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Abstract: Face occlusion is still a key issue in the study of face recognition. Continuous occlusion
affects the overall features and contour structure of a face, which brings significant challenges to
face recognition. In previous studies, although the Representation-Based Classification Method
(RBCM) can better capture the differences in different categories of faces and accurately identify
human face images with changes in light and facial expressions, it is easily affected by continuous
occlusion. For face recognition, there is a situation where face error recognition occurs. The RBCM
method frequently learns to cover the characteristics of face recognition and then handle face error
recognition. Therefore, the elimination of occlusion information from the image is necessary to
improve the robustness of such models. The Block Permutation Linear Regression Classification
(BPLRC) method proposed in this paper includes image block permutation and Linear Regression
Classification (LRC). The LRC algorithm belongs to the category of nearest subspace classification
and uses the Euclidean distance as a metric to classify images. The LRC algorithm is based on one
of the classification methods that is susceptible to outliers. Therefore, block permutation was used
with the aim of establishing an image set that does not contain much occlusion information and
constructing a robust linear regression model. The BPLRC method first modulates all the images and
then lists the schemes that arrange all segments, enters the image features of various schemes into
linear models, and classifies the result according to the minimum residual of the person’s face image
and reconstruction image. Compared to several state-of-the-art algorithms, the proposed method
effectively solves the continuous occlusion problem for the Extended Yale B, ORL, and AR datasets.
The proposed method recognizes the AR data concentration scarf to cover the accuracy of human
face images to 93.67%. The dataset recognition speed is 0.094 s/piece. The arrangement method can
be combined not only with the LRC algorithm, but also other algorithms with weak robustness. Due
to the increase in the number of blocks and the increase in the calculation index of block arrangement
methods, it is necessary to explore reasonable iteration methods in the future, quickly find the optimal
or sub-best arrangement scheme, and reduce the calculation of the proposed method.

Keywords: face recognition; continuous occlusion; block permutation; linear regression classification

1. Introduction

With the emergence of the epidemic, face recognition technology has been rapidly
implemented in various fields of people’s daily life, such as in recognition of automatic
passage on campuses, temperature measurement (all-in-one machines), and the use of
face recognition in attendance. Traditional face recognition technology includes two main
parts: feature extraction and classification. Gabor [1], the Histogram of Oriented Gradient
(HOG) [2], and the Local Binary Pattern (LBP) [3] are often used to describe image features.
Principal Component Analysis (PCA) [4,5] is based on the singular value decomposition
(SVD) [6] algorithm. It performs eigen decomposition on the covariance matrix to obtain
the principal components of the data and to achieve data dimensional reduction and
extraction. The purpose of important features of PCA is also known as eigenfaces. The
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feature extraction method, combined with the corresponding classification rules, has been
used to solve initial face recognition problems. Common classifiers include the Nearest
Neighbor Classifier (NNC) [7], the Minimum Distance Classifier (MDC) [8], the K-nearest
Neighbor Classifier (KNNC) [9], and so on. Since traditional face recognition technology
may overlook some important facial information or cause the over-fitting of problems in the
feature extraction process, the Representation-Based Classification Method (RBCM) [10–13]
has attracted much attention in recent years. Due to the epidemic’s impact, people must
wear masks while going out. The traditional face recognition method cannot effectively
identify obscured faces, and the RBCM method is easily affected by abnormal features. In
real life, face images often have problems such as illumination, facial expression changes,
and facial occlusion. Among these problems, facial occlusion is considered the most
challenging. From the literature [10–16], it can be seen that the RBCM method can effectively
identify face images with changes in light and changes in facial expressions. Still, it is not
easy to identify face images with occlusion. Therefore, the RBCM method is improved for
facial occlusion to solve the three problems: light changes, facial expression changes, and
facial occlusion.

