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Abstract: Since a large number of Linux kernel vulnerabilities are discovered every year, many
vulnerabilities cannot be patched in time. Security vendors often prioritize patching high-risk
vulnerabilities, and the ratings of vulnerabilities need to be evaluated based on factors such as ex-
ploitability and the scope of influence. However, evaluating exploitability is challenging and time-
consuming, especially for race vulnerabilities, whose exploitation process is complicated and the suc-
cess rate of exploitation is low, making them more likely to be overlooked. In this paper, we propose
a new framework, called ERACE, to facilitate the process of exploiting kernel race vulnerabilities.
Given a program called a proof of concept (PoC) that can trigger a race vulnerability, ERACE first
applies a combination of dynamic and static analysis techniques to locate the instruction that causes
the race. Then, it applies code instrumentation and static analysis to determine the timing relationship
between the race instructions and the triggering type of the vulnerability and records the vulnerability
context information. Next, it uses backward taint analysis to identify checkpoints that can be used
to determine whether the race condition and heap spraying are satisfied and records the system
calls to which the checkpoints belong. Finally, we can generate exploits based on the information
collected above. To demonstrate the utility of ERACE, we tested it on 23 real-world vulnerabilities.
As a result, we successfully detected the race points of 19 vulnerabilities, the timing relationship
among the race instructions, and the triggering types of 17 vulnerabilities and succeeded in generating
exploits for 13 vulnerabilities. ERACE can effectively help security researchers simplify the analysis
process of kernel race vulnerabilities, select appropriate exploitation methods, and use checkpoints
to increase the success rates of exploitations.

Keywords: race vulnerability; kernel exploitation; system security

1. Introduction

With the exploding magnitude of kernel code and the advent of the multi-core era,
the operating systems we now use are full of invisible threads. In this way, it is inevitable
that multiple threads access the same shared code, variables, and files concurrently or out
of order. Due to the infinite threads and limited resources, some resources cannot be
accessed at the same time. Multiple threads can cause race vulnerabilities due to chaotic
access order. According to the Common Vulnerabilities and Exposures database [1], Linux
kernel race vulnerabilities discovered in 2017 nearly doubled from those discovered in 2016,
and since then, nearly 100 system race vulnerabilities have been discovered every year.
There are still many race vulnerabilities that are fixed without being assigned a CVE number
or not fixed with a PoC available to the public [2].

A race vulnerability is very harmful. Some race conditions can lead to deadlocks
and breakdowns, which can be used to perform denial-of-service attacks. Severe race
conditions can trigger different types of program errors or warnings from the sanitizer,
and we call them triggering types, such as out-of-bounds write (OOB) [3], use-after-free
(UAF) [4], double-free [5], and direct control-flow hijacking (CFH) errors. After investigating
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CVE over the past 20 years, we found that these four triggering types accounted for 85 per-
cent of all race vulnerabilities. Some vulnerabilities can be used by attackers to escalate
privileges, such as CVE-2016-8655 [6] and CVE-2019-11815 [7]. Due to the large number
of vulnerabilities being discovered every year, it is difficult to fix all vulnerabilities in time.
Large software vendors such as Microsoft [8] and Ubuntu [9] adopt certain strategies to pri-
oritize the patching of security bugs. The most common strategy used to determine priority
is based on the exploitability of the vulnerability.

It is more challenging to manually analyze the exploitability and generate exploits
for race vulnerabilities than for other kinds of vulnerabilities. The first problem is related to
debugging. We should care not only about the control flow and data flow within the thread
but also about the concurrent execution between multiple threads. Due to the complex
scheduling mechanism of the kernel and race conditions of a vulnerability, it is diffi-
cult for us to deterministically trigger race vulnerabilities, which makes debugging time-
consuming. The second problem is related to exploitation. Race vulnerabilities have
different kinds of triggering results. To determine the triggering type and choose the ap-
propriate exploitation method, researchers have to thoroughly study the logic of the entire
vulnerable code and the vulnerability context. This analysis process requires a high level
of human security knowledge and experience. The third problem is related to how to detect
whether a race condition is satisfied. Kernel race vulnerabilities are caused by competition
between kernel threads or between kernel threads and user threads. Once the competition
starts, it is difficult to perceive the execution states of the kernel space code from the user
space. Due to the complexity of race vulnerability exploitations, no research has systemati-
cally analyzed the process of exploiting race vulnerabilities. Thus, race exploitation is still
perplexing to the public.

In this paper, we propose an exploitation framework named ERACE to evaluate the ex-
ploitability of kernel race vulnerabilities. ERACE can simplify the process of exploiting race
vulnerabilities in three aspects. First, the race point detector helps researchers automati-
cally locate the position of race instructions triggered by a PoC. Second, the vulnerability
analyzer determines the execution order of the race instructions that cause the vulnerabil-
ity and analyzes the triggering type of the race vulnerability. Therefore, researchers can
choose an appropriate exploitation method more quickly. Third, the checkpoint detector
identifies the checkpoint near the race instruction, that is, the instruction that can reflect
whether the race condition and heap spraying are satisfied, and records the system call
to which the checkpoint belongs. Finally, we construct an exploit based on the information
obtained above. ERACE greatly standardizes and simplifies the process of exploiting race
vulnerabilities. We introduce the detailed workflow of ERACE in Section 4.

To evaluate the accuracy and effectiveness of ERACE, we tested 23 real-world vulnera-
bilities. As a result, we successfully detected the race points of 19 vulnerabilities, the timing
relationships among the race instructions, and the triggering types of 17 vulnerabilities,
and assisted in generating exploits for 13 vulnerabilities.

In general, this paper makes the following contributions.

• We design and implement ERACE, a new framework to facilitate the process of ex-
ploiting kernel race vulnerabilities, which applies a combination of dynamic and
static analysis techniques. ERACE can effectively help security researchers simplify
the analysis of kernel race vulnerabilities, select appropriate exploitation methods,
and use checkpoints to increase the success rate of privilege escalation.

• We analyze the kernel race vulnerabilities in depth and modeled their exploitation
process. The main process includes locating the race point, identifying the triggering
type of the vulnerability, and identifying the checkpoint of the race.

• We demonstrate the utility of ERACE. By testing 23 real-world race vulnerabilities
in the Linux kernel, ERACE facilitates the exploit generation for 13 race vulnerabilities.

The organizational structure of this article is as follows. Section 2 describes the back-
ground and challenges of our research. Section 3 provides an example to show the pro-
cess of exploiting race vulnerabilities and presents an overview of ERACE. Section 4 de-
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scribes the design details of ERACE. Section 5 describes the implementation of ERACE.
Section 6 demonstrates the utility evaluation of ERACE. Section 7 summarizes the work
related to this research. Finally, we conclude this work in Section 8.

2. Background and Challenges

It is challenging to exploit kernel race vulnerabilities. First, it requires researchers
to be equipped with comprehensive security knowledge and experience such as knowledge
of the underlying operating system, binary reverse engineering, heap, stack, etc. Second,
the indeterminacy of a race vulnerability decreases our analysis efficiency. For common vul-
nerabilities such as stack overflows, we can set accurate breakpoints to figure out whether
the vulnerability has been triggered. However, for race vulnerabilities, it is unknown
whether every execution can satisfy the race condition, further increasing the difficulty
of debugging and analysis. Moreover, even senior security researchers have to spend a lot
of time on reverse analysis to find useful exploit primitives or heap-spraying structures.
This process is quite complicated and boring.

Many researchers have defined race vulnerabilities. Jeong D.R. et al. [10] defined a data
race, which is a behavior in which the output is dependent on the sequence or the timing
of other non-deterministic events. If two memory-access instructions meet the follow-
ing three conditions, a data race may occur: (i) they access the same memory location;
(ii) at least one instruction is a write instruction; and (iii) they can be executed concurrently.
A data race is one type of concurrent vulnerability. The concept of concurrency vulnera-
bilities is broader. However, most of the exploitable and user-controllable vulnerabilities
belong to the data race type. Therefore, the definition of a data race by Jeong D.R. is more
relevant to our research. As shown in Figure 1, when a race occurs, C1, C2, and C3 are the
instructions that access the same memory location. C3 is a write instruction. C1 and C3,
and C2 and C3 can be executed concurrently and satisfy all three conditions.

