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Abstract: In this paper, a fault protection diagnostic scheme for a power distribution system is
proposed. The scheme comprises a wavelet packet decomposition (WPD) for signal processing and
analysis and a support vector machine (SMV) for fault classification and location. The scheme is tested
on a reduced Eskom 132 kV power line. The WPD is used to extract fault signatures of interest and the
SVM is subsequently used for fault classification and locating various fault conditions. Furthermore,
we investigate the effectiveness of the SVM scheme using different samples of the cycles for fault
classification and location. The results show that the fault classification and location on a distribution
line can be determined rapidly and efficiently irrespective of the fault impedance and incipient angle
with minimum estimation error. Lastly, the proposed scheme is tested on a grid-integrated system
with renewable energy sources.

Keywords: fault classification; fault location; power distribution system; support vector machines;
wavelet packet decomposition

1. Introduction

The importance of the electrical power system’s reliability and security can never
be over-emphasized. Electricity supply is at the center of the economic development of
any state. The traditional electricity topology is organized into different segments, which
include the generation, transmission, and distribution systems. The distribution segment is
the interlink between the electricity generation cycle and the load supply demand. Thus,
special care is required for distribution systems to secure a reliable supply of electricity to
the required consumers for a convenient duration. Power distribution networks are prone
to external faults as a result of the overhead technical convenient design philosophy. These
faults may result in serious catastrophic consequences, such as prolonged power outages,
critical loads interference and economic stagnation. For instance, in 2003, a major blackout
ensued in New York city, affecting the social being of the citizens in the area because of the
protection scheme failure [1]. Thus, it is imperative to develop protection schemes capable
of interrupting the potential impact of faults in power systems. Power system protection
can be defined as the art of designing a monitoring system that detects any disturbance
that may affect the supply of power to the required load demand.

Fault occurrences take place when there is an insulation failure between the phase
conductor and the ground and between the phase conductors. When the insulation fails,
the current magnitude at the point of the fault increases beyond the nominal current limit
rapidly. The fault types are classified as (a) single line-to-ground (SLG), (b) line-to-line (LL),
(c) double line-to-ground (LLG), and (d) triple line fault (LLL) [2]. In modern power
distribution protection systems, intelligent electronic devices (IEDs) are utilized to monitor
any disturbances that may occur in the system. IEDs mostly use discrete Fourier transforms
(DFT) for signal interpretation. However, the main drawback of DFTs for power system
applications is the time resolution due to a high-frequency resolution being required [3].

In recent past years, many researchers have investigated fault classification and esti-
mation schemes for power distribution systems. The design of these schemes follows the
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architecture of (i) signal measurement, (ii) signal decomposition and analysis, (iii), feature
extraction and selection, (iv) fault classification, and (v) fault location. A hybrid protec-
tion scheme based on wavelet transform (WT) and probabilistic neural network (PNN)
was proposed for fault classification in a power system [4]. The scheme utilized the WT
technique for signal processing and feature extraction. The extracted features from WT
are fed into the PNN algorithm for fault classification. The studies in [5,6] proposed pro-
tection schemes based on the combination of WT and fuzzy logic (FL). In these studies,
WT was employed for signal decomposition, and FL was used for fault classification. In
these schemes, a simple computation process is used; however, the classification error
reported is largely due to inconsistent simulation conditions. In [7], a technique based
on WT for fault detection in a transmission line was proposed. The techniques used
Daubechies 4 (db4) mother wavelet for signal tracking and analysis. In [8], a technique
based on discrete wavelet transform (DWT), an artificial neural network (ANN), and an
extreme learning machine (ELM) for distribution fault detection were proposed. The
proposed technique used DWT for signal processing and feature extraction, the ANN
algorithm was used to classify different types of faults, and ELM was used for fault loca-
tion. The scheme produced good results with minimal time delay. Guo et al. proposed
a deep learning fault detection technique based on the Hilbert–Huang transform (HHT)
and a convolutional neural network (CNN) [9]. The technique uses HHT to extract energy
features from the fault signal, and CNN is employed for fault classification. An adaptive
protection scheme based on ANN and WT for fault detection was proposed in [10]. The
scheme produced good results; however, fault location was not considered. In [11], a
technique based on stationary wavelet transform (SWT) and support vector machine (SVM)
was proposed. The technique used SWT for signal decomposition and feature extraction,
while the SVM scheme was used for fault classification and detection.