To solve the problem of abnormal features in the RBCM, many research groups
have proposed related robust algorithms, among which the Sparse Representation-based
Classification (SRC) algorithm was among the first proposed [10,11]. The biggest feature
of this type of algorithm is its ability to linearly represent the test samples by building
a dictionary containing all the training samples. The relatively large time complexity of
the SRC algorithm in solving the L1 norm optimization problem has largely limited its
applications. However, Zhang et al. [14] proposed the Collaborative Representation-based
Classification (CRC) algorithm. The SRC and CRC algorithms both use training samples
from all categories to linearly represent test samples. However, the biggest difference
between them is that the CRC algorithm uses the less computationally intensive L2 norm
instead of the L1 norm, as used in the SRC algorithm, to solve the optimization problem.
Some scholars have proposed a Two-Phase Test Sample Sparse Representation (TPTSSR)
algorithm based on the CRC algorithm [15]. In the first stage of the algorithm, CRC was
used to select M training samples for the best representation of test samples. In the second
stage, the CRC algorithm was used again to identify the test samples, and the training
set was the M training samples determined in the previous stage. The training samples
selected in the first stage of TPTSSR cannot improve the accuracy of CRC for face image
recognition. Thus, Tang et al. [16] further improved the algorithm and proposed the
Random-filtering-based Sparse Representation (RFSR) algorithm. Liu et al. [17] improved
the distance metric of the SRC algorithm. According to the author’s experiments, using
cosine or Euler distance as the measure can expand the inter-sample and intra-class distance
simultaneously, and the multiple inter-class distance expansion was much higher than the
multiple intra-class distance expansion, which was conducive to improving the robustness
of the SRC algorithm. The various RBCM methods proposed in the literature [10–17]
constrained the model coefficients to float in a small range, reducing the negative impact
of face occlusion features on the model coefficients. Constraining the model coefficient
through the L1 and L2 norm cannot improve model identification performance. Only when
the model is constrained to learn as small a number of occlusion features as possible is
model performance made stable.

In addition to using all classes of training samples to represent test samples linearly,
representation-based classification methods can also use a single class of training samples
to represent the test samples. Linear Regression Classification (LRC) [18] uses a single
category of training samples to reconstruct the samples to be tested. LRC can be viewed as
a representation based on the L2 norm, which uses the classification rules of the nearest
subspace to classify face images. LRC finally selects the subspace with the smallest distance
by projecting the test image onto the subspace. For this, the decision method is based on the
distance metric, which is unsuitable for dealing with continuous severe occlusion problems.
The LRC method is similar to the SRC and CRC methods, but the LRC method does not
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restrict the representation coefficient. Therefore, if there are many abnormal variables in
the training or test sample, the LRC method can learn a lot of abnormal information. As
a result, the model classification fails. Therefore, some researchers, such as the authors
of [18], have adopted the method of modular [19] image representation, which has made
LRC more promising when trying to accurately identify face images with facial occlusions.
The modular LRC algorithm [18] first worked by segmenting a given occlusion image. The
“good or bad” image patch was then judged by the distance metric of the intermediate
decision, and the “best” image patch was selected. Finally, converting the block into
individual decisions was considered the final classification result. The main advantage of
this method is its equivalency when dynamically removing occluded partitions. However,
the biggest drawback of modular LRC is that it uses only specific blocks (with minimal
residuals), discarding blocks that contain other useful face information. At this point, how
to extract effective face characteristics and remove occlusion has become a question that
researchers [20,21] care about.

This paper proposes the Block Permutation Linear Repression Classification (BPLRC)
algorithm. The proposed method first modulates the image and then groups the schemes
that retain the same number of blocks. Next, their residuals are compared to determine
the permutation of the group and the group with the best recognition effect is finally
selected. Compared to the modular LRC algorithm, the proposed method retains more
useful face information and also achieves the purpose of removing invalid occlusion blocks.
Moreover, there is no need to judge the occlusion ratio to achieve the best recognition
effect. The algorithm improves the robustness of LRC to recognize the occluded image to a
certain extent.