T1 T2

C1

C2

C3

Trigger

syscall_A syscall_B

syscall_x

T1 T2

C1

C2

C3

Trigger

race

race

Race 
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Vulnerability 
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+

Triggering
Type

T1 T2
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Check point:
Check from 
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start
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Thread1:
…
syscall_A
…
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…
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…

Check 
code

Continue exploit

3 41 2

Figure 1. The typical workflow of crafting a working exploit. Ê Identify the race instruction;
Ë Determine the timing relationship of the race instruction and the triggering type and select
the appropriate exploitation method; Ì Determine how to check whether the race condition and
heap spraying are satisfied; Í Construct the exploit. Note that the zigzag line indicates the kernel
execution, and syscall_A and syscall_B denote the system calls that are attached to the occurrence
of the race points in the two threads, T1 and T2. syscall_x can be syscall_A or another system call.

2.1. The Process of Exploiting Race Vulnerability

The process of exploiting a data race is shown in Figure 1. Suppose that a researcher
obtains a PoC that can trigger a data race but cannot successfully exploit the vulnerability
yet. A successful exploitation means that we can escalate privileges from ordinary users
to superusers. For a vulnerability caused by a data race, the race point is equal to the vul-
nerability point, whereas the vulnerability triggering point is equal to the crash point.
The vulnerability point is different from the crash point for most data races. However,
for most common kernel vulnerabilities, such as an OOB write and UAF not caused by data
races, the vulnerability point is no different from the triggering point and the vulnerability
point. Researchers need to perform the following steps to successfully escalate a privilege.

First, the researcher should find the root cause of a race vulnerability based on the PoC,
that is, the race instructions that accessed the same variable or memory, and determine
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the system call to which the race instruction belongs (see Ê in Figure 1). This is conducive
to the subsequent analysis and the construction of competing threads. Determining the root
cause of the vulnerability requires analyzing the source code, understanding the logic
of the source code, or completing a reverse analysis based on the output of the stack
traceback information by the kernel address sanitizer (KASAN) [11] at the crash point.
For most data races, crash points are different from race points and they may even be far
away from each other. Hence, it is not easy to locate race instructions.

Second, the timing relationship of race instructions and the triggering type of the vul-
nerability need to be determined (see Ë in Figure 1). Competition is the cause, whereas
triggering is the result. A pure race is not necessarily exploitable. However, if a race can
lead to UAF or OOB write vulnerabilities, then the race may be exploitable. Its exploitability
also depends on the specific vulnerability context.

Third, the method of checking whether the race and heap spraying were successful
needs to be determined (see Ì in Figure 1). Assuming that the race triggers a UAF issue and
only after the race succeeds, heap spraying can be used to complete control-flow hijacking
and privilege escalation. We can directly perform heap spraying without confirming
whether the race succeeded or not and just confirm whether the privilege was escalated
at the end of the exploit. However, what happens when the race fails? We have to restore
the heap-space layout and perform competing and heap spraying again, which are both
time-consuming and greatly prolong the entire exploitation process. What is worse is that
the heap-space layout might have been destroyed once the heap spraying occurred, making
it difficult to recover the heap-space layout. Sometimes the system may directly crash
and the exploitation cannot continue. Similarly, proceeding to the next exploitation stage
without checking whether the heap spraying was successful may also reduce the success
rate of the exploitation.

Fourth, the exploitation strategy is determined and the final exploitation is finished
(see Í in Figure 1). According to the recognized race instruction and the relative system
call, we can construct competing threads. We can craft race and spraying checking codes
with the check path identified and choose an appropriate exploitation method based
on the triggering type.

2.2. Challenge of Crafting Working Exploits

In step Ê, it is hard to locate the race instructions. First, there is no existing tool
that can directly locate the race points. The only tool that can be used is the KASAN [11]
instrumentation mechanism. The latest instrumentation tool called TCSAN [12] can only
be used in kernel 5.8 and above so it cannot cover all kernel versions. Generally, if we
compile the kernel with the KASAN option set, the kernel will output warning information
when the vulnerability is triggered. For most common types of kernel vulnerabilities, such
as an OOB write or UAF not caused by data races, the triggering point is equal to the vul-
nerability point and it is more convenient to locate the vulnerability point by gathering
useful information from the KASAN report. However, for a data race, the triggering point
is not the vulnerability point. The triggering point usually occurs later than the race point
in the instruction execution sequence. Second, the magnitude of kernel source code is too
big and it is difficult to perform manual code auditing. Therefore, a more effective method
should be adopted to locate race points.

In step Ë, there is no existing tool to determine the execution order of race instructions
when a vulnerability is triggered and it is difficult to accurately identify the triggering
type. KASAN’s warning information alone is not enough to determine the triggering type
of the vulnerability. For example, KASAN often reports null-dereference warnings for race
vulnerabilities, which is of little help to the exploitation because in the current system with
the general configuration, a null dereference cannot be used to escalate a privilege. In fact,
the triggering type of the race vulnerability may be an OOB write or another type.

In step Ì, our exploit runs in the user space. With limited privilege, how can we
confirm whether competing and heap spraying succeeded? For vulnerabilities that can



Appl. Sci. 2022, 12, 11925 5 of 25

trigger direct CFH, we can judge whether the race condition was satisfied by checking
whether the malicious code was executed successfully. However, it is hard to check the race
status for vulnerabilities that can trigger a UAF, double-free, or heap OOB write. We can
only check whether the malicious code was executed successfully after heap spraying
succeeded, which costs too much time and may lead to exploitation failure. If we can check
it before heap spraying, we can greatly reduce the running time of the exploit and increase
the success rate of the exploitation. Similarly, it can also improve the success rate of the
exploitation by checking whether the heap spraying succeeded.

To solve the problems mentioned above, we need to adopt automatic program analyz-
ing techniques to avoid complicated and repetitive manual analysis, which may produce
some omissions. The original objective of ERACE is to assist in the exploitation of race
vulnerabilities to quickly evaluate its risk rating. Therefore, ERACE does not fully automate
exploit generation but facilitates the process of exploitation.

To solve the problems mentioned above, we need to adopt automatic program analyz-
ing techniques to avoid complicating and repetitive manual analysis, which may produce
some omissions. The original objective of ERACE is to assist in the exploitation of race vulner-
abilities to quickly evaluate its risk rating. Therefore, ERACE does not fully automate exploit
generation but facilitates the process of exploitation. ERACE should meet the following three
design requirements.

First, ERACE should help researchers locate race instructions and relative system calls,
which corresponds to step Ê in Figure 1. The race point is equal to the vulnerability
point, from which researchers can quickly determine the root cause of the vulnerability.
Second, ERACE should help researchers determine the execution order of the race instruc-
tions and the triggering type and extract the vulnerability context, which corresponds
to step Ë in Figure 1. In this way, a researcher can select a suitable exploitation method
according to the triggering type and the vulnerability context. Determining the execution
order of race instruction makes it easier to debug the vulnerabilities without wasting time
waiting for the success of the race. Third, ERACE should help researchers locate checkpoints
to check whether the race condition and heap spraying are satisfied, which corresponds
to step Ì in Figure 1. Some code in the kernel can modify variables or data structures.
The user layer can indirectly determine where the kernel code is executed or whether
kernel memory is sprayed with user-forged data by detecting changes in these variables
or data structures. Checkpoints are instructions that modify variables or kernel data struc-
tures. ERACE should also find the program path for the user layer to access these variables
or data structures.

3. Motivating Example and Overview
3.1. Motivating Example

Figure 2 shows a PoC program in the C coding language that can trigger the kernel
race vulnerability CVE-2016-8655. setsockopt() in line 3 and line 9 is a system call that can
operate on the socket created in line 15. If the operation option in line 3 is PACKET_RX_RING,
the kernel will call packet_set_ring() to set the ring buffer. If the operation option in line 9
is PACKET_VERSION, the kernel will call packet_setsockopt() to modify the packet version. Both
functions access the value tp_version, which may cause a competing conflict.

In line 21 and line 22, the PoC creates two threads. These two threads will make
kernel call packet_set_ring() and packet_setsockopt(), respectively. Calling these two threads
in an infinite loop may lead to race conditions and trigger the vulnerability.

The triggering principle is shown in Figure 3. Normally, when the packet_set_ring()

creates a ring buffer, if the packet version is TPACKET_V3, it will call init_prb_bdqc() to ini-
tialize the timer. When the packet version is greater than TPACKET_V2, the kernel will
call prb_shutdown_retire_blk_timer() to release and delete the previously initialized timer.
If another thread modifies the packet version in the middle of the call, although the socket
will call kfree() to release the previously initialized timer when the close() is executed
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at the end, the timer is not deregistered in the kernel queue. When the timer expires,
the callback in the timer is called, triggering a UAF issue.

