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Abstract: The behavior of the processes taking place in furnaces determines the efficiency of fuel
chemical energy utilization, the quality of the final products and the environmental safety of the
production. Mathematical models of the processes of gas dynamics and heat transfer in the working
space of heating equipment are quite complex, and do not allow the establishment of a direct
analytical relationship between the quality indicator of the process (F) and the influencing parameters
(xi). To simplify the procedure for obtaining the values of the function F depending on the change of
parameters xi, a method of successive approximation is presented in the article. The main idea of the
method is that the representation of the function around a point from the domain of the function can
be extended to the entire domain for many problems of mechanics. The relative error in the definition
of the function acquires its maximum value at the border of the area, and a reasonable narrowing
of it allows control of the size of the error. Thus, the advantages of using the method are obvious;
it is able to provide approximation of the function in a multiplicative form with a controlled error.
The distribution of the method to the field of heat transfer problems is presented in this paper. The
successful implementation of this method for solving problems of this kind shows that the solution
of practical problems may be generalized for the entire domain of the function, despite the fact that
the errors of such a representation increase to 5–7% when approaching its limit, which, however, may
be considered acceptable for engineering calculations.

Keywords: gas dynamics; heat transfer; mathematical modelling; method of successive
approximation; heating; standard of heating

1. Introduction

Material heating and heat treatment belong to fundamental processes that take place
in furnaces heated by gaseous fuel. The processes of fuel combustion, movement of gases in
the working chamber of the furnace, and external and internal heat exchange during heating
have a high level of mutual interaction. Some parameters of these processes are uncertain
and interdependent, and they impose numerous conditions of mutual application.

The main tool for examination of thermophysical processes in energetics, especially in
metallurgy, is mathematical modelling. Owing of the high level of computer technology, the
complexity of the software, and the ability to simulate the influence of different parameters,
mathematical modelling prevails over real measurements. Modern mathematical models
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that use numerical methods allow implementation of an algorithm of any complexity, as
well as considering a large number of non-linear parameters affecting processes. However,
the increase in the number of parameters that is considered and studied in the mathematical
model significantly increases the amount of preparatory work for modelling, complicates
software development and handling, requires the introduction of additional databases and
data arrays, and increases the calculation time. Thus, for example, the calculation time of
one of the options for heating a cage of twelve multi-ton ingots in a regenerative heating
well using a mathematical model may result in more than 5 h of computation time [1]. It
should be noted that the accuracy of such a calculation usually depends on the reliability
of the accepted values of the properties of the materials, the environment influence, and
other coefficients used in the model. As practice has shown, the results of the calculations
may fully correspond to the real data collected during 5-year operation of the simulation
object—a regenerative heating well [1].

Depending on the required accuracy of calculations, complex mathematical models of
gas-dynamic, mass- and heat-transfer processes or more simplified engineering models
are used as an engineering tool, that for particular cases provide sufficient accuracy of
calculations. A similarly important tool provides the physical modelling of processes and
aggregates, which enables a clear and easy-to-understand representation of the studied
phenomena [2].

To ensure the accuracy of the calculations sufficient for the development of engineering
solutions and the evaluation of proposed modernization measures, or to improve the design
of the furnace and its equipment, it is quite sufficient to obtain the dependence of the change
of the selected final criterion of the process (the so-called quality function F) on the factors
(independent variable parameters xi) that is influenced. This, of course, does not exclude
the need to create a mathematical model (MM) of the processes under study as a perfect
mechanism for a calculation experiment, but it allows significantly reduction of the number
of necessary calculations without significantly losing the quality of the obtained result.

Multiplicative models are widely used to process the results of calculation experiments
(obtaining the function F = f (xi)).

However, the problem of choosing a multiplier that precedes the product of functions
has not been fully clarified. This multiplier is also called the coefficient of ignorance, and the
evaluation of the obtained data depends on its choice. Initially, the multiplier was chosen as
a function of independent parameters from the domain. It turned out that despite the high
accuracy and significant costs for conducting the experiment, the quality function of the
process had satisfactory accuracy only around the reference point. Attempts to determine
the quality function at other points did not yield a positive result, despite the use of various
multiplier selection algorithms [3]. It became clear that an experiment carried out at a point
simply cannot satisfy the accuracy of the definition of the quality function at other points
and should not be a function of coordinates, but a number for each point in the domain.

On the other hand, any research process that is conducted using experiments, simula-
tions, or mathematical models can be represented as a black box (Figure 1). Any process
that can be represented in the form of a black box model can be applied to the method of
successive approximation (SAP) used in this paper. Unlike many methods with a similar
name, it does not use any derivatives of functions, which makes it attractive for use in a
wide range of tasks.