The RBCM methods used in this article mainly include LRC, SRC, CRC, Euler Sparse
Representation-based Classification (ESRC [17]), Module LRC, and the BPLRC method
proposed in this article. These methods are the same as linear models, and the type of
linear representation is the difference. LRC uses a single class of travelers to reply to the
test samples. SRC, ESRC, and CRC methods use all-class training samples to indicate test
samples linearly. Among them, SRC and ESRC have differences in distance measurement.
The difference between the SRC and CRC algorithm is that SRC uses the L1 model to
restrain the sparse coefficient, and CRC uses the L2 model to restrain the sparse coefficient.
Module LRC selects the “most useful” block as a feature input of the LRC algorithm
through blocking. The difference from the LRC algorithm is that the Module LRC is used
to screen the effective face characteristics as much as possible during identification, and
the LRC algorithm simply uses all image features in identification. The BPLRC algorithm
proposed in this article is similar to Module LRC. All images are modularized, and the
identification of LRC algorithms characterizes effective face characteristics. The difference
between the BPLRC algorithm and the Module LRC algorithm is that the Module LRC only
retains one block, while the BPLRC method considers all the segmentation arrangement
schemes to retain as much information as possible. From a principle point of view, all
block arrangement schemes in BPLRC include the full-retained LRC and the Module LRC
method that only retains one block.

The rest of this article is organized as follows: Section 2 details the principles of the
LRC, SRC, CRC, and BPLRC algorithms, with a slight reference to ESRC and Module LRC.
Section 3 describes the decision principles and experimental results of the proposed method.
Section 4 discusses the contrast between BPLRC and other related algorithms in relation to
the other performance metrics of the model. Section 5 is the conclusion of this paper.

2. Materials and Methods

The LRC [18] method can effectively identify face images with illumination and
expression changes, but this method finds it challenging to identify occluded face images.
According to the literature [14,17,20,21], LRC finds it easier to identify face images with
illumination and expression changes than SRC, CRC, and ESRC algorithms in both linear
models. Nevertheless, its robustness is weaker than the SRC, CRC, and ESRC algorithms.
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The BPLRC algorithm proposed in this paper improves robustness based on the LRC
algorithm to effectively identify face images with light changes, expression changes, and
facial occlusion.

2.1. Related Works

Suppose that the training set samples are represented as X = [X1, X2, . . . , Xn]
T ∈ <n×d,

where n is the number of categories contained in the training set samples and d is the dimension of
any sample. Suppose the training sample of the i-th subspace is Xi = [xi1, xi2, . . . , xini ]

T ∈ <ni×d,
denoted as xi ∈ <d(i = 1, 2, . . . , n), with xij denoted as the j-th sample of the i-th class, ni denoted
as the number of the i-th class of samples, and the test sample denoted as y.

The Linear Regression Classification algorithm is based on the assumption of subspace,
and the data containing n categories are represented as n different subspace vectors, in
which the samples belonging to the i-th category are represented as Xi. The following is
the specific principle of the LRC [18] algorithm when classifying the test samples.

Assuming that the test sample y belongs to the i-th class, it can be approximately
represented as a linear combination of the training samples of the same category.

y = Xiβi, i = 1, 2, . . . , n, (1)

where βi is the representation coefficient of the i-th category of training samples.
Face recognition is expressed as a regression problem in the above formula, and the

representation coefficient is obtained through the pseudo-inverse matrix.

β̂i = (XT
i Xi)

−1
XT

i y, (2)

where y is the test sample vector.
The projection and projection surface of the test sample y in each subspace can be

expressed as:
ŷi = Xi β̂i, i = 1, 2, . . . , n, (3)

ŷi = Xi(XT
i Xi)

−1
XT

i y, (4)

ŷi = Piy, (5)

where β̂i is the predicted regression coefficient of the i-th category training sample, ŷi is the
linear model reconstruction vector, and P is the projection matrix.

The distance between the test sample vector and the projection of y on the i-th subspace
can be expressed as:

di(y) = ‖y− ŷi‖2, i = 1, 2, . . . , n. (6)

Selection of the category with the smallest Euclidean distance as the discrimination
result obtains:

identity(y) = argmin
i

di(y), i = 1, 2, . . . , n. (7)

2.2. Other Related Algorithms

Sparse Representation-based Classification (SRC) is based on linear regression through
the punishment of regression coefficients. The SRC [10,11] algorithm introduces the L1
norm to constrain the regression coefficients so that more zero values are included in the
regression coefficient, equivalent to using the Lasso regression model. The SRC algorithm
first encodes the test samples as a sparse linear combination of all the training samples. It
then makes the final decision by comparing which category has the smallest error.