1 void *race1(void *arg) {
2 ...
3 setsockopt(fd, 0x107, PACKET_RX_RING, &tp, ...);
4 }
5
6 void *race2(void *arg) {
7 ...
8 val = TPACKET_V1;
9 setsockopt(fd, 0x107, PACKET_VERSION, &val, ...);

10 }
11
12 int race_loop()
13 {
14 while(1) {
15 fd = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_ARP));
16 ...
17 // initialize the packet version to be V3
18 val = TPACKET_V3;
19 setsockopt(fd, 0x107, PACKET_VERSION, &val, ...);
20 // creat two racing threads
21 pthread_create(&thread1, NULL, race1, NULL);
22 pthread_create(&thread2, NULL, race2, NULL);
23
24 pthread_join(thread1, NULL);
25 pthread_join(thread2, NULL);
26
27 close(fd);
28 }
29 }

Figure 2. A PoC code fragment of kernel race vulnerability, CVE-2016-8655.

In this vulnerability, the race point is the instruction, where the variable po->tp_version

is marked in red in Figure 3. Thread A reads tp_version twice (V1 and V2) and thread
B writes tp_version once (V3). When we tested the kernel (Linux kernel version 4.12.1)
compiled with KASAN, the vulnerability point reported by KASAN is in the kernel’s
run_timer_softirq(). Actually, this is the triggering point, not the race point. There is no
output information about the stack traceback at the race point. Researchers still need
to spend a lot of time auditing the source code so it is difficult to locate the vulnerability
point simply from the KASAN report. In addition, there is no other tool that is more helpful
for locating race points.

The triggering type of this vulnerability is a UAF. According to our observations,
KASAN sometimes reports the vulnerability type as a UAF and sometimes reports it as a null
dereference. The KASAN report is not accurate enough. Many vulnerability types, such
as the OOB write and double-free types, can also trigger null dereferences so inaccurate
reports will increase the difficulty of the exploitation. In our experiments, we compare
the accuracy of ERACE and KASAN in recognizing triggering types. Moreover, the informa-
tion provided by KASAN is very limited and we can neither evaluate the exploitability nor
choose an appropriate exploitation method. For the triggering types, in addition to the UAF,
there are also the OOB write, double-free, and direct CFH types. Different triggering types
have different exploitation methods, which we introduce in detail in Section 4.
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fd = socket(AF_PACKET, …);

setsockopt(fd, SOL_PACKET, 
PACKET_RX_RING, …);

setsockopt(fd, SOL_PACKET, 
PACKET_VERSION, …);

Pre-race

close(fd)�
sleep(n);

Post-race

User thread BUser thread A

4132: switch (po->tp_version) {
4133:     case TPACKET_V3:
4134:         if (!tx_ring)
4135:            init_prb_bdqc(po,rb, …);
4136:         break;
…

…
4195: if (closing && (po->tp_version >  
          TPACKET_V2)) {
4196:    if (!tx_ring)
4197:        prb_shutdown_retire_blk_timer(…);

…

3583: case TPACKET_V3:
3584:     po->tp_version = val;
3585:     return 0;

…

packet_set_ring() packet_setsockopt()

Kernel thread A Kernel thread B

User

Kernel
Exec
Flow

V1

V3

V2

Figure 3. Principle of the race vulnerability CVE-2016-8655. As a user program calls two system
calls concurrently, a data race on po->tp_version may occur depending on the execution order, which
triggers a UAF issue that allows an attacker to launch a privilege escalation attack.

The checkpoint of this vulnerability can be seen in Figure 4. Confirming whether
the race condition is satisfied is equivalent to confirming whether V3 is executed between
V1 and V2. Since the vulnerable code is located in the kernel space, we can only craft
user-space programs to confirm this. If we want the kernel to successfully execute V3, we
must bypass the condition at point P2, otherwise, it will return directly. The statement at P3
will set pg_vec to 1, making the condition of P2 unable to be bypassed so P2 must be exe-
cuted before P3. As long as V3 can modify tp_version, it means that P2 was executed before
P3. Then, because the time window between P2 and V3 is smaller than the time window
between P3 and V2, it is more likely that V3 is executed before V2. The first checkpoint is
po->tp_version, which is modified by V3, and we need to perceive the change of the tp_version

value from the user space. However, at this time, we can only know that there is a high
possibility that V3 is executed before V2 and do not know whether V3 is executed after
V1. If V3 is executed before V1, init_prb_bdqc() will not be called to construct the dangling
timer. Therefore, confirming whether V1 is executed before V3 is equivalent to judg-
ing whether init_prb_bdqc() is executed. The init_prb_bdqc() function will execute a state-
ment P1 and P1 will modify the packetblockdescriptor->header.bh1.offset_to_first_pkt area.
We need to perceive the change in this value from the user space. The second checkpoint
is the memory value modified by P1. In general, P1 and V3 are what we call checkpoints
because these two statements modify the memory value and the user-space program can obtain
this value. Therefore, we can indirectly confirm the kernel’s execution state by perceiving the
changes in these values from the user space. Similarly, we can also use checkpoints to confirm
whether the kernel’s memory is sprayed with user-forged data. Identifying checkpoints also
requires researchers to spend much time auditing the logic of the source code.
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...
4076: rb = tx_ring ? &po->tx_ring : &po-
>rx_ring;
…
4132: switch (po->tp_version) {
4133:     case TPACKET_V3:
4134:         if (!tx_ring)
4135:            init_prb_bdqc(po,rb, pg_vec,…);
4136:         break;
…

…
4170: swap(rb->pg_vec, pg_vec);
…
4195: if (closing && (po->tp_version >  
          TPACKET_V2)) {
4196:    if (!tx_ring)
4197:        prb_shutdown_retire_blk_timer(…);

…
3578: if (po->rx_ring.pg_vec || po-
          >tx_ring.pg_vec) 
3579:     return -EBUSY;
…
3584: po->tp_version = val;
…

packet_set_ring() packet_setsockopt()

Kernel thread A Kernel thread B
Exec
Flow

635: prb_open_block(p1, pbd);

865: BLOCK_O2FP(pbd1) = 
(__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);

P1

P2

P3

P4

V1

V3

V2

Figure 4. Checkpoint of CVE-2016-8655. P1 and V3 are the two checkpoints.

3.2. Overview

To meet the requirements mentioned above, we designed an exploitation framework,
named ERACE, to assist in the exploitation of a race vulnerability. The top-level design of ERACE
can be seen in Figure 5. ERACE contains three components: a race-point detector, vulnerability
analyzer, and checkpoint detector. They can satisfy the above three requirements, respectively.

First, the input of the race-point detector is the kernel source code containing the race
vulnerability and the PoC that can trigger the vulnerability. The source code is com-
piled into an LLVM intermediate representation and an executable binary file bzImage.
Then, the multi-thread program in the PoC is converted into two single-thread programs.
Next, the two programs in the executable kernel file bzImage run and the corresponding
execution path is recorded. At the same time, the LLVM intermediate representation is
statically analyzed to identify all the race instruction pairs. Finally, whether the actual exe-
cution path executes the race instruction pairs is determined. Therefore, we can accurately
locate the race instructions.

POC

Kernel
Code

Clang
LLVM

IR

POC1

POC2

Traces

Race Pairs

Race Point

Vulnerability AnalyzerRace Point Detector

Race Variable 
Use Type

Timing 
Relationship

Checkpoint

Checkpoint Detector

Exploit

Check Path

Vulnerability 
Context

Figure 5. Overview of ERACE.

The vulnerability analyzer is responsible for collecting the vulnerability context, iden-
tifying the triggering type, and determining the exploitation method. To obtain an accurate
and detailed vulnerability context, race points are instrumented to determine their timing
relationship. Then, the static analysis is applied to recognize the race variable and its use
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type and the vulnerability context is recorded at the same time. Based on the use type
of the race variable and the vulnerability context, ERACE can determine the triggering type.

The checkpoint detector is responsible for locating checkpoints and determining
the corresponding system call interface. Checkpoints can reflect the success of competing
and heap spraying. The principle is to perceive the executing states of the kernel from
the user space or confirm that the kernel memory is arranged with user-forged data. First,
backward taint analysis is applied to find the kernel data that can be leaked by a leaking
anchor. Then, the control-flow analysis is used to check whether there is a system call
interface that can reach the leaking anchor without root privileges.