Fault location is another important aspect to consider when designing a protection
scheme. Fault location schemes give an indication of where the fault has occurred along the
power distribution line, resulting in a much quicker restoration time. In [12], a technique
based on ANN and a deterministic approach (DA) to locate the fault in a distribution
line is proposed. However, it is reported in [12] that the estimation fault error is high.
Fault location schemes were proposed in [13,14]. These schemes use the ANN technique
to estimate the fault position and WT to extract statistical features to train and test the
ANN location scheme. In [15], the authors used DWT and wavelet fuzzy neural network
(WFNN) to estimate the fault position. DWT is used to extract statistical features from
the fault signal, and WFNN is used to determine the fault location. An intelligent fault
location scheme based on wavelet packet transform (WPT) and back propagation neural
network (BPNN) techniques was proposed [16]. The scheme in [16] used WPT as a feature
extraction algorithm and BPNN as a fault estimator. A fault location scheme based on
determinant function and support vector regression (SVR) is discussed in [17]. The scheme
in [17] considered the measurements of both current and voltage at the terminal source.
Furthermore, a filtering segment of the noise and DC offset is used in [17] to improve the
scheme’s efficiency. In [18], a hybrid protection scheme for fault location in a distribution
radial network using WT and SVR is proposed. The scheme in [18] uses DWT for feature
extraction and SVR to estimate the location of the fault. Although several schemes have
been proposed to determine an optimal solution to the fault diagnostic problem. The
limitations of these schemes cannot be ignored. The limitations range from signal analysis,
parameter selection, and the time taken to respond to the fault. In our study, we propose a
more reliable signal analysis tool. We further use optimization techniques to determine the
parameters of the classifier to enhance the classification accuracy. Unlike other proposed
schemes, our scheme uses half of a cycle of the post-fault signal to classify and estimate the
fault position, thus improving the processing time.

This paper proposes two hybrid methodologies for fault classification and locating in
a distribution power line. The proposed method focuses on the analysis of a single cycle of
the current signal, which is extracted from the sending end terminals of the distribution
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power line under consideration for fault classification and locating. Subsequently, the
current samples are processed using the wavelet packet transform, and statistical features
are extracted from them. Unlike other schemes discussed that use one or more cycles, our
scheme uses half a cycle of the post-fault signal. The training data are generated through
simulation, and conditions such as fault impedances, fault incipient angles, and fault
distances are considered. The statistically selected features are then used to train and test
the SVM classifier and SVR locator. The optimal performance of the SVM and SVR schemes
is improved by using the particle swarm optimization technique to determine the optimal
parameters. To minimize the complexity of the scheme, four support vector classifiers (SVC)
are used to detect the fault in the corresponding phases and the ground. The sampling
period is taken to be 12.5 kHz for the whole process. The simulation results depict that
the proposed scheme can classify and locate power systems faults with high accuracy and
minimal estimation error. The remainder of the paper is organized as follows: In Section 2,
the wavelet and feature extraction techniques are discussed. Section 3 discusses the support
vector machines for fault classification and locating. In Section 4, the proposed SVC and
SVR fault classification and regression techniques are discussed. Section 5 discusses the
power system case study. In Section 6, the results are discussed. Section 7 reports the fault
classification and location in a grid-integrated system with renewable energy sources, and
in Section 8, a conclusion is drawn.

2. Wavelet Transforms and Feature Extraction

Signal processing and tracking form an integral part of the whole protection value
chain. The DWT and WPD have emerged as powerful signal-processing tools. These
tools have been used numerously in power systems to analyze signals of interest [19]. The
DWT and WPD are orthogonal wavelets where a signal is passed through numerous filters.
Considering the signal (S), if DWT is employed, the signal is passed through the low- and
high-pass filters simultaneously. The output of the high-pass filter (HPF) and low-pass filter
(LPF) correspond to the detail and approximation coefficients, respectively, as depicted in
Figure 1. The figure indicates that the detail coefficient information is lost at every level of
decomposition. For instance, if there are l levels of decompositions, there would be (l + 1)
possible ways to decompose the signal.
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However, unlike DWT, in the case of WPD, the signal is passed through multiple
filters on both approximation and detail coefficients. Considering the signal (S), if WPD
is employed, the signal is passed through the low- and high-pass filters simultaneously,
as depicted in Figure 2. Thereafter, the approximation and detail coefficients are further
decomposed to level k. The approximation and detail coefficients are further decomposed
simultaneously at every level, resulting in more information, and a high-frequency resolu-
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tion compared to the DWT technique [20]. The low-pass filter f (x) and the high-pass filter
h(x) are mathematically expressed as:

W2n(x) =
√

2
2N−1

∑
k=0

f (x)Wn(2x− k) (1)

W2n+1(x) =
√

2
2N−1

∑
k=0

g(x)Wn(2x− k) (2)

where n is the number of decomposition coefficients, W0 = Φ(x) is the scaling factor, and
the wavelet function is given by W1 = ψ(x). Feature extraction is a mathematical technique
used to transform a large data spectrum into a small data spectrum without losing critical
information. In power system applications, feature extraction is mostly used to improve
computation processing time. In the present work, we extract statistical features from the
fault signal to improve the protection scheme efficiency. The features are extracted at each
level of decomposition, and a feature matrix is then developed. The statistical features
extracted from the fault signal are defined mathematically as:
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2.1. Standard Deviation and Mean Value

The standard deviation (σ) of the signal is a measure of how the signal deviates from
its own mean value and is mathematically expressed as:

σ(t1, t2) =

√(∫ t2

t1

(x(t)− x)dt
)

(3)

where (t1, t2) denotes the time limit of signal x(t), and x is the mean average and is
mathematically expressed as:

x =
1

t2 − t1

∫ t2

t1

x(t) dt (4)

Under no-fault conditions, σ = 1, and under fault conditions the value deviates from
one. The mean (x) value of the signal is the average value of the signal and is equal to zero
under normal conditions; the (x) value is not equal to zero under fault conditions.

2.2. Energy

The energy (E) of signal x(t) is mathematically expressed as:

E(t1, t2) =
∫ t2

t1

(|x(t)|)2 dt (5)
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The energy of the signal under fault conditions is greater than the energy of the signal
under normal power system conditions.

2.3. Kurtosis

The kurtosis (K) of a signal is the measure of the signal’s uniformity. The kurtosis (K)
of the signal is expressed mathematically as:

K(t1, t2) =
∫ t2

t1

(
x(t)− x

σ

)4

(6)

Under normal conditions, K = 3, and K > 3 under fault conditions.

2.4. Skewness

The skewness (S) of a signal is the measure of the signal’s asymmetry relative to the
mean average of the signal. The skeweness (S) of a signal is mathematically defined as:

S(t1, t2) =

∫ t2
t1
(x(t)− x)3

σ3 (7)

Under normal conditions S = 0, and under fault conditions S 6= 0. Ultimately, these
features are formulated in a matrix and the feature matrix FS is given by:

FS =



σ
...
...
...
...

σn

x
...
...
...
...

xn

E
...
...
...
...

En

K
...
...
...
...

Kn

S
...
...
...
...

Sn


(8)

3. Support Vector Machines for Fault Classification and Location

In statistical theory, support vector machines (SVMs) were initially established as
(SVC) to solve classification and pattern recognition problems. When employing SVMs, the
input datasets are mapped into a high dimensional space to establish the hyperplane. The
hyperplane is defined as a separating margin line between two different classes of data [21].
The hyperplane is determined by solving the quadratic programming optimization problem
given by:

min
1
2
|w|2 + C

 l

∑
i=1

ζi

 (9)

subject to
y1(w·xi + b) ≥ 1− ζi, ζi ≥ ∀i

where xi denotes the ith term of the class data, C is the pre-determined constant, ζi is
the loss function, and yi is the classification output, which is given by [+1,−1]. The
optimization problem in (9) can be solved by using the dual form expressed as:

maxLD = ∑
i

αi −
1
2∑

i,j

αiαjyiyj(xT
i xj) (10)

subject to 0 ≤ αi ≤ C ∀i, ∑i yi.
In most practical cases, the data are not displaced linearly and thus cannot be separated

using a linear hyperplane. For such cases, kernel functions are used to determine an optimal
hyperplane. The commonly used kernel functions are quadratic, polynomial, radial bias
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function (RBF), and sigmoid [22]. The application of SVMs can be extended to solve
regression problems. In the present work, we used four (4) SVCs to classify different faults
on different phases and on the ground. The classification training matrix of the SVCs is
depicted in Table 1. In Table 1, SVCA, SVCB, SVCC, and SVCG correspond to classifying the
fault in phases A, B, C, and the ground, respectively. Furthermore, the parameters of the
SVC classifiers are optimized by using the particle swarm optimization (PSO) technique.
The fitness f of the PSO technique is determined by calculating the mean square error
(MSE) value, expressed as:

f =

√√√√ 1
N

N

∑
k=1

[yΛ(k)− y(k)]2 (11)

where y(k) denotes the discrete signal, yΛ(k) is the forecasted SVC output, and the number
of data samples is denoted by N. The optimal SVC values are selected using the PSO
technique during the training procedure. The architecture design for selecting optimal SVM
parameters for classification is depicted in Figure 3. The process begins with establishing
the training data using the fault current magnitude. Thereafter, the data are processed
to determine the PSO parameters. Subsequently, the data are used to train the SVM for
classification and regression. The evaluation of fitness is determined by using the (MSE)
technique. Lastly, a decision is determined, if the best parameters are not determined, the
data are reprocessed, otherwise the parameters are used to implement the SVM technique.
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Table 1. SVC training matrix accuracy.

Fault Type SVCA SVCB SVCC SVCG Accuracy (%)

LAG +1 −1 −1 +1 100
LBG −1 +1 −1 +1 100
LCG −1 −1 +1 +1 100
LALB +1 +1 −1 −1 100
LALC +1 −1 +1 −1 100
LBLC −1 +1 +1 −1 100

LALBG +1 +1 −1 +1 100
LALCG +1 −1 +1 +1 100
LBLCG −1 +1 +1 +1 100

LALBLC +1 +1 +1 −1 100

In the present work, we use support vector regression (SVR) to estimate the fault
position along the distribution power line. The SVR problem can be solved by determining
the quadratic optimization problem and introducing a set of dual variables αi, α∗i and there-
after constructing the Lagrange function. The optimal mapping into the high-dimensional
space is achieved by computing the dot product using the kernel function. Therefore, the
mathematical formulation is expressed as in (11):

max W(α, α∗) =
1
2

l

∑
i,j=1

(αi − α∗i )
(

αj − α∗j

)
K
(
Xi, Xj

)
+

l

∑
i,j=1

(α∗i − αi)yi −
1

2C

l

∑
i=1

α2
i − α∗2i (12)

where K
(
Xi, Xj

)
denotes the kernel function. In the present work, we choose the RBF function.

4. Proposed Fault Classification and Location

In this section, the proposed fault classification and detection scheme is discussed.
The fault classification scheme is depicted in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19 
 

Table 1. SVC training matrix accuracy. 

Fault Type SVCA SVCB SVCC SVCG Accuracy (%) 
LAG +1 −1 −1 +1 100 
LBG −1 +1 −1 +1 100 
LCG −1 −1 +1 +1 100 
LALB +1 +1 −1 −1 100 
LALC +1 −1 +1 −1 100 
LBLC −1 +1 +1 −1 100 

LALBG +1 +1 −1 +1 100 
LALCG +1 −1 +1 +1 100 
LBLCG −1 +1 +1 +1 100 
LALBLC +1 +1 +1 −1 100 

In the present work, we use support vector regression (SVR) to estimate the fault 
position along the distribution power line. The SVR problem can be solved by determin-
ing the quadratic optimization problem and introducing a set of dual variables 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗ and 
thereafter constructing the Lagrange function. The optimal mapping into the high-dimen-
sional space is achieved by computing the dot product using the kernel function. There-
fore, the mathematical formulation is expressed as in (11): 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊(𝛼𝛼,𝛼𝛼∗) =
1
2
� (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗�
𝑙𝑙

𝑖𝑖,𝑗𝑗=1

𝐾𝐾�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� + � (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)𝑦𝑦𝑖𝑖 −
1

2𝐶𝐶

𝑙𝑙

𝑖𝑖,𝑗𝑗=1

�𝛼𝛼𝑖𝑖2
𝑙𝑙

𝑖𝑖=1

− 𝛼𝛼𝑖𝑖∗2 (12) 

where 𝐾𝐾�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� denotes the kernel function. In the present work, we choose the RBF func-
tion. 

4. Proposed Fault Classification and Location 
In this section, the proposed fault classification and detection scheme is discussed. 

The fault classification scheme is depicted in Figure 4. 

 
Figure 4. Fault classification taxonomy. 

The process of fault classification begins with the post-fault measurement at the 
source terminal. Thereafter, the measured current is passed through numerous filters us-
ing the WPD tool. Subsequently, statistical features are extracted from the decomposed 

Figure 4. Fault classification taxonomy.