The black box model may be represented here by physical devices, systems of differ-
ential equations, mathematical formulas, and computer programs or application software
packages (ASPs) that implement it. The results of research using the MM, as a rule, rep-
resent matrices of numbers or tables of numerical data. Functions are reproduced using
their values on the parameter grid. The finer the mesh of a model, the more accurate
approximations of the function are achievable. For complex problems, obtaining the values
of functions on the parameters mesh requires significant expenditure of machine time,
which makes the problem of reproduction of functions practically impossible. Therefore,
the idea of using the method of obtaining MM according to a simplified procedure arose.
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According to this approach, the MM is obtained not on the parameters mesh, but at a
certain point of the area of their definition. The algorithm proposed by the author of [4]
makes it possible to significantly reduce the computational costs of reproducing the quality
function, but only in the vicinity of a certain point. Thus, instead of calculating the values
of the function on the parameter mesh, they are calculated only on the coordinate lines,
which significantly reduces the number of calculations of the resulting function (Figure 2).
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the surface of the quality function, ∆x, ∆y—the step along the x and y coordinates.

The method of successive approximation (MSA) is a method that can be used in
all fields from physical calculation to statistic and computer technology. It is possible
to build an efficient and flexible computational method by using MSA [5]. This may be
applied to the study of the fixed-point problems in the more abstract setting of Banach
spaces (e.g., differential and integral equations, dynamical systems) [6]. The efficiency of
such a method was also proven by comparing it to a variation iteration method under
equivalent conditions [7].

MSA allows representation of functions in an analytical form (namely, in the form of a
product of functions, each of which depends on one variable) when their values exist in
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tabular form on lines formed by the intersection of the functional surface with coordinate
planes passing through a selected point from the definition area (Figure 2) [8].

The examples of MSA successful application on the problems of geotechnical mechan-
ics [4] show that the solution of practical problems may be extended to the entire domain
of the function, despite the fact that the errors of such a representation increase when
approaching its boundary, and do not exceed the value of 5–7%. It turns out that such
accuracy is satisfactory for engineering calculations in the field of geotechnical mechanics
since the initial data for this area are determined with the same accuracy.

The main aim of this work was to determine the possibility of applying the method
of successive approximation for the study of gas dynamics and heat transfer processes
occurring in furnaces during the heating of metal products, and to estimate the error of
approximation of the quality function from independent process parameters.

2. Materials and Methods
2.1. Mathematical Model

A heating furnace with a U-shaped trajectory of flue gas movement was used to solve
the problem, the mathematical model of gas dynamics and heat transfer processes [9]. The
scheme of the furnace is shown in Figure 3. The furnace is designed for heating metal
ingots (3) before pressure treatment. The working space (2) of the furnace has the shape of a
rectangular parallelepiped. To burn fuel, the furnace is equipped with a burner (4) located
in the upper part of the left side wall of the stove. In the lower part of the same wall, there
is a window (5) for the exhaust of a flue gas from the working space of the furnace into the
flue gas channel, equipped with regenerators (1) for heating the air used for burning fuel.
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L—furnace length.

The furnace with a U-shaped trajectory of flue gas is among widely used equipment
for material heating, so it was chosen to increase its parameters and, as a result, reduce of
production costs and influence on the environment.

The main disadvantage of furnaces with a U-shaped trajectory of flue gas is the non-
uniformity of gas temperatures in the working chamber, which does not allow obtaining
the same quality of heating of all heated products [10]. Unevenness of heating in furnaces
leads not only to an undesirable increase of the temperature of some product parts, but also
to additional heat and material loss [11]. Therefore, the main tasks set during simulation of
the processes taking place in such furnaces are:

• determination of gas temperature distribution along the trajectory of their movement
in the working chamber of the furnace;

• calculation of the parameter of uniformity of gas temperature distribution in the
working chamber (F = ∆t = tmax − tmin);

• selection of independent parameters that affect uniformity;
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• determining the necessary values of these parameters to increase the uniformity of
gas temperature distribution in the working chamber.

The design parameters of the furnace and auxiliary equipment of the furnace are
selected according to the results of mathematical modelling. For existing furnaces, the
simulation results are used to develop measures to change the operating parameters of
the unit and its equipment in order to improve the uniformity of gas and temperature
distribution in the furnace.

During simulation, the working chamber of the furnace is divided into i = 2n cal-
culation zones (see Figure 4). It is assumed that the heating material is located in each
calculated zone of the furnace, and there is an ideal mixing of gases; that is, the temperature
of the gases within the volume is the same. A burner is located in the first (by gas flow)
calculation zone i = 1, and a smoke window is located in the last zone i = 2n. The location
of the burner and the smoke window on the same end wall contributes to the occurrence
of large-scale gas recirculation, which significantly affects the uniformity of the smoke
temperature distribution in the working chamber of the furnace.
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In the central part of the furnace (Figure 4), on the border of the conditional division
of the gas flow into forward and reverse trajectories of movement, local turbulent vortices
appear, moving in forward and reverse directions. The mixing of gases in local zones
through the flow separation boundary is a local recirculation of gases, which also affects
the uniformity of the temperature distribution in the working chamber of the furnace.

