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Abstract: Collaborative spectrum access requires wireless devices to perform spectrum-related tasks
(such as sensing) on request from other nodes. Thus, while joining the network, they need to inform
neighboring devices and/or the central coordinator of their capabilities. During the operational
phase, nodes may request other permissions from the the controller, like the opportunity to transmit
according to the current policies and spectrum availability. To achieve such coordinated behavior, all
associated devices within the network need a language for describing radio capabilities, requests,
scenarios, policies, and spectrum availability. In this paper, we present a thorough comparison of the
use of two candidate languages—Web Ontology Language (OWL) and eXtensible Markup Language
(XML)—for such purposes. Towards this goal, we propose an evaluation method for automating
quantitative comparisons with metrics such as precision, recall, device registration, and the query
response time. The requests are expressed in both SPARQL Protocol and RDF Query Language
(SPARQL) and XML Query Language (XQuery), whereas the device capabilities are expressed in
both OWL and XML. The evaluation results demonstrate the advantages of using OWL semantics to
improve the quality of matching results over XML. We also discuss how the evaluation method can
be applicable to other scenarios where knowledge, datasets, and queries require richer expressiveness
and semantics.

Keywords: OWL; XML; language comparison; evaluation method; cognitive radio; quantitative
metrics

1. Introduction
1.1. Problem Scenario Descriptions

A wireless network of reconfigurable software-defined radios (SDRs) can be consid-
ered a distributed computing system, as these SDRs possess the ability to perform various
sensing and computation tasks requested by applications running on other similar nodes.
For this high level of coordination, SDRs (these intelligent SDRs are referred to as ‘cogni-
tive radios’, or simply as ‘radios’ henceforth) need to perform various simple to complex
functions. Thus, they need to determine how specific capabilities may best address the
issued queries, e.g., individual radios may need to inform the network controller of their
capabilities, and applications may issue requests for services and the controller then can
match the radio capabilities against the requests. Following this, a subset of radios can
be invoked to perform the requested services. Similarly, radios may request permission
to transmit, and such requests then need to be matched against policies and available
resources (e.g., availability of the spectrum). In all such scenarios, the requests need to
be compared with the radio capabilities in order to decide which devices can satisfy a
specific request.

Figure 1 shows a Unified Modeling Language (UML) diagram for some sample use-
case scenarios. ‘Device’ and ‘Application’ are two actors who participate in the use cases of
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the system running on the network. A device registers its capabilities to the network, as in-
dicated by Register Device use case. After registering devices to the controller, whenever the
latter receives a request by a device or an application for a service, it processes the request
and then returns the results of the processing back to the requester. This functionality is
captured by the Request Service, which includes the Process Service use case denoted by the
dotted arrow from Request Service to Process Service. This arrow is annotated by the «include»
label which, in UML terminology, implies that the use case at the tail end of the dotted
arrow completely reuses all of the steps included for that case [1]. We can also observe
from the figure that there are some special types of Register Device and Request Service use
cases expressed by the inheritance relation, with the generalization arrow pointing to the
more general use case from the more specific use case. This indicates that more than one
language can be used to express device capabilities and application requests.

Figure 1. Problem scenarios—UML use case diagram.

Since both requests and device capabilities need to be formulated in a language that
all devices understand, the main contribution of this paper is to identify a language that
can describe the requests and radio capabilities. Such a language must be interpretable
by devices, applications, and networks and it must have sufficient expressiveness to deal
with various scenarios, requests, and device descriptions. The language must have precise
semantics so that the meaning of the requests is precise and the devices can derive sound
and complete results in response to the requests. Finally, the meaning of the returned
results should be understandable by the requesters.

1.2. Approach

While we considered different candidate options, we advocate for the use of Web
Ontology Language (OWL) [2] in this paper. OWL is a formal language (with formal syntax
and formal semantics) designed to represent rich and complex knowledge about things,
groups of things, and relations between things.

Though there are many advantages of using the semantics of the OWL language
for representing and querying radio capabilities, it also comes with a price. For instance,
there are time and space costs for deriving inferred facts with inference rules processed
by an inference engine. When data need to be manipulated often, the inference engine
should run every time a change is made to the data. We comprehensively explored the
pros and cons of OWL versus eXtensible Markup Language (XML) [3] based schemas
that match device descriptions against application requests in a quantitative way. While
it is clear that OWL captures the semantics, the real question is how much the use of
OWL semantics is advntageous for a specific application, versus an application that uses
just XML. For this, we propose a metrics-based evaluation method to compare the two
approaches. We performed experiments with the proposed method to prove the feasibility
and correctness of the approach. To ensure that the evaluation results reflect practical
concerns, our investigation was guided by the following principles:
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1. The comparison must be reasonably fair. Knowledge, datasets, and queries used to
evaluate each of the two approaches must be comparable (equivalent).

2. The samples of knowledge, data, and queries used in the experiment should provide
good coverage of the space of knowledge, device descriptions, and query properties.
Test samples should be highly diversified and representative of the whole tested space
of devices and queries.

3. The method must have access to the ground truth of each application request for the
purpose of computing evaluation metrics.

4. The same metrics should be used to evaluate the results of each of the two approaches.
5. The evaluation must be scalable and extensible. The evaluation should not only

be capable of dealing with different sizes of datasets and queries but should also
be extensible for any updates with respect to the knowledge base, data, queries,
and metrics.

1.3. Contributions and Paper Organization

The main contributions made in this paper include the following:

1. We propose a method for evaluating the use of OWL-based and XML-based ap-
proaches to represent and query cognitive radio capabilities with quantitative metrics.

2. We justify how the method satisfies all of the evaluation principles and why the
techniques used in the method are a good fit to our problem.

3. We analyze the evaluation results and provide recommendations for the selection of
the best approach depending on the scenario.

The remainder of this paper is structured as follows: Section 2 summarizes related
work, and Section 3 presents the reasons for choosing XML and OWL as the two candidate
languages that we probe deeper into in the rest of the paper. Section 4 conceptualizes and
formulates the problem. The evaluation method, results, and analysis are presented in
detail in Section 5, followed by the justification of the method against satisfaction of the
evaluation principles in Section 6. Section 7 concludes the paper.

