performances. In addition, our analysis also showed that the MLP

belonging to the deep learning family outperforms SVM in all metrics with a small differ-

ence (3.02% for accuracy, 3.27% for precision, 5.03% for F1-score and 3% for the recall

metric). In summary, after conducting several experiments, the MLP and SVM networks

have confirmed that they have very distinct solutions for regression, classification and

prediction tasks.

Table 7. SVM vs. MLP performance.

Classifier Accuracy Precision F1-Score Recall

SVM 95 95.03 93 95

MLP 98.02 98.5 98.03 97

Figure 5. SVM vs. MLP performance.

Although MLP has the best generalizability, the observed performance differences

are negligible in most cases. The main difference lies in the complexity of the networks.

An MLP network that implements a global approximation strategy typically uses a very

small number of hidden neurons.

4.5. Blockchain Decision Function Result Analyses

Gas fees are payments made by users to pay validators and miners for the computa-

tional energy consumed to process and validate transactions on the Ethereum blockchain.

Figure 6 shows a graphical representation of the performance of MLP and SVM models

in term of consumed gas in gwei. Figure 7 shows a graphical representation of the perfor-

mance of MLP and SVM models in term of decision function elapsed time in seconds.

Figure 6. Consumed gas in gwei for SVM decision function and MLP decision function.

90

92

94

96

98

100

Accuracy Precision F1-score Recall

SVM MLP

0

5,000,000

10,000,000

15,000,000

20,000,000

SVM MLP

18,523,142

750,234

C O N S U M E D G A S (G W E I)

Figure 5. SVM vs. MLP performance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

models have distinct performances. In addition, our analysis also showed that the MLP

belonging to the deep learning family outperforms SVM in all metrics with a small differ-

ence (3.02% for accuracy, 3.27% for precision, 5.03% for F1-score and 3% for the recall

metric). In summary, after conducting several experiments, the MLP and SVM networks

have confirmed that they have very distinct solutions for regression, classification and

prediction tasks.

Table 7. SVM vs. MLP performance.

Classifier Accuracy Precision F1-Score Recall

SVM 95 95.03 93 95

MLP 98.02 98.5 98.03 97

Figure 5. SVM vs. MLP performance.

Although MLP has the best generalizability, the observed performance differences

are negligible in most cases. The main difference lies in the complexity of the networks.

An MLP network that implements a global approximation strategy typically uses a very

small number of hidden neurons.

4.5. Blockchain Decision Function Result Analyses

Gas fees are payments made by users to pay validators and miners for the computa-

tional energy consumed to process and validate transactions on the Ethereum blockchain.

Figure 6 shows a graphical representation of the performance of MLP and SVM models

in term of consumed gas in gwei. Figure 7 shows a graphical representation of the perfor-

mance of MLP and SVM models in term of decision function elapsed time in seconds.

Figure 6. Consumed gas in gwei for SVM decision function and MLP decision function.

90

92

94

96

98

100

Accuracy Precision F1-score Recall

SVM MLP

0

5,000,000

10,000,000

15,000,000

20,000,000

SVM MLP

18,523,142

750,234

C O N S U M E D G A S (G W E I)

Figure 6. Consumed gas in gwei for SVM decision function and MLP decision function.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

Figure 7. Elapsed time in seconds for SVM decision function and MLP decision function.

This comparison analysis is useful to verify the effectiveness of both models. The

consumed gas in gwei for SVM decision function is equal to 0.1914, while this consump-

tion is multiplied more than 44 times for SVM and reaches 8.4415. This big difference can

be explained in two ways.

First explanation: the implementation of the MLP approximative strategy usually

employs a very small number of hidden neurons. On the other side, the SVM is based on

the local approximation strategy and uses a large number of hidden units. This large num-

ber can be the cause of differences in consumption and also need more time for execution.

Second explanation: If a gas price is set too low, the transaction could be ignored,

missed or the wallet could become stuck, freezing transactions from that wallet. Therefore,

the wallet can remain blocked until the transaction is resolved.

4.6. Overeall Result Discussion

An overall result comparison shows that MLP is providing the best results. Indeed,

the SVM decision function is more expensive in terms of consumed gas and time. This can

be explained by the number of parameters and operations in SVM decision function. In

our case, we adopt only two layers in MLP. For that reason, the MLP decision function is

cheaper than that of SVM.