The last step is to generate the final exploit. First, competing threads are crafted based
on the identified race point and related system call. Then, a checking code is crafted based
on the identified checkpoint and related system calls. Next, the subsequent exploitation method
and structure based on the identified race-triggering type and vulnerability context are deter-
mined. The follow-up exploitation phase can be found in existing research [13–16].

4. Design

This section is divided into three subsections to introduce the three components
of ERACE.

4.1. Race-Point Detector

This section mainly introduces how to identify race instructions in a PoC, which is
mainly divided into three steps. First, we need to obtain the execution path of the PoC,
then perform alias analysis on the kernel code to find all possible race instruction pairs, and
finally, compare the race candidates that appear in the PoC trace to find the real race points.

4.1.1. Tracking Down PoC Traces

We need to obtain the execution path of the PoC in the actual environment so that we
can analyze the position of the race point. It seems simple to put the PoC into a real system
to run, and record the execution trace of the system until the vulnerability is triggered.
However, there are three problems with doing this. First, the real system environment
is very complicated and the race window for many race vulnerabilities is very small
(as shown in Figure 3, the race window is the code length between V1 and V2) so it is
difficult to satisfy the race conditions. Even if a race condition is accidentally triggered,
it is difficult for us to detect whether a race has occurred because the race does not exhibit
abnormal behaviors. Second, as the PoC itself is a multi-thread program and there is
still a large number of background threads running inside the system while the PoC is
running, it is difficult for us to distinguish between threads that can cause a race. Third,
the magnitude of kernel source code is very large and a large number of execution traces
will be generated during this period, which is too complicated to analyze.

When debugging the vulnerability, we found that the competing threads in the PoC
executed the race instructions but did not trigger the vulnerability if the race condition
was not satisfied. Now that the PoC has executed the race instruction, we can locate
the race point by analyzing its execution trace. Based on this discovery, we can narrow
down the search space of instructions as much as possible, avoiding the above three
problems. The method we use is to convert the multi-thread PoC into two single-thread
programs, namely PoC1 and PoC2, and collect the execution traces of the two threads
running separately once so that the execution traces of the two competing threads can be
distinguished. In the process of transforming the program, we cannot change the parameter
settings of the original thread to avoid affecting the original control flow. In addition,
the competing thread is converted into an ordinary function and we can extract its one-time
execution trace.

We use kcov [17] to record the execution traces and convert the binary traces into kernel
source traces. kcov is a lightweight tool and we can enable it by setting CONFIG_KCOV when
compiling the kernel. We can use ioctl to send KCOV_ENABLE and KCOV_DISABLE to the kernel to start
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and pause the trace recording, and the final path is recorded in the shared memory between
the kernel and the user. We mark the paths of PoC1 and PoC2 as T, which contains two
separate traces.

4.1.2. Identifying Race Candidates

We should statically analyze the kernel’s LLVM intermediate representation to find
possible race instruction pairs, which we call race candidates. First, we need to perform
alias analysis on the LLVM intermediate representation and record the aliases from all
variables and structure pointers. Then, we should identify the instructions that reference
the same variable or its aliases and pair the race instructions to obtain the race candi-
dates. We use the term Racecand to denote a set of possible race instructions, where each
member is represented by < r, w > or < w, r >, where r is a read instruction and w is
a write instruction.

The race instruction pair must contain a read instruction and a write instruction.
The execution order of two read instructions does not affect the execution result of the pro-
gram; hence, there is no need to study this case. The execution order of two write instruc-
tions may affect the results of the program because the value stored in the memory depends
on the last write instruction, which affects the read values of subsequent instructions.
However, it is ultimately the competition between a write instruction and a read instruction.
If there are only two write instructions writing to the same memory and the written value
is not used by any code, it will not affect the execution result of the program.

4.1.3. Confirming the Race Point

Finally, we search for whether there is a race candidate appearing in Racecand and the
PoC trace. In Section 2, we introduced the features of exploitable race vulnerabilities. If
there are two race candidates < Ci, Ck > and < Cj, Ck > appearing in the PoC trace, then
Ci, Cj, and Ck are very likely to be real race points. According to our definition of race
vulnerabilities in Section 2 and the above analysis, the race instruction pair must contain
a read instruction and a write instruction. There are two situations. One is when Ci and Cj
are read instructions and Ck is a write instruction. The other is when Ci and Cj are write
instructions and Ck is a read instruction (see, for example, CVE-2016-8655 in Figure 3). V1
and V2 are equivalent to Ci and Cj, V3 is equivalent to Ck, and V3 is a write instruction.

4.2. Vulnerability Analyzer

This section mainly discusses how to analyze race vulnerabilities to obtain important
vulnerability information. The first step is to identify the execution order of the race
instructions that trigger race conditions, which is beneficial for vulnerability debugging.
Then, the triggering type is identified and finally, the appropriate exploitation method is
selected according to the triggering type and the vulnerability context.

4.2.1. Identifying the Race Timing Relationship

We design a user-controllable delay injection method to identify the execution order
that triggers the race condition. The previous race point detector locates the race points Ci,
Cj, and Ck. There are six execution orders for the three race points, as shown in Figure 6.
We test these six execution orders to determine which execution order can trigger a race.
To control the timing of the instruction execution accurately and easily, we propose a user-
controllable delay injection method. Specifically, we insert a delay instruction before each
race instruction and the delay time is determined by the user. We can set the instruction
execution timing in the PoC. When the kernel executes to the race point, each race point
is delayed for a certain time. For example, if Ci, Cj, and Ck are delayed by t, 2t, and 3t,
respectively, then the timing relationship of the race instructions is Ci− > Cj− > Ck. t
represents the minimum delay time. The value of t cannot be too small. If the value of t
is too small, the execution order will be disordered. This user-controllable delay injection
method not only simplifies timing control but also facilitates vulnerability debugging.
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Researchers can quickly trigger vulnerabilities when debugging vulnerabilities without
wasting time waiting for the success of the race.

Ci     Cj     Ck

1
2
3
4
5
6

1      2      3
1      3      2
2      1      3
2      3      1
3      1      2
3      2      1

Kernel instrumentation

Ci

wait(Oci * t)

Cj

wait(Ocj * t)

Ck

wait(Ock * t)

Figure 6. The permutations of the race point’s execution order and kernel instrumentation. The left
line denotes the sequence number. The contents of the table are the execution orders of the race points.
Oci , Ocj , and Ock indicate the execution order of Ci, Cj, and Ck, respectively. t denotes the minimal
delay time.

4.2.2. Identifying the Triggering Type and Tracking Down the Triggering Context

Because the KASAN report on the vulnerability triggering type is not accurate, we
cannot just rely on the KASAN warning information. We should comprehensively de-
termine the vulnerability triggering type based on the use type of the race variable and
the vulnerability context. We divide the triggering types into four categories, namely
the UAF, double-free, OOB write, and direct CFH types. Generally speaking, double-free is
a special kind of UAF in which a dangling pointer is used at a releasing site. However,
the general exploitation methods of the UAF and double-free types are different. Therefore,
we have to distinguish between these two triggering types to help determine the spe-
cific exploitation method. There exist other triggering types that cannot be effectively
exploited or that are rarely seen. For example, some null-dereference vulnerabilities can-
not be exploited at present and use-before-initialization vulnerabilities are relatively rare.
The STACKLEAK [18] mitigation mechanism can easily prevent use-before-initialization
vulnerabilities from being exploited.

Now, we perform data-flow analysis on the race variable to determine the triggering
type and record the corresponding vulnerability context. The race variable is the object
operated by the race instruction. For example, po->tp_version is the race variable in CVE-
2016-8655. We trace the race variable to find where it flows and observe its behaviors.
First, if it can flow to a jump table index or jump address to explicitly affect the control
flow, it may trigger a direct CFH. Then, we perform backward data-flow analysis to find
where it comes from. If it can be controlled by the user, we record the relative syscall and
user parameters. Second, if the race variable represents a length or a string pointer and
it finally directly or indirectly affects the length parameter of the memory copy function
or the index of the memory access, it may trigger an OOB. We should record the overflow
point and overflow length. Third, if the race variable is used in a conditional statement,
which implicitly influences the control flow or points to a certain kernel structure, it is
possible to trigger a UAF or double-free. We should further identify the program point that
references the dangling pointer. If the reference points are all releasing points, it is most
likely to be a double-free. If the reference point contains general memory access, it is very
likely to be a UAF. We should record the allocation point, allocator type, release point, and
reference point of the vulnerable object.