2. Related Work

To the best of our knowledge, we are the first group to propose a comprehensive
and quantitative assessment method for the comparison of the use of OWL and XML for
modeling the Radio Frequency (RF) domain. The most closely related efforts address only
portions of the entire problem, which we classified into the following categories: (1) au-
tomatic device description generation, (2) automatic device capabilities query generation,
(3) data transformation between the Resource Description Framework (RDF) [4,5]/OWL
and XML, and (4) query transformation between the SPARQL Protocol and RDF Query Lan-
guage (SPARQL) [6] and XML Query Language (XQuery) [7]. Since the first two categories
are fully addressed in [8,9], this section is focused entirely on the latter two.

2.1. Data Transformation between RDF/OWL and XML

The related work in this category, further classified into three groups, (1) XML to
RDF/OWL, (2) RDF/OWL to XML, and (3) bidirectional transformation, is summarized in
Table 1. The values in the second column indicate the types of support used for the schema
transformation with the lack of such support being indicated by “N/A”.
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Table 1. Methods used for the transformation between RDF/OWL and XML.

Related Work Schema Transformation

(1) XML→ RDF/OWL

Ferdinand et al. [10] XML Schema→ OWL-DL
Garcia et al. [11] XML Schema→ OWL-FULL

Bohring et al. [12] XML Schema→ OWL-DL
JXML2OWL [13,14] N/A

DTD2OWL [15] DTD→ OWL-DL
* Thuy et al. [16] XML Schema→ OWL-DL

Breitling [17] N/A
* GRDDL [18] N/A

* XMLtoRDF [19] N/A
* Droop et al. [20,21] N/A

XMLMaster [22] N/A
EXCO [23] XML Schema→ OWL-DL

(2) RDF/OWL→ XML

XSLT + SPARQL [24] N/A

(3) Bidirectional
Gloze [25] N/A

Miletic et al. [26] XML Schema→ OWL-DL
* SAWSDL [27] N/A

* XSPARQL [28,29] N/A
* Semi-automatic data transformation that requires user intervention.

In the first group (XML to RDF/OWL), the methods that fully automate the trans-
formation typically rely on predefined, generic mapping rules that are encoded as XSLT
stylesheets [30]. While the research presented in [10–12,15,16,23] relies on mappings devel-
oped at the schema level, in [17], mapping is defined at the data level. These transforma-
tions retain the original structure of the input XML, yielding RDF/OWL data that usually
do not properly convey the intended semantics. Other methods in this group require
either additional input or some form of user interaction. In [13,14], a graphical interface is
relied on by the users to define the schema mapping rules, and this produces an XSLT for
automatic data transformation. In [18], a mechanism for extracting RDF/OWL data from
XML is defined. This involves declaring that XML data are compatible with RDF/OWL
via linking to algorithms (typically XSLT). In [20,21], XML data are transformed to RDF
by performing a depth-first search traversal of the XML tree. In addition to the XML data,
in [19], ontology and a schema are required for ontology mapping by the user. In [22],
user-provided mapping expressed in a domain-specific mapping language is employed.

For the second group (RDF/OWL to XML), in [24], an extension to the XSLT function
set was proposed. This allows SPARQL queries to be embedded into XSLT which, in turn,
provides a new platform for scripting and transforming RDF into XML.

For the third group (bidirectional), in [25], the transformation is provided based on
the XML schema, and in [26], the RDF-based Semantic Mediation approach is used. In [27],
mechanisms are provided for annotating XML schema elements (especially within WSDL
definitions) that can be leveraged for automatic and bidirectional transformation. In [28,29],
XSPARQL, a combination of XQuery and SPARQL with one language first extracting the
native input data through queries and the other used for transformation to the target
language through update statements, is defined.

The bidirectional methods are the most relevant to the work described in this paper,
since they may better satisfy the fairness principle of the evaluation method (Section 1.2).
However, in our work, instead of transforming between the two languages, we relied on
the XML-based serialization of RDF/OWL, which can be treated as XML and RDF/OWL
at the same time (Section 6).
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2.2. Query Transformation between SPARQL and XQuery

In [31], a method is presented for providing SPARQL endpoints over XML data
by integrating a schema into the ontology transformation component and automatically
translating SPARQL queries to XQuery. This method is limited to queries that do not
include OWL individuals, since the translation operates at the ontology/schema level only.
In [32,33], a method for the complete and correct translation of SPARQL to XQuery isde-
scribed without any assumptions made about the schema or particular workload. Full
implementation of the method (xql2xquery) is publicly available, and because of its good
coverage of the SPARQL query features, it was adopted within the evaluation processes
described in this paper.

3. Motivation for OWL vs. XML

There are many languages that could satisfy the requirements outlined in the previous
section. This section discusses the motivation behind the selection of the two approaches
evaluated in this paper.

First, we were interested in evaluating how the semantics affects the performance with
respect to data modeling and the querying of cognitive radio capabilities. Since OWL has
computer processable semantics (i.e., it belongs to a group of formal languages—languages
with formal syntax and formal semantics) [34], the consistency of device descriptions
represented in OWL can be checked first. Then, new facts can be derived from a given set
of facts using the inference rules executed by an inference engine. The derived facts are
guaranteed to be consistent with the knowledge base, i.e., its derivation process is sound.
In contrast, other languages such as XML Schema Definition Language (XSD) [35,36]/XML
or relation/tuple are either semi-structured or structured and do not have much of the
semantic richness, require all facts about devices to be explicitly expressed, and cannot
generate inferred facts without dedicated software. Therefore, the OWL-based approach
was chosen as a baseline that plays a significant role in the matching process, especially in
establishing the query ground truth for the evaluation of the quality of the matching results.

Second, we considered the XML-based approach rather than other approaches, such as
the relational table approach, since the former better addresses the language requirements
defined by the use cases described in Section 1.1. XML is more flexible than the relational
table approach with respect to the updating of the structure of data. Whenever there is
a need to update the structure of the data, it is much easier to make changes to the XML
data than to a relational table, since the latter would require a change in the relational
database schema, which would have to be followed by the restructuring of the whole
database. Additionally, XML data are self-describing, while relational data are not [37]. An
XML document contains not only the data, but also a tagging for the data that represent
what it is [37]. With the relational model, the content of the data is defined by its column
definition [37]. All data in a column must have the same type of data [37]. The flexibility
feature is very critical in our problem, since the data representation language for our use
cases should be flexible enough to deal with various data updates, especially for cases where
devices with new types or capabilities are registered with the system. Therefore, in this
paper, we only considered OWL-based and XML-based approaches as being appropriate to
address the problem.

Each of these two approaches uses other languages for representing data and queries.
The languages used in the two approaches are listed in Table 2. They are categorized into
three levels [38]: (a) languages for modeling background knowledge (the schema level);
(b) languages for representing device descriptions (the data level); and (c) languages for
requests for services (the query level).
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Table 2. Languages used in the two approaches for each level.