The equation of heat balance of the U-shaped flue gas trajectory furnace is:

Qin i + Qrec i + Qbur i = QMe i + Qlost i + Qexg i (1)

where

Qin i—heat entered into the 1st zone with fuel, air and fuel combustion products, (W);
Qrec i—heat of combustion products passing through the furnace gas flow interface on the
straight and reverse path, (W);
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Qbur i—heat released by the fuel combustion, (W);
QMe i—heat consumed to heat up the material in the zone, (W);
Qlost i—heat loss through furnace walls, (W);
Qexg i—heat loss of furnace gases leaving the ith zone, (W).

Heating components of the heat balance calculation are calculated according to
Equations (2)–(4).

Qin i =


B f · t f · c f + Ln · B f · tair · cair for i = 1(

1−
i−1
∑

k=1
mk

)
·
(

B f · ti−1 · c f + Ln · B f · ti−1 · cair

)
+

+
i−1
∑

k=1
mk · υexg · B f · ti−1 · cexg +

i−1
∑

k=1
(∆G2n−k+1 − ∆Gk) · ti−1 · cexg for i = 2, . . . , 2n

(2)

Qrec i =

{
∆G2n−i+1 · t2n−i+1 · cexg for i = 1, . . . , n/2 and i = n + 1, . . . , 3n/2
−∆G2n−i+1 · t2n−i+1 · cexg for i = n/2 + 1, . . . , n and i = 3n/2 + 1, . . . , 2n

(3)

Qbur i = mi · B f ·Qlow (4)

where

B f —consumption, (kg/s);
t f , tair—temperature of heated fuel and air, (◦C);
c f , cair, cexg¯heat capacity of fuel, air and flue gases, (J/(m3 K));
Ln—actual combustion air consumption, (kg air/kg fuel);
t—temperature of the gases in combustion chamber, (◦C);
mi—fraction of fuel burned in the ith zone;
υexg—specific exhaust gases output during combustion, (kg/kg).
∆Gi—consumption of gases that move between local recirculation zones, (kg/s);
Qlow—lower operating heat of combustion of fuel, (J/kg);
n—number of calculated zones along the length of the furnace, (pcs).

The value of ∆Gij is determined by the law of the distribution of mass flow density of
combustion products through the interface between the forward and reverse trajectories of
their movement. For this purpose, the following formula can be used:

∆Gi =


0 for 1 ≤ i ≤ n/2 and n < i ≤ 3n/2

A ·
(

2·yi
Ltr

)b
for n/2 < i ≤ n

A ·
(

2·yi−n
Ltr

)b
for 3n/2 < i ≤ 2n

(5)

where

yi = ∆y · (i− 1/2)—coordinate of zone i centre, (m);
∆y = Ltr/(2 · n)—length of the ith zone, (m);
Ltr—total length gas movement trajectory, (m);
b—distribution function exponent;
A—the regularity coefficient of the distribution of the specific mass flow of combustion
products across the interface of the forward and reverse trajectories of their movement,
which is determined by the Equation (6):

B f · υexg ·
(
kp − 1

)
− A ·

 n

∑
i= n

2

(
2 · yi+1

Ltr

)b
 = 0 (6)

where

kp—coefficient of the large scale (recirculation through all zones of the combustion chamber)
recirculation.
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The share of fuel that burns in the ith calculation zone of the furnace is determined as:

mi =

{
1− C(Li) for i = 1

C(Li−1)− C(Li) for i = 2, . . . , 2n
(7)

where

C(Li) = exp
(
−Kg ·∆y·i

L f

)
—the regularity of changes in the relative concentration of fuel

depending on the length of the torch;
Kg—parameter of the fuel burnout model, which depends on the completeness of fuel
combustion in the flare and the type of burner;
L f —the length of the combustion zone, (m).

Output parts of the heat balance of the ith zone are calculated according to (8)–(10).

QMe i = CMe ·
[
(ti + 273)4 − (tMe + 273)4

]
· ∆FMei (8)

Qlost i = klost · ti · ∆FMei · ξgr (9)

Qexg i =

(
1−

i
∑

k=1
mk

)
·
(

B f · ti · c f + Ln · B f · ti · cair

)
+

+
i

∑
k=1

mk · υexg · B f · ti · cexg +
i

∑
k=1

(∆G2n−k+1 − ∆Gk) · ti · cexg

(10)

where

CMe—equivalent coefficient of radiation in the zone with respect to the conduction, (W/(m2 K4))
tMe—temperature of the material surface, (◦C);
∆FMei =

FMe
2·n —metal surface area in the ith zone, (m2);

FMe—total heat exchange area of the material, (m2);
klost—coefficient of heat transfer to the environment, (W/(m2·K));
ξgr = Flin/FMe—gradation of furnace laying;
Flin—total area of the furnace laying, (m2);

To determine the temperature change of the gases in the working chamber of the
furnace, a system of heat balance equations was compiled for each i-th calculation zone. The
total number of equations was 2n. Next, by solving the system, the temperature distribution
of the gases along the trajectory of their movement was relatively determined. The value ∆t
= tmax − tmin was calculated as a parameter of the uniformity of gas temperature distribution
in the working chamber of the furnace, where tmax and tmin are the maximum and minimum
temperatures of gases in the furnace).