The sparse coefficient of the SRC model can be equivalent according to the Lasso
regression model:

β̂ = argmin
β
‖y− Xβ‖2

2 + λ‖β‖1, (8)
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where X is all the training samples, y is the test sample, β is the regression coefficient of X,
and ‖·‖1 is the L1 norm.

After determining the sparse coefficient of the SRC algorithm, the SRC algorithm is
similar to the LRC algorithm, and the same equations as those of (3), (6), and (7) can use
the Euclidean distance as a measure to determine the category of the test sample.

Since there is no analytical solution to the Lasso problem, its computational complexity
is much greater than the classifier. Later, the L2 norm was introduced to restrict the
regression coefficient, that is, the classification method (Collaborative Representation-based
Classification, CRC).

The CRC [14] problem is equivalent to the ridge regression problem. It is similar to the
SRC algorithm in that it similarly encodes the test samples as a linear combination of all the
training samples. The CRC algorithm performs the L2 norm constraint on the regression
coefficient and its sparse coefficient:

β̂ = argmin
β
‖y− Xβ‖2

2 + λ‖β‖2
2, (9)

where X is all the training samples, β is the regression coefficient of X, λ is regularization
coefficient, and ‖·‖2 is the L2 norm.

The regression coefficients in Equation (9) have analytical solutions with the expression:

β̂ = (XTX + λI)
−1

XTy (10)

By combining Equations (3), (6), and (7), the residuals of the CRC algorithm and the
predicted test sample category can be expressed as:

di(y) =

∥∥y− Xi β̂i
∥∥

2∥∥β̂i
∥∥

2

, i = 1, 2, . . . , n. (11)

identity(y) = argmin
i

di(y), i = 1, 2, . . . , n, (12)

where β̂i is the coefficient of the i-th category of training samples.
The SRC and CRC algorithms improve the linear regression classifier by restricting the

L1 and L2 norm on the regression coefficient, respectively, which can somewhat suppress
the influence of noise on the linear model. Nevertheless, the CRC algorithm is more
computational than the SRC algorithm.

The Euler Sparse Representation-based Classification (ESRC [17]) algorithm is similar
to the SRC algorithm, which takes Euler distance as a measure and expands intra-class
and inter-class distance. The multiple of the inter-class distance will be greater than the
multiple of the in-class distance in some data, thus improving the robustness of the SRC
algorithm. The ESRC method involves an implementation process, and details of image
mapping to the complex space process can found in [17].

2.3. The Proposed Method

The workflow of the BPLRC method is shown in Figure 1 under the assumption
that the image is divided into 5 pieces. When the image only retains one block, the
principle of the BPLRC algorithm is equivalent to Module LRC; when the image retains all
blocks, the principle of the BPLRC algorithm is equivalent to LRC. The proposed method
contains Module LRC that is reserved with a full block and blocks that only retain one
block. Theoretically, its recognition effect will be better than LRC and Module LRC. BPLRC
aims to find the best facial features for classification. The proposed method first divides
all training images and a test image and divides the number of groups according to the
number of reserved blocks. As shown in the figure, the number of arrangements from the
first and fifth groups is 5, 10, 10, 5, and 1, respectively. The construction of a linear model
according to each scheme then determines the scheme with the minimum residual and
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obtains the identification result of the scheme. Finally, samples can be continually drawn
from the test concentration and the above work can be repeated.
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Assuming that the training samples contain some noise when the test samples have
the same noise, test samples can be linearly represented by the training samples. However,
if the training samples contain no noise and the test samples contain a lot of noise, the
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linear model will be invalid. Therefore, selecting the sample variables and filtering out
the variables with noise in the samples are necessary, which can then help train a more
robust linear regression model. The proposed method divides the variables into blocks and
performs permutation, combination, and reorganization. The best combination method
is then judged by Euclidean distance (residual value) to achieve the purpose of removing
continuous noise variables. BPLRC aims to find face characteristics that contain only a
small amount of noise or no noise. The following is the basic process of the BPLRC method:

Suppose the training samples on the i-th subspace are divided into T blocks such that
each sub-image can be represented as:

U(t)
i = [w(t)

i1 , w(t)
i2 , . . . . . . , w(t)

ipi
], i = 1, 2, . . . , n, (13)

where w(t)
ipi

is the grayscale value on the pi pixel of the t-th block image from the i-th class.
The number of groups of arrangement schemes is determined by the number of

divided blocks, and the block arrangement and combination of the i-th type of training
samples in the first group can be expressed as:

X(11)
i = [U(1)

i , O(2), O(3), O(4), . . . , O(T)]
T

...

X(1m1)
i = [O(1), O(2), . . . , U(m1)

i , . . . , O(T)]
T

, m1 = 1, 2, . . . , C1
T , (14)

where O is a zero matrix and U(m1)
i is the m1-th block of class i.

Different groups retain a certain number of sub-images. For example, the second
group retains 2 sub-images, and the T-th group retains T sub-images. Therefore, the 2-T
groups i-th training sample reorganization can be expressed as:

X(2m2)
i , X(3m3)

i , . . . , X(tmt)
i , t = 1, 2, . . . , T; mt = 1, 2, . . . , Ct

T , (15)

where mt is the mt-th arrangement and Ct
T is the number of arrangements.

Similar to Equations (14) and (15), the recombination test samples of different groups
can be expressed as:

y(1m1), y(2m2), . . . , y(tmt), t = 1, 2, . . . , T; mt = 1, 2, . . . , Ct
T . (16)

where mt is the mt-th arrangement and Ct
T is the number of arrangements. Equations (14)–(16)

represent different segmentation arrangements in the image. In this article, which refers to the
method of Module LRC, the residues of all solutions are compared and the minimum residual
arrangement scheme is found to obtain the best face characteristics used in identification.
BPLRC reduces the continuous occlusion characteristics of linear model learning and increases
the learning of effective face characteristics, thereby building a strong, robust linear model.

The coefficient vector and prediction vector for each group were calculated in the same
manner as the expressions in Equations (2) and (3):

β̂
(tmt)
i =

[
(X(tmt)

i )
T

X(tmt)
i

]−1
(X(tmt)

i )
T

y(tmt), (17)

ŷ(tmt)
i = X(tmt)

i β̂
(tmt)
i , (18)

where X(tmt)
i is all the training samples of class i in the t-th group of scheme mt.

In the same arrangement, the distance between the test vector and its projection on
the i-th subspace is:

di(y(tmt)) =
∥∥∥y(tmt) − ŷ(tmt)

i

∥∥∥
2
, i = 1, 2, . . . , n, (19)



Appl. Sci. 2022, 12, 11885 8 of 24

where y(tmt) is the test sample of the mt arrangement scheme in t-th group and ŷ(tmt)
i is the

prediction vectors of class i in the t-th group of scheme mt.
Selection of the distance to the nearest subspace of the test vector in the same arrangement:

d(tmt) = mindi(y(tmt)), i = 1, 2, . . . , n, (20)

where di(y(tmt)) is the distance between the test sample vector and the i-th subspace in the
t-th group of scheme mt.

Comparison of the size of the nearest subspace distance between different arrange-
ments in the same group and selection of the arrangement with the smallest distance as the
optimal arrangement in the group is expressed as:

Dt = argmin
mt

d(tmt), mt = 1, 2, . . . , Ct
T , (21)

where d(tmt) is the distance (residual) of the mt-th arrangement in t-th group.
Under the optimal scheme, the subspace closest to the recombination test sample is

selected as the prediction result:

identity(y) = argmin
i

di(y(tDt)), i = 1, 2, . . . , n, (22)

where di(y(tDt)) is the distance between the reorganization test sample vector and the i-th
subspace under the optimal scheme in the t-th group.