OWL-Based XML-Based

Background Knowledge OWL XSD(Schema Level)
Device Descriptions RDF/OWL XML(Data Level)

Requests for Services SPARQL XQuery(Query Level)

3.1. Web Ontology Language (OWL)

OWL descriptions can be viewed as consisting of two parts—descriptions of the con-
cepts and then facts that are instances of these concepts. Concepts are analogous to database
schema, while instances are analogous to tuples in database tables. The concepts are ex-
pressed in OWL, while the instances are expressed as RDF triples. OWL representations
are called ontologies. The term ontology emerges from artificial intelligence and conveys
the syntax and semantics of concepts and their relationships in a formal, declarative, and
computer-understandable way [39]. An ontology for a radio communication domain serves
as the base for representing device descriptions. Data are stored in, and retrieved as, triples
in an RDF store, also called a triple store. Application requests are expressed in SPARQL.
SPARQL is a set of specifications that provide languages and protocols to query and ma-
nipulate RDF graph content on the Web or in an RDF store [6]. Due to the fact that OWL
has formal semantics, the data annotated in OWL can be processed by any inference engine
(or reasoner) that conforms with the OWL semantics to derive the facts that are implicitly
contained by the explicitly encoded facts. Thus querying is applied to the extended set of
facts after the inference step.

3.2. eXtensible Markup Language (XML)

The second approach is to use the XML-based technology, i.e., use XSD as a base for
expressing types and then use XML to describe instance XML data about the environment
and the resources. There are two main approaches to the storage of XML documents—as
an XML enabled database or as a native XML database. The former is a relational database
that transfers data between XML documents and tuples, whereas the latter stores XML
data directly [40]. Device descriptions can be represented in XML. They can be queried,
transformed, exported, and returned to application requests expressed in XQuery—the
“native” query language for XML. Application requests represented as XQuery queries are
processed by the XQuery processor which matches XML data against the query and returns
the matching results.

4. Problem Formulation

We conceptualize and formalize the problem in this section. Our objective was to
derive metrics for the matching of the descriptions of device capabilities against requests
for their services for the two approaches and provide recommendations on the usability of
the two approaches in the RF domain based on these metrics.

Figure 2 is a data flow diagram that represents the evaluation process at a high
level. As shown in this figure, a set of device descriptions (and their capabilities) is
generated and represented in the respective data representation languages, i.e., XML in the
XML-based approach and RDF/OWL in the OWL-based approach. The descriptions of
device capabilities are stored in respective datastores. Requests for device capabilities are
generated and expressed in two query languages—XQuery in the XML-based approach
and SPARQL in the OWL-based approach. The requests represented in the respective
query languages are forwarded to the appropriate matchers for matching of the device
capabilities against the requests. The matching results of each query expression returned
from the matchers are then evaluated by comparing with the ground truth of the matching
devices against the query, and metrics are computed.
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Figure 2. Visual representation of the evaluation process.

4.1. Problem Formalization
4.1.1. Notations

For the purpose of formalizing the problem, the following notations are introduced.

• D = {D1, D2, . . . , Dn}—set of n devices
• Dxml = {Dxml

1 , Dxml
2 , . . . , Dxml

n }—set of n descriptions of device capabilities repre-
sented in XML

• B = {B0, B1, . . . , Bk}-set of k + 1 knowledge representations of D in OWL, where
B0 ∈ B is the most complete representation and Bi ∈ {B1, . . . , Bk}, 1 ≤ i ≤ k are
progressively less complete representations s.t. each Bi does not include at least one
type of OWL 2 RL axiom with respect to Bi−1

• Dowl = {Dowl
1 , Dowl

2 , . . . , Dowl
n }—set of n descriptions of device capabilities from D in

RDF/OWL
• Q = {Q1, Q2, . . . , Qm}—set of m requests (queries) against device capabilities from D
• Qxml = {Qxml

1 , Qxml
2 , . . . , Qxml

m }—set of m requests expressed in XQuery
• Qowl = {Qowl

1 , Qowl
2 , . . . , Qowl

m }—set of m requests expressed in SPARQL
• f xml—function that takes a set of device descriptions and a query in XML and returns

a set of devices that match the query:

f xml : (2Dxml
, Qxml)→ 2D (1)

• f owl—function that takes a set of device descriptions, a background knowledge repre-
sentation and a query in OWL and returns a set of devices that match the query):
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f owl : (2Dowl
, B, Qowl)→ 2D (2)

• gxml—ground truth function that takes a set of device descriptions and a query in
XML and returns a set of devices that the query is expected to return:

gxml : (2Dxml
, Qxml)→ 2D (3)

• gowl—function that takes a set of device descriptions and a query in OWL and returns
a set of devices that the query is expected to return:

gowl : (2Dowl
, Qowl)→ 2D (4)

• mxml—function that compares two functions, a query function and a ground truth
function in XML, and returns the value of the metric from [0, 1]:

mxml : ( f xml(2Dxml
, Qxml), gxml(2Dxml

, Qxml))→ [0, 1] (5)

• mowl—function that compares two functions, a query function and a ground truth
function in OWL, and returns the value of the metric from [0, 1]:

mowl : ( f owl(2Dowl
, B, Qowl), gowl(2Dowl

, Qowl))→ [0, 1] (6)

The metrics mxml and mowl introduced above are just patterns used for defining
concrete metrics. The concrete metrics formalization and definitions are presented in
Section 4.2.

4.1.2. Examples

To illustrate the relations between devices/queries and their representations in the
two approaches with the presented notations, we provide two examples. One is a device
with its configuration and its representations in the two approaches. The other is a query
example in natural language as well as its representations in the respective query languages
of the two approaches.

A Device Description Example: An example of the device Di ∈ D named device_instance
is described in Table 3. The rows show the parameters of this device.

Table 3. A device example.

Specifications Parameters

Device Name device_instance
Series USRP_N200

Spectrum Sensing

Bandwidth 200 kHz

Frequency Range 80–120 MHz

Sensing Time 1 s

Transmitting Max Output Power 0.01 W

Listing 1 (Dxml
i ∈ Dxml) and Listing 2 (Dowl

i ∈ Dowl) show this device represented
in XML and OWL, respectively. In this example, the device name “device_instance” is
mapped as an XML attribute in XML, whereas an OWL individual is mapped in OWL.
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Listing 1. Device description example in XML.