The process of fault classification begins with the post-fault measurement at the source
terminal. Thereafter, the measured current is passed through numerous filters using the
WPD tool. Subsequently, statistical features are extracted from the decomposed signal at
level 4. The total features are 80 (16 WPD coefficients ×5 statistical features). The statistical
features are used to formulate a future matrix. The feature matrix is used to train the SVM
for classification. The SVM optimal parameters are obtained using the PSO. To reduce the
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computational complexity, four (4) SVCs are used to classify the faults corresponding to
each phase and the ground. In most cases, the line-to-line (LL) fault is misclassified as the
line-to-line-to-ground (LLG) fault. In the present work, the misclassification problem is
solved by installing the ground SVC at the generating source, as depicted in Figure 5.
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The fault location scheme begins with the fault current measurements at the terminal
source. The measured current is passed through several filters and decomposed to level 4
using WPD. Thereafter, the extracted features are used to test and train the SVR locator
to estimate the position of the fault. The performance of the fault estimation scheme is
determined by calculating the mean square error (MSE) and the absolute error (AE). The
absolute error is expressed mathematically as:

AE = |AFD − EFP| (13)

where AFP is the actual fault position, and EFP is the estimated fault position. A high AE
means that the scheme is out of range and produces inaccurate results.

5. Power System Simulation under Study

To validate our scheme, we used an Eskom power distribution line as a case study. Es-
kom is a South African power utility responsible for supplying more than 95% of electricity
for industrial and household applications. A reduced power system segment of the Eskom
distribution line is shown in Figure 6. The network is modeled as a two-substation system.
The voltage at the sending end and receiving end of the line is rated at 132 kV voltage
supply. The distribution network is modeled as a pi-type system with a total length of
155 km. The modeling of the network is subdivided into small sections to improve model
design and efficiency. The substation parameters are depicted in Table 2.

Table 2. Substation parameters.

Source Apparent Power (MVA) Fault Level (kA)

Substation A 20 55.5
Substation B 15 42.3
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The parameter value of the resistor R (Ω), inductor L (H), and capacitor C(F) of the
distribution line per kilometer are given in Equations (14)–(16), respectively.

R =

0.15 0.12 0.12
0.12 0.15 0.12
0.12 0.12 0.15

 Ω/km (14)

L =

1.12e−3 1.90e−3 6.30e−3

1.90e−3 1.12e−3 1.90e−3

6.30e−3 1.90e−3 1.12e−3

 H/km (15)

C =

 1.10e−8 −2.85e−9 −6.40e−10

−2.85e−9 1.10e−8 −2.85e−9

−6.40e−10 −2.85e−9 1.10e−8

 F/km (16)

The power distribution system used in the present work for analysis is modeled in the
MATLAB/Simulink platform. The power system could have been modeled in any other
power system platform, such as (DigSilent, PLSCAD, and ATPDraw) without any signifi-
cant difference in the results. Eleven (11) types of faults are initiated at different locations
of the distribution line to develop a fault data matrix. The proposed fault classification and
location schemes use half a cycle of the post-fault signal. The (LG), (LL), (LLG), and (LLL)
fault signals are shown in Figure 7. It is observed from Figure 7 that the current magnitude
increases drastically when a fault occurs.
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6. Results and Discussion

In this section, we discuss the results of our proposed fault classification and location
schemes. In the present work, WPD is used to analyze and decompose the fault current
signal to improve the scheme’s efficiency. The accuracy and performance of the WPD
depend on the type of the mother wavelet. In [23], it was reported that the Daubechies (db.)
mother wavelet performs better for transient signal analysis. In Table 3, different mother
wavelets are tested to measure the classification and location schemes. It is observed in
Table 4 that db4 shows high classification accuracy (99.5%) and a mean error of (0.10%),
which is better compared to the other mother wavelets. The training and testing datasets
used in the study are shown in Table 4. In Table 5, the SVM parameters obtained using the
PSO are shown. In this paper, the indices used to determine the classification performance
are the true positive (TP), false positive (FP), precision, recall, and the receiver operating
characteristics (ROC). The TP and FP indicate the probability of the positive and negative
rate outputs, the precision indicates the fraction of pertinent instances among recovered
instances, the recall is the fraction of instances that were recovered, and the ROC illustrates
the diagnostic ability of the classifier when the threshold is varied.

Table 3. Mother wavelet selection criterion.