Article [9] presents a comparison of the temperature distribution in the furnace cham-
ber with a U-shaped trajectory of flue gas movement obtained by using a mathematical
model with the results of temperature distribution measurements in a physical model- labo-
ratory furnace. It was shown that the accuracy of the calculated results was approximately
1.4–2.45%.

The mathematical model of the processes of gas dynamics and heat exchange in the
heating furnace is quite complex, and does not allow establishing the analytical dependence
of the uniformity of the gas temperature distribution ∆t on the parameters that affect it.
The use of the method of successive approximation [3] allows establishing dependence and
eliminating the need to solve a system of 2n nonlinear equations each time to determine
the value of ∆t.

2.2. Method of Successive Approximation

To extend the scope of the MSA application, a hypothesis was formulated, as follows.
Let there exist a scalar function F(X) = F(x1, x2, x3, . . . xn), that is bounded, defined and

continuous in the closed region D of the scalar field P. Then for any point M ⊂ D∀M ∈ D; ∀ε ≥
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0∃Uε(M) ⊂ D in the vicinity of the point M0
(
x0

1, x0
2, x0

3, . . . x0
n
)

(Figure 2) the function F(X)
can be represented in the form:

|F(X)− φ(X)| ≤ ε∀M0 ∈ Uε(M0) (11)

where

Uε(M0)—vicinity of the point M0
(
x0

1, x0
2, x0

3, . . . x0
n
)
;

φ(X) = α ∏n
i=1 gi(xi);

gi(xi)—approximation functions for f1, f2, f3, . . . , fn, which are given as follows:

f1(x1) = F
(
x0

1, x0
2, x0

3, . . . , x0
n
)
, f2(x2) = F

(
x0

1, x0
2, x0

3, . . . , x0
n
)
, f3(x3) = F

(
x0

1, x0
2, x0

3, . . . , x0
n
)
, . . . , fn(xn) = F

(
x0

1, x0
2, x0

3, . . . , x0
n
)

(12)

α—the approximation coefficient is determined in accordance with the formula:

α =
F(M0)

g1
(

x0
1
)
· g2
(

x0
2
)
· g3
(
x0

3
)
· . . . · gn

(
x0

n
) (13)

Using the specified approach, the representation of the function F(X) = F(x1, x2, x3, . . . xn)
around the point M0

(
x0

1, x0
2, x0

3, . . . x0
n
)

has sufficient accuracy for engineering calculations on
the entire definition area D.

The MSA application algorithm can be represented by a sequence of the follow-
ing steps:

1. Selecting a point from the function definition area

M = M0

(
x0

1, x0
2, x0

3, . . . x0
n

)
, M ∈ D (14)

2. Creating the function f1(x1) = F
(
x0

1, x0
2, x0

3, . . . , x0
n
)
.

3. Finding the type of function g1(x1), that is an approximation for the function f1(x1);
4. Finding ϕ1(x1) in accordance with step 1: ϕ1(x1) = α1g1(x1), where α1 is the approxi-

mation coefficient.
5. Defining the function around the point M from equality F(x1) ≈ ϕ1(x1).
6. Repeating the steps 2–5 consecutively for the variables xj

(
j = 2, n

)
and obtaining the

representation as follows:

F(x1, x2, x3, . . . xn) ≈ ϕ1(x1, x2, x3, . . . xn) = α · g1(x1) · g2(x2) · g3(x3) · . . . · gn(xn) (15)

The location of a point M = M
(
x0

1, x0
2, . . . , x0

n
)
, M ∈ D in the definition area signifi-

cantly depends on its topology, and therefore affects the way it is represented. The choice
of a point on the definition area is determined by prior knowledge of its features and is
determined by the researcher’s experience. In the case of complex functions and lack of
prior knowledge about behavior of the resulting function, it is convenient to choose it in
the center of the definition area, i.e., to determine the coordinates according to the formula:

xj =
bj − aj

2
(16)

where aj, bj represent the beginning and end proves (respectively) of the interval of changes
of parameter xj.

It should be noted that the surface of the desired function is represented using a
generalized hyperbolic hyperboloid, and it is not worth hoping for a uniform behavior of
the relative error.

It should also be noted that the problem of choosing classes of approximation functions
is one of the most critical problems, not only in applied mathematics but also in technical
applications. As research has shown [12], the coefficient of variation of approximating
functions cannot act as a criterion for selecting functions. As a criterion that limits the
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choice of the class of approximating functions, it is suggested to choose the dimension of the
original function, if possible. Using the limitations of the class of approximating functions
is extremely important for evaluating the influence of parameters on the resulting function.