<SupportsSpectrumSensing>
<Bandwidth u n i t s ="kHz">200<Bandwidth>
<FrequencyRange>
<Min u n i t s ="MHz">80</Min>
<Max u n i t s ="MHz">120</Max>
</FrequencyRange>
<SensingTime u n i t s =" Second "> 1 . 0 </SensingTime>
</SupportsSpectrumSensing>
<SupportsTransmitt ing>
<MaxOutputPower u n i t s =" Watt "> 0 . 0 1 </MaxOutputPower>
</SupportsTransmitt ing>
</USRP_N200>

A Query Representation Example: Consider the following query expressed in natural
language: “Show all RF devices of the USRP network series whose maximum output power is
no more than 1.0 Watt.” Listing 3 (Qxml

i ∈ Qxml) and Listing 4 (Qowl
i ∈ Qowl) represent this

query in XQuery and SPARQL, respectively.

Listing 2. OWL device description example in Turtle syntax.

dev ice_ i ns tan ce a USRP_N200 ;
hasCapabi l i ty spectrumSensing , t r a n s m i t t i n g .
spectrumSensing a SpectrumSensing ;
hasBandwidth [ hasValue [ hasDataValue 2 0 0 ; hasUoM kHz ] ] ;
hasFrequencyRange [
hasMin [ hasValue [ hasDataValue 8 0 ; hasUoM MHz] ] ;
hasMax [ hasValue [ hasDataValue 1 2 0 ; hasUoM MHz] ] ] ;
hasSensingTime [ hasValue [ hasDataValue 1 . 0 ; hasUoM Second ] ] .
t r a n s m i t t i n g hasMaxOutputPower [
hasValue [ hasDataValue 0 . 0 1 ; hasUoM Watt ] ] .

Listing 3. An example of request representation in XQuery.

f o r $ device in doc ( " devices . xml " )/USRP_Nxxx
where $ device/SupportsTransmitt ing/@units = " Watt "
and $ device/SupportsTransmitt ing [ MaxOutputPower< = 1 . 0 ]
re turn data ($ device/@name)

An OWL Inference Example: The device example presented in Listings 1 and 2 does
not match the query example shown in Listings 3 and 4. The issue here is that the device is
described as USRP_N200, while the query is asking for USRP_Nxxx. While a human might
know that USRP_N200 is a subtype of USRP_Nxxx, a query processor would not be able to
match this request with the USRP_N200 device. However, if background knowledge Bi ∈ B
includes triple (USRP_N200 rdfs:subClassOf USRP_Nxxx), an inference engine that supports
OWL 2 RL will be able to infer that (device_instance a USRP_Nxxx). The net result is then
that a query engine that has support from an OWL reasoner will return a match. While
this is a very simple example of the usability of OWL reasoning in the process of matching
descriptions versus queries, the ontology may have many axioms about the specific types
of devices, and thus the number of inferences can be quite large.

4.2. Metrics Formulation

The evaluation metrics whose signatures were defined in Section 4.1.1 are divided
into two groups—query result quality metrics and query process performance metrics. The
former includes the query result completeness, query result soundness, and a combined
metric of the two, named F-Measure [41]. The latter contains the query response time and
the load time metrics. Since all of the metrics require knowledge of the ground truth, the
query ground truth function is introduced first. Since our objective was to assess the value
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of automatic inference provided by OWL, we used the results returned by an OWL inference
engine for the strongest ontology that we had, B0, as the ground truth. This approach is
justified by the fact that OWL is a formal language and because OWL reasoners are sound,
i.e., they return only the true results, which will be as good as the ontology. Equation (7)
shows how the ground truth is defined in terms of f owl(Dowl , B0, Qowl

i ) implemented by
the OWL-based matcher described in Section 5.2.

gxml(Dxml , Qxml
i ) = gowl(Dowl , Qowl

i )

= f owl(Dowl , B0, Qowl
i )

(7)

Listing 4. An example of a request representation in SPARQL.

SELECT DISTINCT ? device
WHERE {
? device a USRP_Nxxx ; hasCapabi l i ty [ hasMaxOutputPower [
hasValue [ hasDataValue ? dataValue ; hasUoM Watt ] ] ]
FILTER ( ? dataValue <= " 1 . 0 "^^xsd : double )
}

4.2.1. Quality Metrics

The query result completeness metric, referred to as the recall metric in information
retrieval, measures the degree of how many of the expected results are returned by a query.
The XML-based metric, mxml

c , and the OWL-based metric, mowl
c , are defined in (8) and (9),

respectively.
The query result soundness metric measures the degree of how many query results

returned are as expected out of all the returned results. In information retrieval, this metric
is called the precision metric. The XML-based metric, mxml

s , and the OWL-based metric,
mowl

s , are defined in (10) and (11), respectively.
The F-Measure [42] is a combined metric that measures the trade-off between the

completeness and the soundness of the query results. The XML-based and OWL-
based definitions of this metric are shown in (12) and (13), respectively. In (12),
mxml

c () is short for mxml
c ( f xml(Dxml , Qxml

i ), gxml(Dxml , Qxml
i )) introduced in (8), mxml

s ()

is short for mxml
s ( f xml(Dxml , Qxml

i ), gxml(Dxml , Qxml
i )) introduced in (10). In (13), mowl

c ()

is short for mowl
c ( f owl(Dowl , Bj, Qowl

i ), gowl(Dowl , Qowl
i )) introduced in (9), mowl

s () is short
for mowl

s ( f owl(Dowl , Bj, Qowl
i ), gowl(Dowl , Qowl

i )) introduced in (11). In both equations,
β ∈ [0, ∞] is a parameter that controls the balance between precision and recall [42]. In
this paper, β was set to 1 since we equally weighed the importance levels of precision
and recall.