Mother Wavelet Fault Classification Fault Location

Fault Classification
Accuracy (%) Mean Error (%) Mean Square

Error (%)

db1 96.7 0.51 1.02
db2 94.8 0.33 0.52
db3 91.3 0.41 0.35
db4 99.5 0.10 0.21
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Table 4. Training and testing data.

Data Matrix Sets Fault Impedance (Ω) Fault Angle (Φ)

Training data 1.5, 10, 15, 75, 100, 150, 220, 260 10◦ 15◦, 20◦, 40◦, 85◦

Test data 1.0 30, 45, 110, 165, 180, 210, 300 30◦, 80◦, 110◦, 140◦, 190◦

Table 5. Feature selection of SVM using PSO.

SVM Fault Classification Fault Location

Kernel function Radial bias function Radial bias function
Gamma (γ) 0.42 0.42
Cost (c) 11.30 13.80
Nu (nu) 0.55 0.55

The SVM performance results using different sample cycle delays are presented in
Tables 6–8. Tables 6–8 show that the average precision classification accuracy is 99.5%
when half a sample cycle is used compared to 95.4% and 96.5% when using one and two
cycles post-fault. Thus, in our scheme, the half-cycle samples are used. Furthermore, the
classification accuracy of the SVM in each phase is shown in Table 9. The classification
accuracy is determined by calculating the ratio between the correctly classified instances
and the total instances tested.

Table 6. SVM classification with half a cycle post-fault.

Fault Type TP FP Precision Recall F-Measure ROC

AG 0.991 0.000 1.000 1.000 0.991 0.970
BG 0.920 0.000 0.991 0.990 0.990 0.966
CG 0.933 0.000 0.990 0.980 0.995 0.985
AB 0.985 0.000 0.998 0.985 0.977 0.990
AC 0.968 0.003 0.990 0.930 0.988 0.900
BC 0.987 0.000 1.000 0.975 0.970 0.988
ABG 0.980 0.014 0.990 0.957 0.966 0.955
ACG 0.981 0.010 1.000 0.911 0.960 0.975
BCG 0.971 0.035 0.999 0.980 0.991 0.961
ABC 0.981 0.043 0.990 0.990 0.955 0.992
Avg 0.969 0.011 0.995 0.970 0.978 0.968

Table 7. SVM classification with single cycle post-fault.

Fault Type TP FP Precision Recall F-Measure ROC

AG 0.902 0.000 0.915 0.990 0.905 0.955
BG 0.915 0.000 0.943 0.955 0.922 0.950
CG 0.945 0.000 0.955 0.965 0.959 0.980
AB 0.955 0.000 0.940 0.952 0.960 0.970
AC 0.915 0.003 0.933 0.911 0.977 0.911
BC 0.920 0.010 0.990 0.933 0.950 0.916
ABG 0.991 0.000 0.982 0.960 0.960 0.958
ACG 0.900 0.010 0.922 0.915 0.955 0.988
BCG 0.980 0.050 0.985 0.930 0.965 0.966
ABC 0.975 0.045 0.975 0.945 0.977 0.911
Avg 0.941 0.012 0.954 0.946 0.953 0.951

Moreover, the number of samples is used to test the SVR scheme for the fault location.
The results of the fault estimation distance using different fault impedance, fault angle
incipient, and fault locations are depicted in Tables 10 and 11. The results in Tables 10 and 11
show that the SVR scheme is able to estimate the fault location with a minimum error
irrespective of the fault angle and impedance. Moreover, Tables 12 and 13 depict the
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summary of the absolute error between the actual fault position and the estimated fault
position. Most of the fault instances are accurately located with a minimum margin of error.

Table 8. SVM classification with two cycles post-fault.

Class TP FP Precision Recall F-Measure ROC

AG 0.991 0.000 0.960 1.000 0.991 0.970
BG 0.920 0.000 0.991 0.990 0.990 0.966
CG 0.933 0.000 0.990 0.980 0.995 0.985
AB 0.985 0.000 0.961 0.985 0.977 0.990
AC 0.968 0.003 0.950 0.930 0.988 0.900
BC 0.987 0.000 0.910 0.975 0.970 0.988
ABG 0.980 0.014 0.960 0.957 0.966 0.955
ACG 0.981 0.010 0.988 0.911 0.960 0.975
BCG 0.971 0.035 0.991 0.980 0.991 0.961
ABC 0.981 0.043 0.950 0.990 0.955 0.992
Avg 0.969 0.011 0.965 0.970 0.978 0.968

Table 9. Fault classification accuracy on different phases.