After the triggering type is identified, the subsequent exploitation process used can be
chosen from existing studies. If the triggering type is an OOB, we can use KOOBE [16] to con-
tinue to explore the ability of the vulnerability, that is, the write length and the write value.
Then, appropriate target objects are selected for exploitation. If the triggering type is a UAF,
we can use FUZE [13] to obtain the statement that generates and references the dangling
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pointer; then, the system call to which the statement belongs is identified, and whether
it can hijack the control flow or perform arbitrary read or write operations is verified. If
the triggering type is a direct CFH, we can use KEPLER [14] to search for blooming gadgets
and bridging gadgets in the kernel and construct a return-oriented programming (ROP)
chain to complete the exploitation. If the triggering type is the double-free type, we can use
SLAKE [15] to identify the kernel objects that are useful for exploiting and the correspond-
ing system calls and control the kernel space layout to achieve the exploitation.

4.3. Checkpoint Detector

The main task of this section is to statically analyze the kernel’s LLVM intermediate
representation, identify instructions that modify the kernel data structure near the race
point, and then check whether there is a channel through which the user can read the mod-
ified value. ELOISE [19] performed similar work. Its goal is to identify the elastic object
in the kernel and check whether the user can leak the content of the elastic object to bypass
the kernel’s KASLR mitigation mechanism. However, there are two fundamental differ-
ences between the work of this paper and that of ELOISE. First, the purposes are different.
The objective of ELOISE is to find all elastic objects, whereas the purpose of ERACE is to find
channels that can leak the value modified by the checkpoints. Therefore, the technique
adopted by ELOISE is more limited. Second, ELOISE only considers the channel through
system calls, whereas this paper also considers the interface provided by the module itself
and the special communication method of the shared memory, which makes the analysis
results more comprehensive.

4.3.1. Tracking Down Checkpoint Candidates

First, we need to identify the checkpoint candidates and mark the trace recorded when
the race-point detector executes the PoC in the first step as T. T contains the execution paths
of PoC1 and PoC2. Since the kernel LLVM intermediate representation we compiled contains
symbol information, we can find the execution path of T that corresponds to the LLVM
intermediate representation through the symbol information. We identify the memory
write instruction on T as a checkpoint candidate and mark it as Ccand.

Then, we should accurately identify the structure type in the kernel, denoted as S.
The kernel structure is used to store state information and important data when the kernel
is running and it is also the object that our checkpoint modifies. The kernel structure is
divided into two categories: one is the global structure in the kernel and the other is dynam-
ically generated when the kernel is running and may be located on the stack or the heap.
There are two common types of heap allocation functions. One is the functions allocated
to the general cache or zone space such as kmalloc, kzalloc, and malloc. The other is the func-
tions allocated to a special cache or zone space such as kmem_cache_create, kmem_cache_alloc,
and kmem_cache_alloc_node. In the LLVM intermediate representation, structure allocation
instructions or value-transfer instructions will expose the structure type information.

4.3.2. Filtering out Checkpoint Candidates

As mentioned above, the checkpoint needs to meet two requirements. One is that
the value modified by the checkpoint must be in a kernel data structure and it is meaningless
if it is just an ordinary value-transfer instruction. The other is that there must be a channel
to leak the kernel data modified by the checkpoints to the user space and it does not require
root privileges.

For the first requirement, we need to determine which kernel structure Ccand modifies.
We use Ccand as a starting point to perform backward taint analysis on the modified
value to check whether its source comes from S. If it is not in S, then the checkpoint is
filtered out. The remaining checkpoint is denoted as Creal , which indicates that the source
of the leaked memory comes from the kernel structure S. The modified kernel structure
and corresponding offset are denoted as Sreal .
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Before we expound on the second requirement, we should discuss the communi-
cating mechanism of the kernel. There are three traditional methods of communication
between the user space and kernel space, /proc, netlink, and ioctl. The /proc directory
is a virtual file system through which users can read data about system hardware and
the currently running processes. However, root privileges can access all kernel information.
The kernel data that users can view are very limited. Netlink is a kind of duplex communi-
cation between the kernel and user but it needs the support of specific kernel functions.
For a vulnerability exploitation, the scenarios used are very limited. ioctl is a more
flexible communication method and is implemented in many Linux modules. The chan-
nel that can obtain the checkpoint information studied in this paper is similar to ioctl.
Users can obtain the information in the kernel through the channel provided by the Linux
kernel module without affecting the original execution flow of the kernel. There are two
main methods for obtaining checkpoint data. First, the kernel module can leak the kernel
data to the user space through some important functions. For example, when capturing
packets, users can obtain the timestamp and version information of the kernel layer data
packets (called by getsockopt). Second, the shared memory between the kernel space and
user space can be used to directly obtain the kernel data.

There are some functions in the kernel that can leak kernel data to the user space. We
use them as the starting points for backward taint analysis. We summarized these func-
tions and called them leaking anchors and they include copy_to_user(), put_user(), copyout(),
nla_put(), and skb_put(). Leaking anchors generally contain two important parameters; one
is the address of the kernel data, denoted as k_addr, and the other is the length of the leaked
data, denoted as k_len. We use k_addr and k_len as the starting points for backward taint
analysis and find the sources of k_addr and k_len, denoted as S_addr and S_len, respectively.
If [S_addr, S_addr + S_len] belongs to Sreal , it means that the value modified by the check-
point can be leaked. Moreover, control-flow analysis should be performed to ensure
that the leaking anchors can be reached from the user interface with normal privileges.
If a function such as capable(CAP_SYS_ADMIN) appears on the path, it means that root privileges
are required to obtain the kernel data. The general taint analysis and control-flow analysis
principles are shown in Figure 7. Note that copy_to_user() is only a representative function
in leaking anchors and there are other leaking functions mentioned above.

Users can also obtain kernel data through the shared memory. ELOISE [19] did
not consider this special communication method. Some Linux modules require a large
amount of data transmission between the kernel space and user space. To improve the effi-
ciency of data transmission, it is necessary to create a shared memory between the kernel
and the user. For example, paths recorded by the kcov module and data packets cap-
tured in af_packet are all stored in the shared memory so that users can save time by
reducing one copy and one system call when reading data. When creating the shared
memory, vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *) is called
to complete the mapping between the user space and kernel space. The parameter addr
is the user-space address and the parameter page is the kernel address. ERACE performs
backward taint analysis on the page parameters to find the relative source structure.
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data flowstruct
PoC trace
check path

interface

capable(CAP_SYS_ADMIN)

X

copy_to_user(u_addr,k_addr,k_len)

vm_insert_page(vma, addr, page )

Store n, ptr

Figure 7. Illustration of backward taint analysis starting from copy_to_user(), vm_insert_page(), and
ptr. Arguments k_addr and ptr originate from the same structure. Interface refers to a system call
or an export function from a module.

5. Implementation

We implemented a prototype of ERACE, which contains three main components:
the race-point detector, vulnerability analyzer, and checkpoint detector. The static analysis
part of the race-point detector is based on SVF [20] and the dynamic path collection is based
on kcov [17]. The race-point detector contains 2500 lines of C code and is mainly responsible
for identifying the race points. The static analysis and instrumentation of the vulnerability
analyzer contain 1500 lines of C code and are mainly responsible for identifying the timing
relationships and triggering types. The static analysis of the checkpoint detector contains
2000 lines of C code and is mainly responsible for identifying the checkpoints. The following
paragraphs contain some implementation details about the above design.

Kernel division. During static analysis, the kernel is divided and the correlative
modules are merged. As the Linux kernel source code is too large, i.e., reaching millions
in magnitude, the lines of the compiled LLVM intermediate representation with symbolic in-
formation are three to four times those of the source code, which severely reduces the speed
of static analysis and increases memory overhead. To solve this problem, Razzer [10]
and CRIX [21] divided the different modules according to the directory structures, and
k-miner [22] analyzed them from different system calls. Although this effectively improved
the speed of static analysis, some vulnerabilities were related to several modules. For
example, the traces of the PoC we collected span multiple modules. If the kernel is divided
into modules, it leads to false negatives. Therefore, when dividing the kernel, we integrate
the modules involved in the PoC trace.