Furthermore, MLP outperforms SVM in terms of accuracy and precision; this can be

rendered to the data itself. In addition, these results are linked to the implementation of

the MLP as an approximative strategy that usually employs a very small number of hid-

den neurons while SVM is based on the local approximation.

The provided performances’ favorite MLP is used in this case. However, this is al-

ways linked to the type of the used transaction themselves. An enlargement of the dataset

by considering more types of attacks may favorite another technique to be used for cyber-

threat detection.

4.7. Comparison between BChainGuard and Works on the Same Dataset

In this section, we make a comparison between our framework result and the result

of work on the same dataset. In BChainGuard, the accuracy of MLP in is 98.2% and 95%

for SVM. However, in [28], the best accuracy is performed at 98.8% using Random Forest,

while the smallest one is 82% for logistic regression. In the same context, the accuracy of

detection abnormal transaction using SVM and KNN is 95%. Our contribution is not only

improving the accuracy of detection but also securing the dataset against poisonous at-

tack, making the detection safe by embedding the decision function as a smart contract.

In addition, we chose to embed only the decision function on the blockchain to minimize

the overhead of runtime and deployment, which was discussed in the previous section.

In what follows, we make a comparison between BChainGuard and other frameworks.

0

5

10

15

SVM MLP

10.24

0.523

T I M E (S)

Figure 7. Elapsed time in seconds for SVM decision function and MLP decision function.

This comparison analysis is useful to verify the effectiveness of both models. The
consumed gas in gwei for SVM decision function is equal to 0.1914, while this consumption
is multiplied more than 44 times for SVM and reaches 8.4415. This big difference can be
explained in two ways.

First explanation: the implementation of the MLP approximative strategy usually
employs a very small number of hidden neurons. On the other side, the SVM is based on the
local approximation strategy and uses a large number of hidden units. This large number
can be the cause of differences in consumption and also need more time for execution.

Appl. Sci. 2022, 12, 12026 14 of 17

Second explanation: If a gas price is set too low, the transaction could be ignored,
missed or the wallet could become stuck, freezing transactions from that wallet. Therefore,
the wallet can remain blocked until the transaction is resolved.

4.6. Overeall Result Discussion

An overall result comparison shows that MLP is providing the best results. Indeed,
the SVM decision function is more expensive in terms of consumed gas and time. This can
be explained by the number of parameters and operations in SVM decision function. In
our case, we adopt only two layers in MLP. For that reason, the MLP decision function is
cheaper than that of SVM.

Furthermore, MLP outperforms SVM in terms of accuracy and precision; this can be
rendered to the data itself. In addition, these results are linked to the implementation of the
MLP as an approximative strategy that usually employs a very small number of hidden
neurons while SVM is based on the local approximation.

The provided performances’ favorite MLP is used in this case. However, this is
always linked to the type of the used transaction themselves. An enlargement of the
dataset by considering more types of attacks may favorite another technique to be used for
cyberthreat detection.

4.7. Comparison between BChainGuard and Works on the Same Dataset

In this section, we make a comparison between our framework result and the result
of work on the same dataset. In BChainGuard, the accuracy of MLP in is 98.2% and 95%
for SVM. However, in [28], the best accuracy is performed at 98.8% using Random Forest,
while the smallest one is 82% for logistic regression. In the same context, the accuracy
of detection abnormal transaction using SVM and KNN is 95%. Our contribution is not
only improving the accuracy of detection but also securing the dataset against poisonous
attack, making the detection safe by embedding the decision function as a smart contract.
In addition, we chose to embed only the decision function on the blockchain to minimize
the overhead of runtime and deployment, which was discussed in the previous section. In
what follows, we make a comparison between BChainGuard and other frameworks.

Table 8 shows that our framework is the first one that uses machine learning, em-
bedded in the blockchain itself, and with the lowest deployment and runtime overhead
compared to others. In future works, we plan to make a secure analysis of BChainGuard
by injecting attacks on the dataset, as well as on Ethereum, to see the performance of
our framework.

Table 8. Frameworks comparison.