Wide application of MSA in practice has shown that the use of a class of power
functions is particularly effective for evaluating the influence of parameters on the quality
function. The impact assessment method is a reproduction of the problem solution (when it
is constructed in the form of described tables of numbers) in the form of a product of power
functions and a comparison of their indicators. The higher the exponent, the stronger the
influence of the parameter on the function.

3. Initial Data, Quality Function, Independent Parameters and Their Limits

Using a mathematical model of gas dynamics and heat exchange processes, calcula-
tions of gas temperature distribution along the length of the trajectory of their movement
in the working chamber of the furnace were performed.

The initial data for modeling are presented in Table 1. The most characteristic pa-
rameters of the work intended for heating steel ingots were taken as initial data. The
length of the working chamber of the furnace (8 m) and height (43 m) are typical for the
intended design and do not change depending on the aisles. As a rule, such furnaces are
heated with a mixture of consumption of coke and blast-furnace gas with a calorific value
of 5.5–812 MJ/m3 [2]. At the same time, the higher the temperature of heating the fuel and
air before their absorption, the lower the calorific value of the mixture of coke oven and
blast-furnace gas that is used. In the assumed heating of air and visible gases, up to 800 ◦C
and 300 ◦C, respectively, which is the most widely used heat leaving the flue gas furnace,
the metal surface temperature of 1000 ◦C corresponds to the range of revolutions of its
metal processing. The thermophysical properties of metal, gas, and air correspond to their
temperature [10].

Table 1. Initial data.

B f , kg/s Q f , J/kg Ln, kg/kg υexg, kg/kg t f , ◦C tair, ◦C tMe, ◦C c f , J/(kg·K)

1.721 6.164 × 106 1.943 2.943 300 800 1000 1240

Ltr, m CMe,
W/(m2·K4) FMe, m2 ξgr

klost,
W/(m2·K) n cair, J/(kg·K) cexg, J/(kg·K)

16 1.731 × 10−8 122 1.344 2 8 1071 1238.2

As a quality function, an indicator that characterizes the uniformity of the gas tem-
perature in the working chamber F = tmax − tmin was chosen, where tmax and tmin are
the maximum and minimum gas temperatures along the trajectory of their movement,
respectively. According to the results of previous studies, six independent parameters that
affect the quality function were determined, and the range of their possible change was
also established.

(a) Fuel temperature t f = 0, . . . , 300 ◦C. It is known from literature sources [13] that
it is not safe to increase the heating temperature of gaseous fuel in the existing heat
exchangers of furnaces above 300 ◦C, for the reasons of explosive safety.

(b) The temperature of the air used for fuel combustion is tair = 0, . . . , 1000 ◦C. Due
to the heating of air to high temperatures, significant fuel savings are achieved in
methodical [14], ring [15], roller and shaft [16] furnaces, as well as in heating wells [17]
of various designs. The maximum air heating temperature depends on the method
of utilization of the heat of the flue gases leaving the furnace and the design of the
heat exchangers, but usually this temperature does not exceed 1000 ◦C. At the same
time, in outdated equipment that is still in operation at some enterprises, heating of
the combustion air before burning is not provided.

(c) Multiplicity of internal large-scale recirculation of furnace gases kp = 1, . . . , 6.
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The choice of such limits for varying the multiplicity of recirculation of furnace gases
is determined by the practical research data obtained by numerous experimenters. So,
when modeling a recirculation circuit with a built-in fan, V.D. Brook [18] discovered that
increasing the recirculation ratio above 5 was impractical and led to an increase in fan power
consumption. A shown in research conducted at the Gas Institute of the National Academy
of Sciences [19], when the recirculation rate was increased above kp = 6, the intensity of
temperature equalization in the furnace decreased sharply, so further intensification of
recirculation is impractical.

The indicator of the degree of the distribution function, which characterizes small-scale
recirculation, was chosen on the base of considerations outlined in the paper [4] within
b = 0, . . . , 15.

The parameter of the fuel burnout model adopted by V.Y. Gubynskyi et al. [2] varies
within the limits Kg = 3, . . . , 4.61;

The length of the combustion zone L f = 8, . . . , 16 m was taken in metres from the
conditions that the torch occupies the entire length of the furnace space, and according to
the operation data of the operating furnaces.

Acting in accordance with the MPA algorithm, the range of change for each indepen-
dent parameter was divided into 10 intervals with equal steps and a reference point was
chosen M

(
t0

f , t0
air, k0

p, b0, K0
g, L0

f

)
, where t0

f = 150 ◦C; t0
air = 500 ◦C; k0

p = 3.5; K0
g = 3.805;

L0
f = 12 m.

4. Results

Figure 5 shows the results of calculating the gas temperature distribution in the
working chamber of the furnace. As can be seen from the figure, a gas minimal temperature
value of 1053.9 ◦C was observed at the entrance to the working chamber of the furnace. The
maximal gas temperature was observed in the sixth calculation zone, reaching 1268.4 ◦C.
The quality function value at the reference point was F(t0

f , t0
air, k0

p, b0, K0
g, L0

f ) = 214.5 ◦C.
Figures 6–11 show combined graphs of the function F values (marked by dots in the

figures) and their approximations functions gi (solid continuous lines).
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Figure 11. Combined graph of the values of the function F from the parameter Lf.