mxml
c ( f xml(Dxml , Qxml

i ),

gxml(Dxml , Qxml
i )) =


| f xml(Dxml , Qxml

i ) ∩ gxml(Dxml , Qxml
i )|

|gxml(Dxml , Qxml
i )|

, if gxml(Dxml , Qxml
i ) 6= ∅

1, if gxml(Dxml , Qxml
i ) = f xml(Dxml , Qxml

i ) = ∅

0, Others

(8)

mowl
c ( f owl(Dowl , Bj, Qowl

i ),

gowl(Dowl , Qowl
i )) =


| f owl(Dowl , Bj, Qowl

i ) ∩ gowl(Dowl , Qowl
i )|

|gowl(Dowl , Qowl
i )|

, if gowl(Dowl , Qowl
i ) 6= ∅

1, if gowl(Dowl , Qowl
i ) = f owl(Dowl , Bj, Qowl

i ) = ∅

0, Others

(9)

mxml
s ( f xml(Dxml , Qxml

i ),

gxml(Dxml , Qxml
i )) =


| f xml(Dxml , Qxml

i ) ∩ gxml(Dxml , Qxml
i )|

| f xml(Dxml , Qxml
i )|

, if f xml(Dxml , Qxml
i ) 6= ∅

1, if f xml(Dxml , Qxml
i ) = gxml(Dxml , Qxml

i ) = ∅

0, Others

(10)
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mowl
s ( f owl(Dowl , Bj, Qowl

i ),

gowl(Dowl , Qowl
i )) =


| f owl(Dowl , Bj, Qowl

i ) ∩ gowl(Dowl , Qowl
i )|

| f owl(Dowl , Bj, Qowl
i )|

, if f owl(Dowl , Bj, Qowl
i ) 6= ∅

1, if f owl(Dowl , Bj, Qowl
i ) = gowl(Dowl , Qowl

i ) = ∅

0, Others

(11)

mxml
f (mxml

c (), mxml
s ()) =


(β2 + 1) ·mxml

c () ·mxml
s ()

β2 ·mxml
c () + mxml

s ()
, if mxml

c () 6= 0∨mxml
f () 6= 0

0, if mxml
c () = mxml

f () = 0
(12)

mowl
f (mowl

c (), mowl
s ()) =


(β2 + 1) ·mowl

c () ·mowl
s ()

β2 ·mowl
c () + mowl

s ()
, if mowl

c () 6= 0∨mowl
f () 6= 0

0, if mowl
c () = mowl

f () = 0
(13)

4.2.2. Performance Metrics

The device registration time is the time taken for the registration of specified devices
with repositories. Note that, in the OWL-based approach, besides the time taken for
storing descriptions of the capabilities of the devices, the device registration time also
includes the time for reasoning against both the device descriptions and the background
knowledge for deriving inferred facts. There are two kinds of characteristics that will be
collected using this metric. The first is the device registration time for the two approaches
with specified test background knowledge representations Bi ∈ B, 1 ≤ i ≤ k versus an
increasing number of devices. The second is the device registration time for a specified
number of devices in the OWL-based approach versus the test background knowledge
representations {B1, B2, . . . , Bk}. The objective of collecting these metrics is to compare
the device registration times in the two approaches against the increasing number of
devices and to show how the registration time of the specified devices varies with as the
completeness of the background knowledge increases in the OWL-based approach.

For each query, the query response time is the processing time of the query required
by the query processor of the system. We compared the average query response times
of a specified number of queries in the two approaches with a specified test background
knowledge representation Bi ∈ B, 1 ≤ i ≤ k versus an increasing number of devices.
Additionally, we compared the average query response time of a specified number of
queries against a specified number of devices versus the test background knowledge
representations {B1, B2, . . . , Bk} in the OWL-based approach.

5. Evaluation

In order to provide a comprehensive evaluation of the two approaches, a large pool of
descriptions of radio capabilities and a wide variety of request types (queries) against the
device descriptions in the languages of the two approaches are needed. Theoretically, such
an investigation could be carried out experimentally using real radios and real queries or
at least using data and queries collected from real radio networks. Unfortunately, these
kinds of data and queries are not readily available for various reasons, primarily due to the
privacy and security concerns. Thus, the only practical solution is to use synthetic data and
queries instead. As a consequence, the method utilizes synthetic device descriptions and
query expressions generated (randomly) by the components (RODG [8] and SQG [9]) that
we developed.

5.1. Evaluation Process

A high-level representation of the evaluation process is shown in Figure 2. This section
describes the evaluation process in more detail. Figure 3 shows the concrete data flow in
the evaluation process with the notations introduced in Section 4.1. Knowledge about a set
of devices D is modeled as the most complete ontology B0. The method first automatically
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generates device descriptions in RDF/XML [43] from B0 using RODG. Since RDF/XML
constitutes a base for OWL, while at the same time its syntax is XML, the device descriptions
in RDF/XML can serve as data representations of D for both the OWL-and XML-based
approaches denoted by Dowl and Dxml , respectively. Next, the method generates query
expressions, Qowl and Qxml , and requests about device capabilities for the two approaches.
This is achieved through two procedures. First, the method automatically generates a set of
random SPARQL queries as Qowl from B0 and Dowl using SQG. Then, the set of XQuery
queries Qxml is obtained by converting a SPARQL query Qowl into an equivalent XQuery
query in Qxml using the open source component named xql2xquery [32,33].

Figure 3. Data flow diagram of the evaluation process with the notations.

The queries are then submitted to the “matchers”. The method uses DeVISor as the
OWL-based matcher and BaseX as the XML-based matcher. The matchers include device
registration. Note that, in the OWL-based approach, apart from the device descriptions,
a background knowledge test (Bi ∈ B, 1 ≤ i ≤ k) needs to be loaded into the OWL-based
matcher (DeVISor) to derive inferred facts. Then, the processing of each query is executed
for both approaches by the implemented query functions f owl and f xml .

The matching results of each query expression returned from the matchers are evalu-
ated by comparing them with the ground truth of the matching devices against the query.
This is achieved by implementing all metric functions of the two approaches (mxml and
mowl). The implementation of the metric functions is shown in Algorithms 1–3. Addition-
ally, the method collects metrics on the performance during the matching process. Finally,
the metric values are derived and stored in an external file for further analysis.
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Algorithm 1: CALC-RECALL(Dm, Dg).

Input: Dm: matching devices of a query; Dg: Ground truth of the query
Output: mc: recall metric value ∈ [0, 1]

1 if |Dg| 6= 0 then
2 count← 0
3 foreach Di,m ∈ Dm do
4 if Di,m ∈ Dg then
5 count← count + 1

6 mc ← count
|Dg |

7 else if |Dm| = 0 then
8 mc ← 1
9 else

10 mc ← 0

Algorithm 2: CALC-PRECISION(Dm, Dg).