Tools Technique Place Overhead

BChainGuard Machine learning On-chain Low

TRS [17] Graph theory On-chain High

ADM [18] Machine learning off-chain -

ContractGuard [19] Statistical analysis On-chain High

SODA [20] Statistical analysis On-chain High

BAD [21] Statistical analysis On-chain High

SolGuard [22] Statistical analysis On-chain High

DefectChecker [23] Statistical analysis On-chain High

Recently, many research efforts have been conducted to show the great impact of
applying blockchain in Industry 4.0 [28]. This generation of industry investigates the appli-
cation of the latest technology innovation in Artificial Intelligence, Big Data, the Internet of
Things and Blockchain for supply chain and manufacturing improvement. On one hand,
Blockchain with its great potential can raise many opportunities for Industry 4.0. On the

Appl. Sci. 2022, 12, 12026 15 of 17

other hand, although Blockchain is one of the most secure peer-to-peer systems, it can be
the target of attacks and cyberthreats. Consequently, securing service-based blockchain
has high importance. In this context, we believe that BChainGuard is a successful key to
supporting the application of Blockchain in Industry 4.0. Our framework can be improved
by considering more types of attacks and next integrated into Ethereum as a new protection
layer against smart contract vulnerabilities. This can improve Ethereum’s trustworthiness
to be more attractive to the industry.

4.8. BChainGuard Limitations and Possible Future Improvements

BChainGuard is based on executing SVM and MLP locally and next embedding only
the decisions function in blockchain in order to detect attacks. Despite the advantages of
our contribution, it can be improved in the future by:

• Considering more realistic datasets linked to blockchain smart contract and transactions.
• Using different scenarios of transactions and smart contracts that help to convert more

situations that can be the target of attacks.
• Applying other machine learning and deep learning techniques that may be offered

the best results.
• Adopting federated learning instead of machine learning in the case of the nonavail-

ability of the dataset, since federated learning helps to protect privacy.

5. Conclusions

The blockchain, as any system, and despite of its power protection, can be prone to
many attacks. For that reason, many efforts have been made by the research community
to protect it. The majority of efforts have been based on analyzing statistically the smart
contracts. To the best of our knowledge, we propose, for first time BChainGuard, a new
layer in Ethereum for blockchain protection. Our idea is based on executing SVM and
MLP locally and next embedding only the decisions function in the blockchain in order
to detect attacks on blockchain. Our contribution is not only improving the accuracy of
detection but also securing the dataset against poisonous attack. In addition, we choose to
embed only the decision function on the blockchain to minimize the overhead of runtime
and deployment.

Smart contracts can contain numerous security vulnerabilities, such as reentrancy,
unhandled exceptions, Integer Overflow and unrestricted action. The aim of BChainGuard
is to ensure the safe execution of smart contracts by avoiding vulnerabilities. As an open
system, Ethereum can be the target of many attacks embedded in smart contracts them-
selves. New types of attacks can always appear. To tackle them, a strategy of BChainGuard
continuous improvement must take place. This strategy must be defined to take into
consideration the integration of new attack detection.

The limitations of BChainGuard are: (1) detecting only if an attack is happened or
not without preventing the type of attack, (2) dealing only with two types of attacks in the
used dataset, which are phishing and scamming attacks, and (3) using only MLP and SVM
techniques, when other techniques may provide best detection accuracy.

Despite the advantages of our contribution, it can be improved in the future by
considering more realistic datasets linked to blockchain smart contracts and transactions.
Additionally, using different scenarios of transactions and smart contracts helps to convert
more situations that can be the target of attacks. The use of other machine learning and
deep learning techniques may offer the best results. As a future work, we also plan to make
a secure performance analysis of BChainGuard. This can be done by injecting poisonous
attacks on the dataset to see how blockchain can protect its integrity. In addition, we can
run some malicious smart contracts on Ethereum to measure the reaction of our framework.

Appl. Sci. 2022, 12, 12026 16 of 17

Author Contributions: Conceptualization, T.M.; methodology, H.A.; software, M.A.A.; validation,
T.M.; formal analysis, S.A.; investigation, H.A.; resources, H.A.; data curation, M.A.A.; writing—
original draft preparation, T. M.; writing—review and editing, S.A.; visualization, S.A.; supervision,
T.M. and project administration, T.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Deputyship for Research& Innovation, Ministry of
Education, Saudi Arabia, through project number QU-IF-4-4-1-31851.