Assuming that the number of test samples is S, the true label is Atst ∈ {1, . . . , C} and
the predicted label is Âtst , the model’s recognition accuracy can be expressed as:

acct =
1
S

S

∑
st=1

I
(

Atst = Âtst
)
, t = 1, 2, . . . , T, (23)

where I(·) is the indicator function.
According to Equation (23), the recognition accuracy of each group was obtained, and

the final result was obtained by comparison:

result = maxacct, t = 1, 2, . . . , T, (24)

where acct is the accuracy of the identification of all test samples in the t-th group.
In addition to recognition accuracy, precision and recall can be partially evaluated to

evaluate the model. Precision and recall can be expressed as:

Precision =
TP

TP + FP
, (25)

Recall =
TP

TP + FN
, (26)

where TP is actually a positive sample prediction as a positive sample, FP is actually
negative sample prediction as a positive sample, and FN is actually positive sample
prediction as a negative sample.

F1-Score can represent the harmonic average of accuracy and recall rate:

F1Score =
2Precision · Recall
Precision + Recall

. (27)

3. Results
3.1. Data Sources and Operating Environment

The effectiveness of the proposed method was demonstrated based on three standard
databases, namely AR [22], Extended Yale B [23], and ORL [24]. These databases contain
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several deviations from ideal conditions, including pose, lighting, occlusion, and gesture
changes. Appropriate experimental results have demonstrated that the developed method
performs well for severe continuous occlusion with small changes in pose, scale, illumi-
nation, and rotation. All the above experiments were run on the Windows 10 operating
system (Intel Core i7-4770 CPU M620 @ 3.40 GHz and 8 GB RAM), and the programming
environment was Python 3.7.

3.2. Selection of Optimal Block Arrangement and Combination Scheme

By taking the AR data as an example, the AR face database subset [22], comprising
50 males and 50 females, contains 2600 images in total. In the experiment, eight images
without facial occlusion, such as smiling and not smiling, and brightness changes were
selected as training samples for each object. Moreover, three face images covered by
sunglasses and three face images covered by scarves were selected as test samples for each
object. A total of 100 objects were selected. References [14,17,18,20,21,25] were selected for
this experiment, and the images, with a resolution of 165 × 120 pixels, were downsampled
to 15 × 10 pixels, 20 × 15 pixels, and 25 × 20 pixels for experiments.

The occluded face image contains face information and non-face information. Since
the distribution of non-face information cannot be perceived in advance by algorithms, it is
difficult to distinguish between face information and non-face information. Figure 2 shows
a part of the occluded face images from the AR subset.
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Figure 2. Faces from the AR subset occluded by sunglasses and scarves: (a) face images occluded
by sunglasses; (b) face images occluded by scarves [Reprinted with permission from Elsevier [20].
Copyright 2013, Neurocomputing].

In this paper, the block arrangement method was adopted. All the blocks were ar-
ranged, combined, and finally compared to the residual values of each scheme to determine
the final arrangement (see Figures 3–5). During this process, the approximate position of
the obstructions, such as sunglasses or scarves, was determined. Considering the amount of
computation, when taking three blocks in the five-block image as an example, the number
of permutation schemes was 10. Only the horizontal block combination is shown in the
figure, but the vertical block is also considered. The residual calculation of the arrangement
of scheme h is shown in Figure 5, and Figure 6 shows the minimum residuals of face images
involving sunglasses with different permutations.
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It can be seen from Figure 4 that this group retains 60% of the image information, and
the sunglasses part was removed in scheme h. The distance between the test sample and
the subspace projected by all training samples of an object was considered as the basis for
the selection of the scheme. It can be seen from Figure 6 that the residual value of scheme
h (preserved block positions one, four, and five) was the smallest. This means that the
reorganized training samples in Figure 3h were constructed as an optimal linear model to
predict the category of the test image in Figure 4h. Thus, the prediction result of scheme h
was selected at this time.