Input: Dm: matching devices of a query; Dg: Ground truth of the query
Output: ms: precision metric value ∈ [0, 1]

1 if |Dm| 6= 0 then
2 count← 0
3 foreach Di,m ∈ Dm do
4 if Di,m ∈ Dg then
5 count← count + 1

6 ms ← count
|Dm |

7 else if |Dg| = 0 then
8 ms ← 1
9 else

10 ms ← 0

Algorithm 3: CALC-F-MEASURE(ms, mc).
Input: ms: precision metric value ∈ [0, 1]; mc: recall metric value ∈ [0, 1]
Output: m f : F-measure metric value ∈ [0, 1]

1 if ms 6= 0 or mc 6= 0 then
2 m f ← 2×ms×mc

ms+mc

3 else
4 m f ← 0

Some more details about the implementation of the evaluation process are presented
in the next section.

5.2. OWL-Based Matcher—DeVISor

DeVISor [44] is a semantic matcher used in the OWL-based approach that is able
to run on the network as a service and infer which devices are capable of satisfying a
given request based on knowledge of the devices. Figure 4 presents the architecture of
DeVISor. It is implemented as a web service and extended to support SPARQL. The
design follows client–server architecture. On the client side, the DeVISor client provides
an Application Programming Interface (API) to interact with application requests, and
device descriptions needed to be registered. On the server side (shown in the rectangle
with dashed line), it controls the process of the device (de)registration and matching device
capabilities against the application requests. The support for data storage is provided by
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Apache Jena Fuseki [45]. However, since the triple store is not equipped with the OWL
inference, the DeVISor server uses BaseVISor [46], a forward-chaining inference engine
specialized to handle facts in the form of RDF triples with support for OWL 2 RL [47] and
XML Schema Datatypes, to make automatic inferences about any changes to the triple
store. The following illustrates how DeVISor gets involved in the matching process with
the associated implementations.

Figure 4. DeVISor architecture.

The first step taken during the matching process is to register devices. DeVISor
supports such a feature by implementing an associate function (runSparqlUpdateFrom-
String(updateScript:String):void), a function of the DeVISor client API which takes a SPARQL
Update script as an input argument. Whenever there are RDF device descriptions needed
to be registered, DeVISor wraps the dataset as a SPARQL Update script and invokes this
function. After the script has been executed by the triple store, the dataset is inserted into
the triple store as a set of triples. After that, the triple store returns all of the facts (including
background knowledge) to the triple store client. BaseVISor loads the facts and executes
the inference engine to derive inferred facts. The inferred facts are then inserted into the
triple store.

After the devices have been registered, the next step is to send the application re-
quests to DeVISor for matching. This feature is implemented by runSparqlQueryFrom-
File(queryPath:String):String, a function of the DeVISor client API, which is able to process
a request as a SPARQL query script and return the query results in JSON format. When
the function is invoked, DeVISor forwards the script to the triple store, and the triple store
executes the script with the function and returns the results back. Note that BaseVISor is not
involved in this process, since no inference is needed, and all of the inferred facts are already
stored in the triple store. Since the results are in JSON format, the last step is to extract
the matching devices from the results. The devices are identified by the Internationalized
Resource Identifier (IRI) and are extracted by the binding value of the device variable in
variable name/value pairs of the results.

5.3. XML-Based Matcher—BaseX

BaseX [48] is a robust, high-performance XML database engine and a fully compliant
XQuery 3.1 processor with full support from the W3C Update and text extensions. It
was selected as the XML-based matcher for matching devices represented in XML against
application requests for services expressed in XQuery. Similar to DeVISor, BaseX follows
the client–server architecture and also provides a client API [49] that supports multiple
programming languages. The procedure of each step of the operation of BaseX is de-
scribed below.

Device registration is implemented by calling a function of the BaseX client API,
add(path:String, input:InputStream):void, which adds an XML document of the specified
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device description into the database. Once the devices are registered, the next step is to
send the application requests to BaseX for matching. Several functions are supported by
the BaseX client API for XQuery query processing. The first step is to parse a XQuery query
script and pass it as a parameter into the function execute(command:String):String. When the
function is invoked, BaseX processes the query and returns the query results. The results
are in XML format, and each device is identified by its IRI, so the method navigates through
the nested structure of the results and extracts the values within the element tag named
“xqllib:var”.

5.4. Computation of Metrics

The query ground truth function was introduced in (7). According to this equation,
given two representations, Dxml and Dowl , of a set of devices D and two query expressions,
Qxml

i and Qowl
i , of a request for matching device capabilities Qi ∈ Q, the ground truth is

assessed by taking the most complete ontology B0 as a reference and using it for evaluating
both approaches.

While this approach is not perfect, i.e., it would be better to have an independent
source of ground truth, the simple fact is that such a source does not exist. While it would be
possible to develop the ground truth by hand, such an approach is only applicable to cases
where there is a relatively small set of device capabilities and a small set of queries. Since
our intent was to assess the quality of matching on really large sets of device descriptions
and queries, we had to come up with a solution that could be executed automatically
without much participation by the human expert in the loop. While B0 is advantageous for
the OWL-based approach, the idea of using a descending chain of less and less complete
ontologies makes this method relatively fair for both OWL- and XML-based approaches.
Further discussions on fairness of the method are presented in Section 6.

The implementation of the query result completeness ((8) and (9)), soundness ((10) and
(11)) and the F-measure ((12) and (13)) metrics are shown in Algorithms 1–3, respectively. It
is worth noting that although XML-based and OWL-based approaches utilize their own
notations to define the metrics, the definitions of the metrics for the two approaches are the
same. Consequently, we used the same implementations for computing these metrics.

5.5. Experiments

We designed and implemented a proof-of-concept system to show the feasi-
bility and correctness of the evaluation method (The source code is available at
https://github.com/YankeeChen/evaluator, accessed on 15 November 2022). In this
section, we present the experimental results obtained with the system.

5.5.1. Experimental Setup

All experiments were run on the MacBook Pro 2016 computer with the following
parameters: Processor, 2.6 GHz quad-core Intel Core i7, Turbo Boost up to 3.5 GHz, with 6
MB shared L3 cache; Memory, 256 GB PCIe-based onboard SSD; and Storage, 16 GB of 2133
MHz LPDDR3 onboard memory.