Fault Type No. of Instances No. of Instances
Correctly Classified

No. of Instances
Incorrectly Classified Accuracy (%)

LG 25,400 25,400 0.000 100
LL 25,400 25,250 150.0 99.4

LLG 25,400 25,085 315.0 98.8
LLL 25,400 25,357 43.00 99.8
Total 101,600 101,092 508.0 99.5

Table 10. Fault estimation at 45 and 90 km with a 10 Ω fault impedance.

Fault Type 45 km 90 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 45.0 44.9 45.0 89.9 90.0 90.0
LL 45.0 45.0 45.0 90.0 90.0 90.0
LLG 44.9 45.0 44.9 90.0 90.0 90.0
LLL 45.0 45.0 43.9 90.0 90.0 90.0

Table 11. Fault estimation at 110 and 90 km with a 20 Ω fault impedance.

Fault Type 110 km 140 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 110.0 110.0 110.0 139.9 135.0 140.0
LL 109.8 109.0 110.0 140.0 138.0 139.0
LLG 109.5 110.0 109.9 140.0 140.0 140.0
LLL 110.0 110.0 110.0 140.0 140.0 140.0

The estimation results of the training data samples for a single phase to ground fault
are depicted in Figure 8. From Figure 8, it can be seen that the SVR scheme has a good
training outcome. To verify the unknown fault distance, the single phase to the ground
instance is used, and the results are depicted in Figure 9. It can be noted from Figure 9 that
the scheme is able to estimate the fault position with a minimum error of 0.0010.
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Table 12. AE at 45 and 90 km with a 10 Ω fault impedance.

Fault Type 45 km 90 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 0.00 0.01 00.0 0.10 0.00 0.00
LL 0.00 0.00 0.00 0.00 0.00 0.00
LLG 1.00 0.00 00.1 0.00 0.00 0.00
LLL 0.00 0.00 0.00 00.0 0.00 0.00

Table 13. AE at 110 and 140 km with a 20 Ω fault impedance.

Fault Type 110 km 140 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 0.00 0.00 0.00 0.10 5.00 0.00
LL 0.20 1.00 0.00 0.00 2.00 1.00
LLG 0.50 0.00 0.90 0.00 0.00 0.00
LLL 0.00 0.00 0.00 0.00 0.00 0.00

7. Fault Classification and Location with Renewable Energy Distributed Generation
Integration

The electricity trajectory has evolved over the years with the more decentralized
energy generation sources. In most cases, renewable energy sources (RES) have been used
to enhance the electricity supply and security. However, there are technical dynamics that
are introduced by these technologies. In the present work, we investigate the validity of
the proposed fault classification and detection on a hybrid integrated system with RES.
The wind energy (WE) and photovoltaic (PV) source parameters are given in Table 14. The
integrated network used to validate our proposed scheme is depicted in Figure 10.

Table 14. RES parameters.

Parameter WE Source PV Source

Voltage (kV) 132 132
Fault level (kA) 1.34 0.91

Power factor 0.9 lag 1.00
Power (kW) 15.50 6.33
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The performance of SVM using the half, single, and two post-fault cycles is presented
in Tables 15–17. The results presented in Tables 15–17 show that the precision accuracy of
the SVM scheme using half a cycle’s data post-fault is 97.7%, compared to 92.3% and 91.5%
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when using a single and two cycles of the post-fault data. In Table 18, the fault estimation
results are presented.

Table 15. SVM classification from half a cycle post-fault with PV and WE sources.

Fault Type TP FP Precision Recall F-Measure ROC

AG 0.988 0.000 0.990 0.905 0.982 0.910
BG 0.900 0.000 0.981 0.955 0.922 0.955
CG 0.921 0.030 0.970 0.951 0.991 0.958
AB 0.980 0.045 0.968 0.958 0.955 0.909
AC 0.952 0.033 0.970 0.903 0.951 0.922
BC 0.911 0.022 1.000 0.957 0.966 0.975
ABG 0.899 0.055 0.960 0.975 0.952 0.966
ACG 0.855 0.099 1.000 0.971 0.922 0.952
BCG 0.950 0.011 0.955 0.908 0.981 0.916
ABC 0.991 0.044 0.980 0.909 0.931 0.929
Avg 0.935 0.034 0.977 0.939 0.955 0.939

Table 16. SVM classification with a single cycle post-fault with PV and WE sources.