Data Availability Statement: The used dataset was downloaded from (https://github.com/salam-
ammari/Labeled-Transactions-based-Dataset-of-Ethereum-Network (accessed on 31 May 2022)). No
ethics approval was required for this dataset.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research& Innova-
tion, Ministry of Education, Saudi Arabia for funding this research work through the project number
(QU-IF-4-4-1-31851). The authors also thank to Qassim University for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on

15 April 2022).
2. Alsayegh, M.; Moulahi, T.; Alabdulatif, A.; Lorenz, P. Towards Secure Searchable Electronic Health Records Using Consortium

Blockchain. Network 2022, 2, 239–256. [CrossRef]
3. Samaniego, M.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the IEEE International Conference on Internet of

Things, Honolulu, HI, USA, 25–30 June 2017.
4. Alfrhan, A.; Moulahi, T.; Alabdulatif, A. Comparative study on hash functions for lightweight blockchain in Internet of Things

(IoT). Blockchain Res. Appl. 2021, 2, 100036. [CrossRef]
5. AlAsqah, M.; Moulahi, T.; Zidi, S.; Alabdulatif, A. Leveraging Artificial Intelligence in Blockchain-Based E-Health for Safer Deci-

sion Making Framework. 2022. Available online: https://europepmc.org/article/ppr/ppr501665 (accessed on 15 April 2022).
6. Dubovitskaya, A.; Xu, Z.; Ryu, S.; Schumacher, M.; Wang, F. Secure and Trustable Electronic Medical Records Sharing using

Blockchain. In Proceedings of the AMIA 2017 Annual Symposium Proceedings, Washington, DC, USA, 4–8 November 2017;
pp. 650–659.

7. Eyal, I. Blockchain Technology: Transforming Libertarian Cryptocurrency Dreams to Finance and Banking Realities. Computer
2017, 50, 38–49. [CrossRef]

8. Al-E’mari, S.; Anbar, M.; Sanjalawe, Y.; Manickam, S. A Labeled Transactions-Based Dataset on the Ethereum Network. In Advances
in Cyber Security. ACeS 2020. Communications in Computer and Information Science; Anbar, M., Abdullah, N., Manickam, S., Eds.;
Springer: Singapore, 2021; Volume 1347. [CrossRef]

9. Saad, M.; Thai, M.T.; Mohaisen, A. POSTER: Deterring ddos attacks on blockchain-based cryptocurrencies through mempool
optimization. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon, Republic of
Korea, 4–8 June 2018; pp. 809–811.

10. Mavridou, A.; Laszka, A.; Stachtiari, E.; Dubey, A. VeriSolid: Correct-by-design smart contracts for Ethereum. In Proceedings of
the International Conference on Financial Cryptography and Data Security, Frigate Bay, St. Kitts and Nevis, 18–22 February 2019;
Springer: Cham, Switzerland, 2019; pp. 446–465.

11. Henningsen, S.; Teunis, D.; Florian, M.; Scheuermann, B. Eclipsing Ethereum Peers with False Friends. arXiv 2019,
arXiv:1908.10141. [CrossRef]

12. Andrychowicz, M.; Dziembowski, S.; Malinowski, D.; Mazurek, Ł. Fair two-party computations via bitcoin deposits. In Financial
Cryptography and Data Security; Böhme, R., Brenner, M., Moore, T., Smith, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 105–121.

13. Apostolaki, M.; Zohar, A.; Vanbever, L. Hijacking bitcoin: Routing attacks on cryptocurrencies. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 375–392.

14. Swathi, P.; Modi, C.; Patel, D. Preventing Sybil Attack in Blockchain using Distributed Behavior Monitoring of Miners. In
Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kanpur, India, 6–8 July 2019; pp. 1–6. [CrossRef]

15. Andryukhin, A.A. Phishing attacks and preventions in blockchain based projects. In Proceedings of the 2019 International
Conference on Engineering Technologies and Computer Science, EnT, Moscow, Russia, 26–27 March 2019; pp. 15–19.

16. Apostolaki, M.; Zohar, A.; Vanbever, L. Hijacking bitcoin: Large-scale network attacks on cryptocurrencies. arXiv 2016,
arXiv:1605.07524.