In the experiments, the SDR ontology (https://github.com/YankeeChen/evaluator/
blob/master/ontologies/SDROntology/BenchmarkOntology/SDR.owl, accessed on 15
November 2022) was selected as the background knowledge of the RF devices and set as
the most complete knowledge representation, B0. In order to assess the effect of the richness
of the ontology on the quality of the matching process and performance in the OWL-based
approach, we developed five progressively less complete cases of background knowledge,
{B1, B2, B3, B4, B5}, as the test ontologies (https://github.com/YankeeChen/evaluator/
tree/master/ontologies/\SDROntology/TestOntology, accessed on 15 November 2022).
The smaller (less complete) ontologies were created by removing some of the defining
axioms from the previous ontology. Table 4 shows the axiom coverage of the ontologies.
For simplicity, only the axioms that B0 includes are listed. B5 is not included in this table
since it did not cover any of the axioms. More axioms defining the radio capabilities add

https://github.com/YankeeChen/evaluator
https://github.com/YankeeChen/evaluator/blob/master/ontologies/SDROntology/BenchmarkOntology/SDR.owl
https://github.com/YankeeChen/evaluator/blob/master/ontologies/SDROntology/BenchmarkOntology/SDR.owl
https://github.com/YankeeChen/evaluator/tree/master/ontologies/\SDROntology/TestOntology
https://github.com/YankeeChen/evaluator/tree/master/ontologies/\SDROntology/TestOntology
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more constraints, and thus, the OWL reasoner is expected to be more precise when selecting
devices that satisfy queries. The less complete definition implies that OWL reasoning can
result in false negative classifications. This aspect of completeness is not directly correlated
with the results of the XML-based approach, since it does not make use of logical inference.

Table 4. Axiom coverage of the ontologies.

Axiom Type B0 B1 B2 B3 B4

SubClassOf X X X
EquivalentClasses X X X X X

DisjointClasses X X X X X
DisjointUnion X X X X X

SubObjectPropertyOf X X
EquivalentObjectProperties X X X X X
DisjointObjectProperties X X X X X
InverseObjectProperties X X X X X
ObjectPropertyDomain X X X X
ObjectPropertyRange X X X X
FunctionalObjectProperty X X X X X
SymmetricObjectProperty X X X X X
TransitiveObjectProperty X X X X X
SubDataPropertyOf X
EquivalentDataProperties X X X X X
DataPropertyDomain X X X X X
DataPropertyRange X X X X X
FunctionalDataProperty X X X X X

ClassAssertion X X X X X
ObjectPropertyAssertion X X X X X
DataPropertyAssertion X X X X X

In the experiments, 1000, 2000, 3000, and 4000 device descriptions in RDF/XML
generated by RODG [8] with the most complete knowledge base B0 were selected as the
test datasets for the two approaches. Four batches of 5000 queries in SPARQL and XQuery
were selected as the test query sets for matching device capabilities against the test datasets.
For each batch of queries, SPARQL queries were generated by SQG [9] with the most
complete ontology B0 and respective test datasets. The corresponding XQuery queries were
generated by converting the SPARQL queries with xql2xquery [32,33]. Note that queries in
each batch may not be the same since they are for different datasets.

5.5.2. Evaluation Results and Analysis

In the results of the experiments, the ground truths of most of the requests are empty,
which indicates that no matching results existed for these requests. This was expected,
since device descriptions and queries were generated randomly and independently. What
we were most interested in was how OWL inference affects the quality of the query
results. We expected to see differences in the matching results of the two approaches.
The queries that did not return any matches were not used in the comparisons of the two
approaches. This section shows the quality metrics and analysis. The raw data for the
metrics results are available online (https://github.com/YankeeChen/evaluator/tree/
master/evaluationresults, accessed on 15 November 2022).

Figure 5a–c show the average recall, precision, and F-Measure metrics of the two
approaches for each of the four batches of queries. For each batch, six results are shown.
The five bars show, from left to right, the associated metrics for the OWL-based approach
with the progressively less complete test ontologies (B1 to B5, from left to right). The
rightmost bar shows the associated metric obtained using the XML-based approach.

https://github.com/YankeeChen/evaluator/tree/master/evaluationresults
https://github.com/YankeeChen/evaluator/tree/master/evaluationresults


Appl. Sci. 2022, 12, 11946 17 of 21

(1000, 5000) (2000, 5000) (3000, 5000) (4000, 5000)

60%

70%

80%

90%

100%

(Number of Devices, Number of Queries)

A
v
e
ra

g
e
 R

e
c
a
ll

OWL-based-B
1

OWL-based-B
2

OWL-based-B
3

OWL-based-B
4

OWL-based-B
5

XML-based

(1000, 5000) (2000, 5000) (3000, 5000) (4000, 5000)

90%

92%

94%

96%

98%

100%

(Number of Devices, Number of Queries)

A
v
e
ra

g
e
 P

re
c
is

io
n

OWL-based-B
1

OWL-based-B
2

OWL-based-B
3

OWL-based-B
4

OWL-based-B
5

XML-based

(a) (b)

(1000, 5000) (2000, 5000) (3000, 5000) (4000, 5000)

60%

70%

80%

90%

100%

(Number of Devices, Number of Queries)

A
v
e
ra

g
e
 F

-M
e
a
s
u

re

OWL-based-B
1

OWL-based-B
2

OWL-based-B
3

OWL-based-B
4

OWL-based-B
5

XML-based

(1000, 5000) (2000, 5000) (3000, 5000) (4000, 5000)

0

5000

10,000

15,000

20,000

(Number of Devices, Number of Queries)

D
e
v
ic

e
 R

e
g

is
tr

a
ti

o
n

 T
im

e
 (

m
s
)

OWL-based-B
1

OWL-based-B
2

OWL-based-B
3

OWL-based-B
4

OWL-based-B
5

XML-based

(c) (d)

(1000, 5000) (2000, 5000) (3000, 5000) (4000, 5000)

1

10

100

1000

10,000

100,000

(Number of Devices, Number of Queries)

A
v
e
ra

g
e
 Q

u
e
ry

 R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

OWL-based-B
1

OWL-based-B
2

OWL-based-B
3

OWL-based-B
4

OWL-based-B
5

XML-based

(e)

Figure 5. Metrics evaluation results (a) Average recall comparison; (b) Average precision comparison;
(c) Average F-Measure comparison; (d) Device registration time comparison; (e) Average query
response time comparison.

For the recall metric, we conclude that the XML-based approach provides matching
results that are approximately 34% less complete than those produced with the OWL-based
approach with the relatively most complete test ontology B1. The result is roughly the
same regardless of the number of devices. For instance, the average recall metric value of
5000 queries against 4000 devices in the XML-based approach is 65.75%, which is 34.25%
lower than that produced with B1, and the results are about the same for other batches. It
can also be observed from the results that the XML-based approach derives exactly the
same results as the OWL-based approach with the least complete ontology B5 for each batch.
This is as expected, since B5 does not include any OWL axioms except for vocabularies
(see in Table 4), and thus no new facts can be derived by the OWL reasoner. Therefore, it
derives exactly the same matching devices as the XML-based approach. When it comes
to the comparison of the OWL-based approach with different versions of test ontologies,
as expected, a more specific ontology (more precise definitions of classes) provides more
power (more axioms) to the OWL reasoner, which results in more complete matching.