Relaxed alias analysis. When the race-point detector identifies suspicious race in-
struction pairs, it should first perform alias analysis on the variables and structure pointers.
There is a characteristic in the Linux kernel. Two unrelated functions may reference the same
structure member. Unrelated means that there is no direct or indirect calling relationship.
For example, in Figure 3, the packet_set_ring() and packet_setsockopt() functions can be
called through different user call interfaces. However, as long as the same socket handle
parameter is passed in, the same structure member po->tp_version will be referenced. When
using the existing SVF tool [20] or the AliasAnalysis pass in LLVM itself to perform alias
analysis, it is found that this situation will be under-reported. This is because traditional
alias analysis can only identify alias relationships in the same function or the same path.
Therefore, we improved the alias analysis method of the SVF and adopted relaxed alias
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analysis. As long as the structure type pointed to by two pointers is the same, we treat
the two pointers as aliases. The relaxed alias analysis has the problem of false positives,
but our goal is to locate more race-point candidates, avoiding omissions. In our research,
the problem of false negatives is more serious than that of false positives, and even if there
are false positives, we can filter them based on the PoC traces.

Single-thread generator algorithm. As mentioned above, the indeterminacy of the
data race makes it hard to trigger the vulnerability. However, even if the multi-thread
PoC does not trigger the race condition, it may have passed the race point. To gather
the execution traces of two threads, we have to transform the multi-thread PoC into two
single-thread programs. We designed a single-thread algorithm to finish the task. As we
know, Linux uses two functions, pthread_create() and fork(), to make programs run concur-
rently. First, we have to recognize these two functions. For the pthread_create() function, we
find the two subfunctions on behalf of two threads. The third parameter of pthread_create()
reveals the subfunctions. For the fork() function, we find the two branches on behalf of two
processes, which we call two threads for convenience. Then, we delete pthread_create()

or fork() and execute kcov-control statements before and after the two threads. Finally, we
delete the other thread to obtain PoC1 and PoC2, respectively. We can collect execution
traces in a real environment and compare them with suspicious race instruction pairs from
the alias analysis to locate the final race points.

6. Evaluation

In this section, we use real-world kernel race vulnerabilities to demonstrate the utility
of ERACE. Specifically, we demonstrate the accuracy of ERACE’s identification of race points,
triggering types, and timing relationships of race instructions, and its effectiveness in facili-
tating the exploitation. In addition, we also discuss some kernel race vulnerabilities that
ERACE failed to facilitate.

6.1. Setup

To demonstrate the utility of ERACE, we conducted an investigation into Linux kernel
race vulnerabilities in the past seven years from the Common Vulnerabilities and Expo-
sures [1] database and syzbot [2]. Google’s syzbot [2] platform has published many PoCs
for Linux kernel vulnerabilities including a lot of race vulnerabilities that have not been con-
firmed. As discovered in our investigation of these two platforms, nearly 62 percent of race
vulnerabilities had available PoCs, which can satisfy the input requirement of ERACE. Then,
we excluded the race vulnerabilities that were not related to data races or that involved
specific hardware devices. Finally, we selected 17 CVE that had rich public vulnerability
information to evaluate our results. In addition, we randomly chose six race vulnerabilities
that had available PoCs from syzbot [2]. We show these 23 vulnerabilities in Table 1.

Since the race vulnerabilities selected involved different kernel versions, in order to bet-
ter evaluate the utility of ERACE we transplanted all the vulnerabilities to the 4.12.1 version
of the Linux kernel. Some vulnerabilities were located in the older version of the kernel,
which does not support kcov or KASAN instrumentation. The research in this paper did
not involve bypassing the mitigation mechanisms so we turned off the default protection
mechanisms of the system such as the kernel address space layout randomization SMEP and
SMAP mitigation mechanisms. Since ERACE needs to perform a static analysis of the Linux
kernel to compare the warning information of KASAN and collect the dynamic execu-
tion path and instruction timing relationship, it was necessary to compile three versions
of the kernel. One version used Clang to compile the kernel source code into the LLVM
intermediate representation. The second used gcc to compile the kernel, with KASAN and
kcov configured. The third performed delay instrumentation for the race points to recog-
nize their timing relationship. The system selected for the experiments was an Ubuntu
18.04 system, running on a desktop with 128 G RAM and an Intel(R) Core(TM) i9-10900KF
CPU @3.70 GHz.
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Table 1. Accuracy of ERACE. Race variable denotes the variable that race points read from or write to; AA-
SVF indicates the use of traditional alias analysis of SVF; Improved AA-ERACE indicates the use of relaxed
alias analysis in ERACE; Timing relationship stands for whether ERACE could recognize the true timing
relationship of the race instructions; UBI denotes a use-before-initialization vulnerability. 7 means it fails
to identify, while 3 means it succeeds in identifying.

CVE Race Variable

Race Point
Timing

Relationship
Triggering

Type

Recognized Triggering Type

AA-SVF Improved
AA-ERACE KASAN ERACE

CVE-2015-
8550 7 7 7 7 CFH 7 7

CVE-2016-
6516

arg-
>dest_count 3 3 7 OOB 3 3

CVE-2016-
8655

po-
>tp_version 7 3 3 UAF 3 3

CVE-2017-
10661

ctx-
>might_cancel 3 3 3 UAF 7 3

CVE-2017-
11176 sock 7 3 3 Double-Free 7 3

CVE-2017-
15265 port 7 3 7 UAF 3 3

CVE-2017-
15649 po->running 7 3 3 UAF 3 3

CVE-2017-
15951 7 7 7 7 7 7 7

CVE-2017-
17712 inet->hdrincl 7 3 3 UBI 7 7

CVE-2017-
2636 n_hdlc.tbuf 7 3 3 Double-Free 7 3

CVE-2017-
2671 sk 7 3 3

Null-
Dereference 3 7

CVE-2017-
7533 file_name 7 3 3 OOB 7 3

CVE-2019-
11599 VMA 7 7 7 UAF 7 7

CVE-2019-
11815 tc->t_sock 7 3 3 UAF 3 3

CVE-2019-
18683

vb2_queue-
>bufs 7 3 3 UAF 3 3

CVE-2019-
6974 dev 7 3 3 UAF 7 3

CVE-2021-
26708

vsk-
>transport 7 3 3 UAF 3 3

7341... [23] udp_sk-
>sk_user_data 7 3 3 UAF 7 3

4d33... [24] sel_buffer 3 3 3 UAF 3 3

62d9... [25] usbhid-
>urbin 7 3 3 UAF 3 3
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Table 1. Cont.

CVE Race Variable

Race Point
Timing

Relationshi
Triggering

Type

Recognized Triggering Type

AA-SVF Improved
AA-ERACE KASAN ERACE

def3... [26] 7 7 7 7 PAGEFAULT 7 7

e010... [27] prev->refs 3 3 3 Double-Free 7 3

9824... [28] sk-
>sk_dst_cache 7 3 3 Double-Free 7 3

Overall * 4 19 17 * 10 17

To evaluate the accuracy in identifying the race points, timing relationships of the
race instructions, and triggering types, we compared the output results of ERACE with
the publicly available vulnerability information. For vulnerabilities with less publicly
available information, we manually analyzed the patch information and the related vul-
nerable code to confirm the validity. To show the effectiveness of ERACE in facilitating
the exploitation of race vulnerabilities, we chose a corresponding exploitation method ac-
cording to the triggering type and vulnerability context recorded by ERACE. The subsequent
exploitation process mainly refers to the method introduced in previous articles [13–16].
There are two main methods for the final privilege escalation. One uses an ROP chain [29]
to call commit_creds(prepare_kernel_cred(0)) and the other uses arbitrary write operations
to modify the credential structure of the process. If ERACE identifies the available check-
points for the vulnerability, we can compare the impact of using checkpoints and not using
checkpoints on the success rate of the vulnerability exploitation.

6.2. Accuracy

In this section, we evaluate the accuracy in identifying the race points, the timing
relationships among the race instructions, and the triggering types (see Table 1 for the ex-
perimental results). In general, ERACE can effectively identify most race points, the timing
relationships among the race instructions, and the triggering types.