17. Zhang, R.; Preneel, B. Publish or Perish: A Backward-Compatible Defense Against Selfish Mining in Bitcoin. In Topics in Cryptology—
CT-RSA 2017; Handschuh, H., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 277–292. [CrossRef]

https://github.com/salam-ammari/Labeled-Transactions-based-Dataset-of-Ethereum-Network
https://github.com/salam-ammari/Labeled-Transactions-based-Dataset-of-Ethereum-Network
https://bitcoin.org/bitcoin.pdf
http://doi.org/10.3390/network2020016
http://doi.org/10.1016/j.bcra.2021.100036
https://europepmc.org/article/ppr/ppr501665
http://doi.org/10.1109/MC.2017.3571042
http://doi.org/10.1007/978-981-33-6835-4_5
http://doi.org/10.1109/eurospw.2019.00040
http://doi.org/10.1109/icccnt45670.2019.8944507
http://doi.org/10.1007/978-3-319-52153-4_16

Appl. Sci. 2022, 12, 12026 17 of 17

18. Torres, C.F.; Schütte, J.; State, R. Osiris: Hunting for integer bugs in Ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC’18, San Juan, Puerto Rico, 3–7 December 2018; ACM: New York, NY, USA,
2018; pp. 664–676.

19. Morishima, S. Scalable anomaly detection method for blockchain transactions using GPU. In Proceedings of the 20th International
Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Gold Coast, Australia, 5–7 December
2019; pp. 160–165.

20. Sayadi, S.; Rejeb, S.B.; Choukair, Z. Anomaly detection model over blockchain electronic transactions. In Proceedings of the
15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019;
pp. 895–900.

21. Wang, X.; He, J.; Xie, Z.; Zhao, G.; Cheung, S. ContractGuard: Defend Ethereum Smart Contracts with Embedded Intrusion
Detection. IEEE Trans. Serv. Comput. 2019, 13, 314–328. [CrossRef]

22. Chen, T.; Cao, R.; Li, T.; Luo, X.; Gu, G.; Zhang, Y.; Liao, Z.; Zhu, H.; Chen, G.; He, Z.; et al. SODA: A Generic Online Detection
Framework for Smart Contracts. In Proceedings of the 27th Network and Distributed System Security Symposium, NDSS, San
Diego, CA, USA, 23–26 February 2020. [CrossRef]

23. Signorini, M.; Pontecorvi, M.; Kanoun, W.; Di Pietro, R. BAD: A Blockchain Anomaly Detection Solution. IEEE Access 2020, 8,
173481–173490. [CrossRef]

24. Praitheeshan, P.; Pan, L.; Zheng, X.; Jolfaei, A.; Doss, R. SolGuard: Preventing external call issues in smart contract-based
multi-agent robotic systems. Inf. Sci. 2021, 579, 150–166. [CrossRef]

25. Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, X.; Chen, T. DefectChecker: Automated Smart Contract Defect Detection by Analyzing
EVM Bytecode. IEEE Trans. Softw. Eng. 2021, 48, 2189–2207. [CrossRef]

26. Chacon, S.; Straub, B. Pro Git: Everything You Need to Know About Git, 2nd ed.; Apress: New York, NY, USA, 2014.
27. Dataset. Available online: https://github.com/salam-ammari/Labeled-Transactions-based-Dataset-of-Ethereum-Network

(accessed on 31 May 2022).
28. Javaid, M.; Haleem, A.; Singh, R.P.; Khan, S.; Suman, R. Blockchain technology applications for Industry 4.0: A literature-based

review. Blockchain Res. Appl. 2021, 2, 100027. [CrossRef]

http://doi.org/10.1109/TSC.2019.2949561
http://doi.org/10.14722/ndss.2020.24449
http://doi.org/10.1109/ACCESS.2020.3025622
http://doi.org/10.1016/j.ins.2021.08.007
http://doi.org/10.1109/TSE.2021.3054928
https://github.com/salam-ammari/Labeled-Transactions-based-Dataset-of-Ethereum-Network
http://doi.org/10.1016/j.bcra.2021.100027

	Introduction
	Motivation and Problem Statement
	Objectives
	Paper Organization

	Literature Review
	Review of Blockchain Cyberthreats
	Intrusion Detection System in Blockchain
	Discussion

	Contribution: BChainGuard
	BChainGuard Phases
	SVM Training and Parameters Extraction
	MLP Training and Parameters Extraction
	SVM Decision Function
	MLP Decision Function

	Experimental Results
	Dataset Description
	Environment Description
	Evaluation Parameters
	Machine Learning Result Analyses
	Blockchain Decision Function Result Analyses
	Overeall Result Discussion
	Comparison between BChainGuard and Works on the Same Dataset
	BChainGuard Limitations and Possible Future Improvements

	Conclusions
	References