The approximation functions reached the following values:
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g1 =
(

223.75− 0.0623939 t f

)
g2 = (270.441− 0.110591 tair)

g3 = 532.222/k0.729813
p g4 = 376.11426000

(b+2.43204800)0.23907803

g5 = 301.811/K0.259232
g g6 = 100.019L0.301486

f

(17)

The choice of approximating functions gi was carried out based on the best fit to the
data obtained. Despite the above-mentioned advantages of approximating the obtained
data by power functions, their use is not always possible. So, according to Figures 5–7, the
dependencies of the quality function on air and fuel temperatures cannot be approximated
by power functions, since they are linear dependencies [2]. Therefore, an exception was
made for g1 and g2. The approximation function g4 took on this form solely because of phys-
ical considerations and conditions of existence in the denominator of the expression close to
zero, which leads to uncertainty. All other functions were chosen in the form of exponents
for the convenience of considering the sensitivity of the function to the parameters.

According to the above hypothesis and algorithm, the calculated function F takes
the form:

F =
0.0134281171 · L0.301486

f

(
223.75− 0.0623939 · t f

)
(270.441− 0.110591 · tair)

(b + 2.432048)0.23907803 · K0.259232
g · k0.729813

r
(18)

The relative errors of the approximating functions g1, g2, g3, g4, g5, g6 are characterized
by graphical dependencies presented in Figure 12.

Figure 12 presents the distribution of relative deviations of the function from the
one obtained by the formula on the lines of intersection of the functional space with
coordinate planes. The accuracy obtained by the choice of approximating functions is
at a satisfactory level for most of engineering calculations because the obtained relative
errors are commensurate with the measurement errors of the corresponding quantities
in industrial conditions. The behavior of errors on the hyper diagonal of the domain
of definition is of interest. According to the authors, these deviations are decisive for
evaluating the behavior of the function and adjusting the scope of its definition, that is, in
fact, the range of the parameter variations.

As can be seen from the above graph, the last error value (32.8%) is not desirable for
engineering calculations. So, for example, with the temperature distribution shown in
Figure 6, the value of the quality function is 214.5 ◦C. With an error value of 32.8%, the error
in determining the temperature unevenness in the working chamber of the furnace reaches
70.4 ◦C, which significantly exceeds the error in measuring temperatures in industrial
conditions (10–15 ◦C).

To reduce the relative error when using the given formula, it is necessary to reduce
the domain of the function by reducing the right-hand interval by the step of dividing the
range of variations. The reduction is not significant but allows the range of errors in the
definition domain of the function to be limited to 6%, which is a satisfactory result for most
engineering calculations.

Figure 14 shows the graph of the relative error for the adjusted range of parameters:
fuel temperature t f = 0, . . . , 270 ◦C; the temperature of the air used for fuel combustion
tair = 0, . . . , 900 ◦C; multiplicity of internal large-scale recirculation of furnace gases
kr = 1, . . . , 5.5; an indicator of the degree of distribution function characterizing small-scale
recirculation b = 0, . . . , 13.5; a parameter of the fuel burnout model Kg = 3, . . . , 4.449, and
the length of the combustion zone L f = 8, . . . , 15.2 m. In the specified range of parameter
variations, the relative error of the quality function does not exceed 6%.
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Figure 12. Relative error of approximating functions: (a) g1, (b) g2, (c) g3, (d) g4, (e) g5, (f) g6.

The distribution of the relative error on the generalized diagonal of the hypercube of
the definition area is presented in Figure 13.
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5. Discussion

Based on the hypothesis formulated in previous section, the results can be written
as follows:
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That means that moving sequentially, starting from the first step, one can obtain the entire
sequence of representations of the function from these parameters. It all works when all
other points are at the point M0

(
x0

1, x0
2, x0

3, . . . x0
n
)
.

The simulation results given above fully reflect qualitative ideas about furnace pro-
cesses, which are known from their operation. Thus, among the selected independent
parameters, the most significant influence on the uniformity of the temperature field in
furnaces with a U-shaped trajectory of gas movement is characterized by the multiplicity
of large-scale recirculation kr. Changing this indicator value from kr = 1 to kr = 6 results
in a tenfold decrease of the quality function value F = tmax − tmin meaning the uniformity



Appl. Sci. 2022, 12, 11948 16 of 18

of the gas temperature in the working chamber of the furnace. The simulation results
confirmed the thesis of a sharp drop in the intensity of temperature equalization with an
increase in the recirculation rate. The processing of the approximation curve of the quality
function F shows that the uniformity of the gas temperature increases by almost 40 % when
the recirculation ratio increases from kr = 1 to kr = 2 and by 12.5% only when the same
parameter increases from kr = 5 to kr = 6.