ERACE identified a total of 19 vulnerabilities’ race points. The experiments show that
ERACE can effectively help researchers locate vulnerable points, that is, race points. Moreover,
to verify whether relaxed alias analysis brings improvements, we compared the number of race
points that can be identified with and without relaxed alias analysis. To ensure the accuracy
of the results, the other conditions were unchanged, except for the alias analysis component
in ERACE. AA-SVF indicates the use of alias analysis in SVF, and Improved AA-ERACE indicates
the use of relaxed alias analysis. The experimental results show that without improving alias
analysis, only 4 vulnerabilities’ race points were identified, whereas 15 more vulnerabilities’
race points were identified with relaxed alias analysis.

We analyzed the specific program context of each vulnerability’s race point. The race
points of CVE-2016-6516, CVE-2017-10661, and e010 [27] were located in the same function
or on the same path, and the race variable of 4d33 [24] was on a stack so traditional alias
analysis could easily identify these race points. The race points of the 15 vulnerabilities were
located on different paths. That is to say, users must use different system call interfaces to trigger
the execution of different race instructions. As long as the user passes in certain identical
parameters, the race variables accessed by the race instruction satisfy the alias relationships.
Traditional alias analysis cannot identify such aliases. Relaxed alias analysis will treat the same
objects in different functions as the same memory. Although this will cause false positives,
filtering with the collected dynamic execution paths can effectively reduce false positives.

We analyzed four cases where ERACE failed to identify the race points. CVE-2015-8550
is quite special. This vulnerability does not exist in the source code. It was introduced after
a gcc compilation. The user-space data were accessed twice but the consistency of the data
was not checked, resulting in control-flow hijacking. When compiled with Clang, there was
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no such vulnerability so the race point could not be identified. The PoC of CVE-2017-15951
could not trigger kernel vulnerabilities so it was impossible to determine whether the vul-
nerability path was collected. Public information on CVE-2017-15951 is very vague and
it cannot provide researchers with enough information to confirm its triggering type and
root cause. CVE-2019-11599 is due to access competition between VMA virtual mapping
spaces and not between the general memory variables so ERACE could not detect the race
points. def3 [26] could only trigger a page fault so we could not find its race points.

ERACE identified a total of 17 vulnerabilities’ timing relationships among the race
points, which can assist researchers in debugging. There were four vulnerabilities whose
race points were not identified so the execution order of the race instructions could not be
identified. CVE-2016-6516 belongs to the double-fetch vulnerability, whose user-space data
were read twice, but the consistency of the data was not checked. The writing thread was
located in the user layer but ERACE could only execute the kernel. Therefore, it could not
identify the user-space competition and the instruction sequence when the vulnerability
was triggered. The competition involved in CVE-2017-15265 was more complicated. After
executing the suspicious three race points, we identified the relative instruction sequence
but still could not stably trigger the vulnerability. After analyzing the source code, we
found that only when the four program points in each thread were executed in a specific
order could the vulnerability be stably triggered. Therefore, the execution method proposed
in this paper could not identify the complete instruction order.

ERACE identified a total of 17 vulnerabilities’ triggering types, which can assist re-
searchers in choosing an appropriate exploitation method. We compared the recognition
accuracy of KASAN and ERACE. KASAN falsely identified eight triggering types, whereas
ERACE was able to correct the KASAN identification errors. Of the six vulnerabilities that
ERACE failed to identify, four of them were not identified because the race-point detector
did not identify the race point. The CVE-2017-2671 vulnerability could trigger only a
null deference, which did not belong to the currently exploitable triggering type so ERACE
failed to identify it. CVE-2017-17712 is a vulnerability caused by using uninitialized stack
variables. Neither KASAN nor ERACE was able to identify it. After using STACKLEAK
developed by Grsecurity/PaX [18], it was easy to eliminate this vulnerability so it cannot
be exploited.

6.3. Effectiveness

This section mainly tests the effectiveness of ERACE in facilitating the process of exploit-
ing the race vulnerability (see Table 2 for the experimental results). In general, ERACE can
effectively help researchers generate exploits, and the identified checkpoints can increase
the success rate of the privilege escalation.

Table 2. Effectiveness of ERACE. # of checkpoints indicates the number of checkpoints ERACE could
find. We compare whether the exploit succeeded in escaping privilege by using and not using checkpoints.
7 means it has no checkpoints or public exploit, or it fails to exploit the vulnerability. 3 means it has public
exploit or it succeeds in exploiting the vulnerability.

CVE # of Checkpoints Public Exploit
Generated Exploit

Without
Checkpoints

Use
Checkpoints

CVE-2015-8550 7 7 7 7

CVE-2016-6516 4 7 7 7

CVE-2016-8655 22 3 7 3

CVE-2017-10661 2 7 7 3

CVE-2017-11176 35 3 7 3
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Table 2. Cont.

CVE # of Checkpoints Public Exploit
Generated Exploit

Without
Checkpoint Use Checkpoint

CVE-2017-15265 7 7 3 3

CVE-2017-15649 22 7 7 3

CVE-2017-15951 7 7 7 7

CVE-2017-17712 55 7 7 7

CVE-2017-2636 4 3 7 3

CVE-2017-2671 34 7 7 7

CVE-2017-7533 5 7 7 3

CVE-2019-11599 7 7 7 7

CVE-2019-11815 5 7 7 7

CVE-2019-18683 6 7 3 3

CVE-2019-6974 24 7 7 3

CVE-2021-26708 1 7 3 3

7341... [23] 3 7 3 3

4d33... [24] 24 7 7 7

62d9... [25] 10 7 7 3

def3... [26] 22 7 7 7

e010... [27] 4 7 3 3

9824... [28] 5 7 7 7

Overall 294 3 5 13

Among these 23 vulnerabilities, exploits of only 3 vulnerabilities were publicly avail-
able and ERACE helped 13 vulnerabilities to achieve exploitation. We found a total of
294 checkpoints in the modules where the 23 vulnerabilities were located, which can be
used by researchers to check whether race conditions or heap spraying has been satisfied.
Among the 13 successfully exploited vulnerabilities, we compared whether the vulner-
abilities could be successfully exploited by using and not using checkpoints. We found
that eight of them could not be successfully exploited without using checkpoints. This
shows that it is necessary to consider the use of checkpoints when exploiting race vulner-
abilities. If heap spraying is performed without confirming whether the race condition
has been satisfied, it consumes a limited amount of heap-spraying space and time and
also makes the system unstable. Then, if it goes to the next exploitation stage without
confirming whether the heap spraying has succeeded, it will further reduce the exploitation
success rate.

There were five vulnerabilities that were successfully exploited without using check-
points, namely CVE-2017-15265, CVE-2019-18683, 2021-26708, 7341 [23], and e010 [27].
As fewer checkpoints were identified in the modules where the three vulnerabilities were
located, no suitable checkpoints could help to exploit these three vulnerabilities. The main
reason is that some kernel modules are implemented with less code and fewer functionali-
ties and they contain fewer interfaces for users to access kernel data.

We analyzed 10 vulnerabilities that failed the exploitation. Four of them failed because
the race point was not identified and the other six failed because their exploit primitives were
restricted. For example, CVE-2016-6516 could only overwrite a continuous 12 bytes to 0, but
modifying the credentials required 28 bytes to escalate privilege. Hence, we could not exploit
the vulnerability at the time. We also made some interesting discoveries. The CVE-2016-8655
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and CVE-2017-15649 vulnerabilities were both located in the /net/packet/af_packet.c file so
the numbers of checkpoints were the same. CVE-2017-17712 was located in the /net/ipv4

module, which was very large with many functions, so the number of checkpoints was
the largest. The CVE-2017-11176 and CVE-2017-2671 vulnerabilities involved multiple
modules so the numbers of checkpoints found were relatively large.

7. Related Works

As mentioned above, the objective of this paper is to assist in the process of exploiting
kernel race vulnerabilities. Therefore, the related works are mainly divided into three
categories, namely race vulnerability detection, automatic exploit generation in the user
space, and kernel vulnerability exploitation. Below, we discuss the existing works in these
three categories in detail.
Race vulnerability detection. There are a lot of studies on detecting race vulnerabilities,
and feature modeling and dynamic detection techniques for race vulnerabilities are very
helpful for race exploitation. These techniques are mainly divided into two categories:
static analysis and dynamic analysis.