Appl. Sci. 2022, 12, 11946 18 of 21

This is essentially in agreement with the statement that James Hendler once made “A little
semantics goes a long way” [50].

Regarding the precision metric, as expected, the XML-based approach derives exactly
the same precision results as the OWL-based approach with the least complete ontology B5,
regardless of the number of devices. The precision metric results of all batches are very high
(more than 93%). Similarly to the recall metric results, a richer ontology provides better
precision results. It can also be observed that the precision metric results increase with the
number of devices until there are more than 3000. This is also as expected, since a query is
more likely to have matching results when the datasets are large and diversified enough.

As a combined metric of precision and recall, the F-measure metric results reflect the
overall metric results of precision and recall. Thus, similar conclusions and observations apply.

Figure 5d shows the time taken to register devices in the two approaches. As can be
seen from the plots, the device registration time in the two approaches increases linearly
with the number of devices. For each batch, the device registration time in the XML-based
approach is always shorter than that in the OWL-based approach. For the OWL-based
approach, apart from registering device descriptions, it takes additional time to run the
inference engine and insert inferred facts into the triple store. The richness of the test
ontologies affects the registration time; richer ontologies require the OWL reasoning to
spend more time on the device registration process.

The plot in Figure 5e shows the average time taken to answer a query by the matchers
of the two approaches. We conclude that the query response time in the XML-based
approach is exponentially dependent on the number of devices and is significantly longer
than that in the OWL-based approach. However, we cannot conclude that XQuery is
less efficient than SPARQL. Apart from the query language, the query response time also
depends on other factors, such as the query processor, query optimization, dataset structure,
etc. Research on these topics is beyond the scope of this paper. Regarding the OWL-based
approach, the query response time increases linearly with the number of devices. For
each batch in the plot, the query processing time increases with the richness of the test
ontologies. The experimental results are reasonable, since richer test ontologies may derive
more inferred facts, which results in the expansion of the search scope of each query to
derive matching results.

6. Discussion

The objective of this section is to discuss how the method satisfies the requirements
stated in Section 1.2 and why the techniques used in the method are a good fit for our problem.

Clearly, the main challenge is to assure that the proposed method is fair to the two
representation formalisms—XML and OWL. The first step is to use the same inputs and the
same evaluation metrics. The problem is that the inputs and the queries must be expressed
in two different languages. To assure a relatively good level of fairness, we had to rely
on mappings between the languages that were as good as possible. We relied on the fact
that OWL uses XML as one of the syntaxes. Thus, the same randomly generated device
descriptions were expressed in the XML syntax of OWL and used by both XML and OWL
based matchers. Second, queries were expressed in SPARQL and then translated using the
xql2xquery tool, whose translation completeness and correctness is assured [32,33]. The
same metrics (recall, precision and F-measure) were used to assess both approaches.

One of the most difficult issues was the ground truth—how to assess whether a given
selection of the devices to satisfy a given query is correct. In our approach we used a
“relative” rather than “absolute” definition of ground truth. Since our objective was to
assess the value added by OWL inference, we used the most complete knowledge base
as the reference and then compared the performance of the OWL-based matcher using
progressively less complete knowledge bases. This approach did not impact the fairness of
the comparison between the matchers, since the XML-based matcher provided the most
complete information for each of the cases.
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The coverage of the space of device descriptions used in our experiments was evalu-
ated in [8], where it was shown that the SDR ontology used in the experiments provides
good coverage of the knowledge of various types of RF devices and has extensive coverage
of the OWL axioms. Second, the queries used in our experiments were assessed by various
evaluation metrics in [9], and it was shown that the coverage of the query space is good.

Since RODG, SQG, xql2xquery, the OWL-based query processor (DeVISor), and the
XML-based query processor (BaseX) can all handle large amounts of data, the method
is able to deal with large-sized datasets and query sets and can extend to updates of the
background knowledge, datasets, query sets, and metrics.

7. Conclusions

This paper proposes a method to compare the OWL-based and XML-based approaches
to represent and query cognitive radio capabilities using quantitative metrics. In order to
prove the feasibility and the correctness of the method, we developed a proof-of-concept
system for the method. Two types of metrics, matching quality metrics and performance
metrics, were collected by the system with progressively less complete background knowl-
edge representations and different sized sets of devices and queries. The evaluation results
clearly demonstrate the advantages of the OWL-based approach in terms of the quality
of matching. The results also demonstrate the benefits of using a more specific ontol-
ogy to improve the quality of the matching results at the cost of sacrificing some level
of performance. To be specific, the quality metrics evaluation results show that (i) the
quality of matching in the OWL-based approach is always no worse than the XML-based
approach, regardless of the richness of the selected ontology and sizes of the devices, and
(ii) in the OWL-based approach, a more specific ontology results in better matching results.
(iii) A derived consequence of the above conclusions is that shallow use of OWL does not
buy much in terms of the quality of matching.

The performance metrics evaluation results show that (i) the registration process in
the XML-based approach takes less time, regardless of the number of devices; (ii) in the
OWL-based approach, a more specific ontology results in a longer device registration time;
(iii) the query processing time in the XML-based approach increases exponentially with
the number of devices and is significantly longer than the query time in the OWL-based
approach. However, we cannot decisively conclude that the XQuery query is less efficient
than the SPARQL query, since the query processing time also depends on other factors,
such as the query processor, query optimization, and dataset structure; and (iv) in the
OWL-based approach, the query processing time depends on the richness of the ontology
and thus it takes more time to process the same queries against the same devices with
richer ontologies. Although we have not performed any investigations of the use of the
proposed method in other domains, we suggest that the method is also applicable to areas
other than just RF devices.

Following the main conclusion of this paper, the continuation of this research should
focus on the OWL-based approach, which provides “more semantics” than XML. This
can be achieved in two ways—by using richer ontologies and extensions to OWL using
rules. The standardization of ontologies for the communications domain began with the
development of the Cognitive Radio Ontology (CRO) by the Wireless Innovation Forum [51].
The CRO was then extended to CRO2 [52](available at [53]). Work on the standardization
and extension of the expressive power of OWL is continuing at the IEEE [54].
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