Small-scale recirculation has a similar quality, but smaller influence on function F. Such
an effect on temperature uniformity in the working chamber of the furnace is quite natural.
After all, both small-scale and large-scale recirculation characterize gas-dynamic and mass
exchange processes, which are described by the same equations and have the same effect
on the heat exchange. Analysis of the data on the impact of small-scale recirculation shows
that with an increase in its share, the unevenness of the gas temperature distribution in the
furnace can increase by an additional 15%. The reduction of small-scale local recirculation
is associated with the elimination of obstacles and local resistances in the path of movement
of furnace gases, and a sharp change in the direction of their movement.

The gas heating temperature and the parameters of the fuel combustion model have the
least influence on the uniformity of the gas temperature out of the six selected parameters.
The change in fuel temperature from the minimum to the maximum level (i.e., from 0 ◦C
to 300 ◦C) leads to an insignificant improvement of the uniformity of gas temperature
distribution in the working chamber of the furnace, as it ranges from 225 ◦C to 205 ◦C. The
parameter of the model of gas combustion in the torch has almost the same effect.

The length of the flare affects the quality function F in direct proportion. Studies have
confirmed the growth of heating unevenness with increasing torch length. In our case, such
an increase value was 45 ◦C, which means an almost 25% increase.

As follows from Figure 12, the relative errors of the approximating functions g1,
g2, g3, g4, g5, g6 are not significant and do not exceed 2–3% except for the error of the
approximating function g3 (multiplicity of recirculation) which reaches 7.5% at the limit
point equal to 6. Under the conditions where such a value of the recirculation multiplicity
for furnaces is too large, it may be considered that the accuracy of the approximation
functions obtained in research is quite acceptable for engineering calculations.

The same conclusion can be made about the value of the relative error on the diagonal
of the detection area on the base of Figure 13. Except for the extreme point, the relative
error does not exceed 6%, which is within the limits for most of engineering calculations
and measurement errors when using industrial metrological devices.

According to the literature [20,21], MSA is a suitable and effective method of math-
ematical modeling and calculation. The results of the studies carried out in this work
indicate the possibility of expanding the scope of MSA to solve gas dynamics and heat
transfer problems.

6. Conclusions

This paper presents the results of applying the successful approximation method for
mathematical modeling of gas dynamics and heat transfer processes in a heating furnace
with a U-shaped trajectory of flue gas movement. The influence of a number of independent
parameters on the selected quality function, i.e., the uniformity of the temperature field of
gases in the working chamber of the furnace, was studied. The following parameters were
selected as independent parameters: fuel and air heating temperatures before combustion;
the multiplicity of internal large-scale recirculation of furnace gases; the exponent of the
distribution function, which characterizes the small-scale recirculation of gases in the
working chamber; the flame burnup model parameter, and the length of the burning zone.
It was established that the greatest influence on the quality function is exerted by the
multiplicity of the internal large-scale recirculation of furnace gases, the change of which
from 1 to 6 leads to a tenfold increase in the uniformity of the gas temperature distribution
in the working chamber. Moreover, the main increase in the uniformity of temperature
distribution (up to 40%) occurs with an increase in the recirculation ratio from 1 to 2. With a
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further increase in the recirculation ratio, the effect of this parameter on the quality function
weakens and does not exceed 12.5% with a change in the recirculation ratio from 5 to 6. The
fuel heating temperature before combustion has the least effect on the quality function (up
to 8.9%). The remaining parameters considered are characterized by an average influence
on the quality function. Their change in the considered interval causes a change in the
uniformity of the temperature field of gases by 15–25%.

MSA, proposed for the approximate determination of regularities between system
parameters, was confirmed for its efficiency in the calculation of gas dynamics and heat
transfer problems. Relative errors for most parameters did not exceed 6%, which is a
confirmation of the efficiency of the algorithm, on the one hand, and the possibility of using
simplified formulas for practical engineering calculations.

The simplified method proposed by the authors, in contrast to that used in the afore-
mentioned works, does not require continuity and smoothness of functions and does not
use derivatives of the quality function, which widely extends the scope of its application in
various areas of science including mathematical modeling of gas dynamic and heat transfer
processes in industrial heating and thermal equipment.

The representation of the product functions by power functions allows swift evaluation
of their influence on the quality function. Our research also indicates the possibility of using
MSA as a tool for a digital twin design for thermal processes. In the future, the authors aim
to continue with mathematical and experimental verification of the presented hypothesis.