Refs. [30–32] adopted static analysis techniques. Among them, Relay [31] proposed
the concept of a relative lockset, which makes the function summary independent of the call-
ing context so that it can perform easy-to-parallel modular and bottom-up analyses.
Ref. [30] was based on the Coccinelle engine and used static pattern matching to de-
tect a special kind of data race, called a double-fetch vulnerability. It matched the kernel
function that calls copy_from_user() or get_user() multiple times to read data from the user
space at the same address and then manually analyzed these matched functions. Ref. [32]
formalized the double-fetch vulnerability, of which the two read operations have a spatial
overlap and the overlapping variables have control dependence or data dependence. Then,
static analysis and symbolic execution were performed on the LLVM intermediate repre-
sentation. The advantage of static analysis is that it is scientific in race vulnerability feature
modeling and has great scalability. The disadvantage is that it has a high false-positive rate
and relies heavily on manual confirmations.

Refs. [10,33–39] applied dynamic analysis techniques. Bochspwn [38] is a system-wide
memory monitoring tool implemented on a Bochs ×86 emulator, which is capable of de-
tecting kernel double-fetch and information leaks. ThreadSanitizer [39] is an execution
tool integrated into gcc [40] and clang [41] compilers that can detect multi-thread data race
vulnerabilities at runtime. The goal of [33,34] was to detect concurrency vulnerabilities.
The former proposed the coarse-grained interleaving hypothesis, which improves detection
accuracy and reduces time costs. The latter defined relaxed exchangeable events, which
can detect three types of concurrency vulnerabilities, the UAF, null-pointer-dereference, and
double-free vulnerabilities. The innovation in [10,35] was to explore thread interleaving,
which applies modified QEMU that can be used to set breakpoints to control thread interleav-
ing. However, the former does not first determine the suspicious race instructions, resulting
in a large search space. The latter proposed a deterministic thread interleaving technique,
which modifies qemu and implements three hypercalls to schedule several virtual CPU
cores to run and interrupt. However, it can only control thread interleaving on different
CPU cores, whereas our exploit must run on one specific CPU to improve the success
rate of heap spraying. Thus, the hypervisor-based solution does not promote our exploit
debugging. The innovation in [30,37] was to improve the traditional fuzzing technique
to adapt to detecting race vulnerabilities. Krace [36] introduced a new coverage tracking
metric, namely alias coverage. MUZZ [37] introduced a new instrumentation mechanism
and optimized the process of seed selection. The mechanism gives priority to the seed that
can trigger new code coverage or a new thread context. The advantage of dynamic analysis
is that it can directly generate input that triggers vulnerabilities, but the disadvantage is
that it has poor scalability and slow speeds.
Automatic exploit generation. Kernel vulnerabilities are more difficult to exploit than vul-
nerabilities in the user space. This is because the kernel environment is more complicated
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and requires more system calls to complete the exploitation. However, the research on auto-
matic exploit generation originates from vulnerabilities in the user space and the techniques
used are similar.

APEG [42] studied the automatic exploitation of real software vulnerabilities for the first
time, but APEG needs software that contains vulnerabilities and a relatively patched ver-
sion. Exploits generated by APEG can only trigger vulnerabilities. AEG [43] and May-
hem [44] are both end-to-end systems that can fully exploit vulnerabilities. The former
relies on the source code and the latter only requires binary files. The latter applies concolic
symbolic execution and index-based memory modeling. FLOWSTITCH [45] first proposed
a model based on data-flow stitching, which can generate valid inputs to bypass DEP,
CFI, and even ASLR mitigations. The Q [46] scheme is based on ROP and uses a small
amount of unrandomized code to automatically generate an ROP chain, which can ef-
fectively bypass W

⊕
X and ASLR mitigations. For heap vulnerabilities, one of the most

difficult vulnerabilities to exploit, [47–50] each proposed their own solutions. Revery [47]
is able to explore exploitable states that are different from the crash path based on the PoC.
HeapHopper [48] is based on model checking and symbolic execution and it can auto-
matically analyze the exploitability of the heap implementation in the case of memory
corruption. SHRIKE [49] can automatically arrange a heap layout on the PHP interpreter
and perform control-flow hijacking. ARCHEAP [50] can systematically search undeveloped
heap exploit primitives without considering their underlying implementations.
Kernel vulnerability exploitation. This paper refers to previous research on two aspects,
which are not the focus of this paper. The first bypasses mainstream mitigation mechanisms
such as SMAP, SMEP, and KASLR [19,51,52]. The second applies the follow-up exploita-
tion stage after determining the triggering type of the race vulnerability [13–16,53–55].
Next, we introduce the existing techniques for kernel vulnerabilities.

Refs. [14,53,54] each proposed new exploitation techniques, among which KEPLER [14]
discovered a new ROP construction method for vulnerabilities that can only hijack the con-
trol flow once. Ref. [53] used the shared space physmap between the kernel space and user
space to bypass SMAP and SMEP mitigations. Ref. [54] proposed a new kernel heap-spraying
mechanism for when the physmap page is not executable. Refs. [19,51,52] studied how
to bypass the kernel address space layout randomization. ELOISE [19] used an elastic
object in the kernel. Refs. [51,52] used the side-channel technique to leak the kernel address.
Ref. [55] proposed a deterministic stack-spraying technique and memory-consuming stack-
spraying technique to control the uninitialized variables on the kernel stack. FUZE [13] is
a framework for facilitating a kernel UAF exploitation and adopts the kernel fuzzing and
symbolic execution techniques to explore system calls that are useful for UAF exploitation
and mitigation bypassing. SLAKE [15] modeled three kernel vulnerabilities: UAF, double-
free, and OOB vulnerabilities. It can identify kernel objects and the corresponding system
calls that are useful for heap spraying, and reorganize slabs to obtain the expected slab
layout. KOOBE [16] summarized the challenges in exploiting OOB access vulnerabilities.
A new technique for capability-oriented fuzzing was proposed to search for certain capabil-
ities. Symbolic tracing was used to automatically analyze OOB vulnerabilities and identify
the appropriate target objects.

The process of locating race points in this paper is similar to that of FUZE [13], but
FUZE aims at exploiting UAF vulnerabilities. Memory allocation points and release points
can be located according to the KASAN warning report. However, there is no existing
tool for locating race points. EXPRACE [56] uses an interrupt mechanism to slow down
the execution of the specified core to improve the success rate of competition for multi-
variable race vulnerabilities, whereas we use program analysis techniques to assist in the
exploit generation of general race vulnerabilities. The problems we face are different.
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8. Conclusions

In this paper, we show that it is challenging to exploit kernel race vulnerabilities. Aim-
ing to address the problem of the exploiting process taking considerable time and requiring
extremely high professional knowledge, we developed ERACE, an effective framework
for facilitating the process of exploiting kernel race vulnerabilities. To be more specific,
we introduce the implementation of ERACE. The race-point detector uses low-level virtual
machine (LLVM) static analysis to search for all possible race instruction pairs and kcov [17]
to dynamically record the execution path of the PoC. The vulnerability analyzer uses
the instrumentation mechanism to identify the timing relationships among the race instruc-
tions, uses static analysis to identify the triggering type of the vulnerability, and records
the vulnerability context. The checkpoint detector uses LLVM static analysis to identify the
checkpoints and records the system calls to which the checkpoints belong. Finally, based
on the vulnerability information collected above, we finish generating the exploit.

We choose 23 real-world kernel race vulnerabilities to demonstrate the utility of ERACE.
We successfully detect the race points of 19 vulnerabilities, the timing relationships among
the race instructions, and the triggering types of 17 vulnerabilities, and assist in generating
exploits for 13 vulnerabilities. Based on these findings, we can safely conclude that ERACE
can effectively help security researchers simplify the analysis process of kernel race vulnera-
bilities, select appropriate exploitation methods, and use checkpoints to increase the success
rates of exploitations. Furthermore, the relaxed alias analysis also helps to identify more
race candidates, which may be beneficial for detecting race vulnerabilities.

In the future, we will extend the functionality of ERACE to adapt to more scenarios.
First, when identifying race points, we did not perform lockset-based analysis on the
alias variables, which may have led to false positives. ERACE uses dynamic execution
paths to filter out unexecuted race instructions to reduce false positives. By performing
lockset-based analysis, we can exclude race instructions with correct locking, further
reduce false alarms, and reduce manual analysis. For example, refs. [57–59] each applied
lockset-based analysis to detect data race vulnerabilities. Second, ERACE is only suitable
for single-variable race vulnerabilities. For multi-variable race vulnerabilities, the execution
order of the race instructions is so complicated that it was impossible for ERACE to identify
the exact timing relationships. Next, we will improve ERACE to enable it to analyze multi-
variable race vulnerabilities.
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