Fault Type TP FP Precision Recall F-Measure ROC

AG 0.900 0.000 0.910 0.900 0.922 0.950
BG 0.910 0.000 0.912 0.965 0.955 0.944
CG 0.911 0.000 0.922 0.950 0.960 0.923
AB 0.920 0.000 0.904 0.900 0.925 0.962
AC 0.900 0.000 0.905 0.920 0.930 0.901
BC 0.902 0.000 0.909 0.925 0.922 0.921
ABG 0.919 0.000 0.920 0.977 0.920 0.922
ACG 0.910 0.030 0.930 0.922 0.922 0.908
BCG 0.908 0.080 0.955 0.940 0.925 0.922
ABC 0.957 0.010 0.966 0.930 0.940 0.933
Avg 0.914 0.012 0.923 0.933 0.923 0.929

Table 17. SVM classification with two cycles post-fault with PV and WE sources.

Class TP FP Precision Recall F-Measure ROC

AG 0.919 0.000 0.906 0.902 0.981 0.930
BG 0.902 0.000 0.919 0.920 0.960 0.926
CG 0.911 0.000 0.909 0.908 0.955 0.955
AB 0.958 0.000 0.916 0.922 0.927 0.940
AC 0.911 0.003 0.905 0.903 0.948 0.910
BC 0.925 0.000 0.900 0.943 0.920 0.928
ABG 0.908 0.012 0.906 0.951 0.916 0.955
ACG 0.922 0.000 0.944 0.922 0.920 0.945
BCG 0.917 0.025 0.920 0.908 0.911 0.931
ABC 0.925 0.012 0.925 0.909 0.945 0.952
Avg 0.920 0.008 0.915 0.919 0.938 0.937

The fault estimation results are presented in Table 19. The scheme performed well
with a minimum error, as depicted in Table 20, considering the dynamic change caused by
the PV and WE technologies.

In Table 21, we compare our scheme with some of the proposed schemes discussed
in the literature. Based on the summary provided, our scheme has high accuracy and
minimum estimation error compared to other schemes.
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Table 18. Fault classification accuracy in different phases with PV and WE sources.

Fault Type No. of Instances No. of Instances
Correctly Classified

No. of Instances
Incorrectly Classified Accuracy (%)

LG 25,400 25,400 0.000 100
LL 25,400 24,150 1250 95.1

LLG 25,400 24,326 1074 95.6
LLL 25,400 25,387 13.00 99.9
Total 101,600 99,263 2337 97.7

Table 19. Fault estimation at 45 and 90 km with a 10 Ω fault impedance with PV and WE sources.

Fault Type 45 km 90 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 44.9 43.6 45.0 90.0 89.9 88.8
LL 43.8 44.0 44.2 86.0 88.6 88.9
LLG 44.6 43.8 41.3 88.3 87.5 89.0
LLL 42.7 44.9 42.6 86.2 88.3 86.3

Table 20. AE at 45 and 90 km with a 10 Ω fault impedance with PV and WE sources.

Fault Type 45 km 90 km

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LG 0.01 1.40 00.0 0.00 0.10 1.20
LL 1.20 1.00 0.80 4.00 1.40 1.10
LLG 0.40 1.20 3.70 1.70 2.50 1.00
LLL 2.30 0.10 2.40 3.80 1.70 3.70

Table 21. Scheme comparison.

Scheme Classification (%) Location (%)

Method [8] 91.4 <0.5
Method [14] - <0.5
Method [23] 92.0 -

Proposed method 99.5 <0.2

8. Conclusions

In this paper, a fault classification and estimation technique in a distribution power
system is proposed. The proposed scheme uses half a cycle from the post-fault signal to
classify and locate the fault. The scheme employs the WPT signal processing technique
to analyze and track signals and regions of interest. Statistical features are subsequently
extracted from the decomposed signal using WPT. Afterward, a feature matrix is formulated
and used as the input to train and test the SVM for fault classification and estimation
purposes. The scheme was tested on a 132 kV distribution network. The results obtained
show that the classification accuracy of the proposed scheme is 99.5% with a minimum
error of estimation. Further, the scheme was able to correctly classify and locate different
faults considering high impedances. Furthermore, we investigate the validity of our scheme
on a grid-integrated system with the PV and WE technologies. The scheme produced good
classification results with an accuracy of 97.7% and a minimum error of estimation. Future
studies will consider fault detection with larger-scale penetration of renewable energy
technologies. Further, future studies will entail scheme validation using practical data.
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