Author Contributions: Conceptualization, M.R. and O.Y.; methodology, O.G.; software, A.K.; val-
idation, G.L., O.G., Y.M. and A.K.; formal analysis, M.F.; investigation, O.Y.; resources, M.R.; data
curation, A.K. and T.K.; writing—original draft preparation, O.G. and A.K.; writing—review and
editing, A.K. and T.K.; visualization, A.K.; supervision, O.Y.; project administration, M.R.; funding
acquisition, M.R. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by KEGA grant agency under Grant KEGA 023TUKE-4/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gubinskiy, V.I.; Yeremin, A.O.; Tryapichkin, M.G. Experience of using volumetric-regenerative method of fuel combustion in

soaking-pit furnaces. Metall. Min. Ind. 2010, 2, 164–167.
2. Gubinskiy, V.I.; Lu, Z.-U. The Theory of Flame Furnaces; Mashynostroyeniye: Moscow, Russia, 1995; p. 256.
3. Fedorets, V.A. The method of multifactorial study of the parameters of the heat transfer process. Digatelestroyeniye 1982, 11, 54–66.
4. Larionov, H.; Larionov, M. Chapter 4. On the One Parameters Influence Evaluating Method Employed to Evaluate the Support

Capacity of a Metal-Resin Anchor. In Modeling of the Soil-Structure Interaction: Selected Topics; Zhelyazov, T., Ed.; Nova Science
Publisher, Inc.: Hauppauge, NY, USA; Technical University of Sofia: Sofia, Bulgaria, 2020; pp. 87–101.

5. Torokhti, A.; Howlett, P.; Pearce, C. Method of Best Successive Approximations for Nonlinear Operators. J. Comput. Anal. Appl.
2003, 5, 299–312.

6. Potra, F.A. On the Superlinear Convergence of the Successive Approximations Method. J. Optim. Theory Appl. 2002, 113, 473–485.
7. Jaffari, H. A comparison between the variational iteration method and the successive approximations method. Appl. Math. Lett.

2014, 32, 1–5. [CrossRef]
8. da Silva, E.A.B.; Dutra, A.J.S. FIR Filter Design Based on Successive Approximation of Vectors. IEEE Trans. Signal Process. 2014,

62, 3833–3848. [CrossRef]
9. Rimar, M.; Kulikov, A.; Fedak, M.; Yeromin, O.; Sukhyy, K.; Gupalo, O.; Belyanovskaya, E.; Berta, R.; Smajda, M.; Ratnayake, M.R.

Mathematical Model of a Heating Furnace Implemented with Volumetric Fuel Combustion. Processes 2020, 8, 469. [CrossRef]
10. Gubinskiy, V.I.; Timoshpolsky, V.I.; Olshansky, V.M. Metallurgical Furnaces. Theory and Calculations: A Textbook in 2 Volumes; Nauka:

Minsk, Belorus, 2007; p. 832.
11. Revun, M.P.; Barishenko, E.N.; Cheprasov, A.I. New schemes for pulsed heating of heating and thermal furnaces. Metal.

Hornorudnaya Promyshlenost 2005, 3, 97–100.

http://doi.org/10.1016/j.aml.2014.02.004
http://doi.org/10.1109/TSP.2014.2324992
http://doi.org/10.3390/pr8040469


Appl. Sci. 2022, 12, 11948 18 of 18

12. Ivakhnenko, A.G.; Iurachkovskii, I.P. Modelirovanie Slozhnykh Sistem po Eksperimentadnym Dannym; Radio i Sviaz: Moscow, Russia,
1987; p. 118.

13. Tebenkov, B.P. Heat Exchangers for Industrial Furnaces; Metalurgiya: Moscow, Russia, 1975; p. 295.
14. Rich, L.V. Regenerative burners in reheat furnaces. Iron Steel Eng. 1989, 66, 46–52.
15. Drehkammerofen mit Regenerativbrenner. Stahl Und Eisen 2006, 126, 19.
16. Newby, J.N. High-performance heat recovery with regenerative burners. Iron Steel Eng. 1987, 5, 20–24.
17. Chen, H.L. Current state and prospects for the development of high-performance regenerative furnaces (HRF) in China. In

Metalurgicheskaya Teplotekhnika: Collection of Scientific Papers; GMetAU (Energy. Metallurgy): Dnipropetrovsk, Ukraine, 1999;
pp. 195–200.

18. Bruk, V.D.; Neimark, L.A.; Brun, B.P. Study of a thermal furnace equipped with built-in fans. Pechi Sushila Mashinostroitelnoi
Promzshlennosti 1977, 42, 44–51.

19. Pilipenko, R.A. Chamber thermal furnaces for precision metal heating. In Proceedings of the International Symposium “OTTOM-
2”: Sat. Report.—NNCKhFTI, Kharkiv, Ukraine, 3–5 October 2001.

20. Chen, X.; Dai1, H.; Wei1, W. Successive mth approximation method for the nonlinear eigenvalue problem. Comp. Appl. Math.
2017, 36, 1009–1021. [CrossRef]

21. Ghosh, P.; Ghosh, S.; Bera, N. Method of successive approximation and its application in chemistry. Indian J. Phys. 2021, 95,
1407–1422. [CrossRef]

http://doi.org/10.1007/s40314-015-0277-5
http://doi.org/10.1007/s12648-020-01785-5

	Introduction 
	Materials and Methods 
	Mathematical Model 
	Method of Successive Approximation 

	Initial Data, Quality Function, Independent Parameters and Their Limits 
	Results 
	Discussion 
	Conclusions 
	References