The test sample contained face images involving scarves as an example, and the
situation after the reorganization is shown in Figure 7. The residual calculation of the
arrangement of scheme a is shown in Figure 8, and Figure 9 shows the minimum residuals
of face images involving scarves with different permutations.
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block 1, 4, 5; (i) reserved block 2, 4, 5; (j) reserved block 3, 4, 5 [Reprinted with permission from
Elsevier [20]. Copyright 2013, Neurocomputing].
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As shown in Figure 7, the scarf part was removed in scheme a. It can be seen from the
residual values of each scheme in Figure 9 that the residual value of scheme a (reserved
block positions one, two, and three) was the smallest. This means that the reconstituted
training samples in Figure 3a were built using the optimal linear model to predict the class
of the test image in Figure 7a. Therefore, the prediction result of scheme a was selected at
this time. Similarly, the optimal arrangement and combination of one, two, four, and five
sub-images were also similar to the above examples.

3.3. Continuous Occlusion Result for the AR Database

According to the above selection, the optimal block arrangement and combination
was applied to the AR datasets (this method was also applied to the Extended Yale B
and ORL datasets later). First of all, for data processing, the experiment divided the test
analysis into three parts. The first part was the recognition of face images occluded by
scarves. The second part was the recognition of face images occluded by sunglasses. The
third part was the analysis of face images occluded by scarves and by sunglasses. When
the BPLRC algorithm was applied, the face images were all horizontally divided into five
blocks. The results regarding AR dataset recognition are shown in Table 1. In the table,
ESRC stands for the Euler Sparse Representation Classification (ESRC) [17] algorithm. The
experimental parameters were set according to [17], where λ = 1.9 and α = 0.5. The results
showed that the proposed BPLRC method was significantly better than the LRC, SRC, CRC,
ESRC, and Module LRC algorithms in the three parts of the AR database. Among them,
the LRC method was easily affected by the blocking features. In the AR datasets, the scarf
part of the test image was linked to the characteristics of the male beard in the training
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image. Learning the wrong characteristics caused model recognition performance to be
poor. Although the SRC, ESRC, and CRC algorithms can also connect the scarf parts with
the characteristics of a male beard, the three coefficients will be constrained through the L1
and L2 models, thus limiting their ability to learn in the wrong direction to a certain extent.
Therefore, the accuracy rate of the SRC, ESRC, and CRC algorithms in terms of recognizing
scarves covering human faces in images was higher than the LRC algorithm. The Module
LRC and BPLRC methods extract the effective face characteristics as much as possible, and
they will thus only learn a little noise information, as with the LRC, SRC, ESRC, and CRC
algorithms. The BPLRC method is similar to Module LRC. The former considers retaining
more blocks. However, face information was more effective than the Module LRC method,
so the linear models learned more face characteristics. Therefore, the BPLRC algorithm
identifies the effect of occlusion in face images better than other related algorithms.

Table 1. Accuracy (%) of different methods when identifying scarf occlusion, sunglasses occlusion,
and mixed occlusion images.

Occlusion Test Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

Scarf occlusion
15 × 10 8.33 31.33 25.67 7.67 37.00 85.33
20 × 15 10.33 42.67 46.67 18.33 60.67 91.33
25 × 20 11.33 48.00 61.67 22.33 67.33 93.67

Sunglasses occlusion
15 × 10 37.00 25.00 20.33 24.00 71.67 85.67
20 × 15 51.33 48.00 46.33 38.67 86.00 91.00
25 × 20 54.33 47.33 47.00 39.67 88.00 90.67

Mixed occlusion
15 × 10 22.67 28.17 23.00 15.84 54.34 85.50
20 × 15 30.83 45.34 46.50 28.50 73.34 91.17
25 × 20 32.83 47.67 54.34 31.00 77.67 92.17

The LRC and CRC methods are relatively simple, and the calculation time is short. For
25 × 20 pixels images, the average time for each image with the LRC and CRC methods
was 0.61 s and 0.98 s. The advantage of the LRC method is that it is very simple to calculate;
however, it is easily affected by abnormal values. When the test graph contains continuous
occlusion, recognition performance decreases sharply. The BPLRC method proposed in
this article improves its robustness based on LRC, but the calculation cost increases. From
Table 2, it was found that the calculation time of SRC and ESRC was much higher than the
BPLRC method, and Table 1 did not show robustness higher than BPLRC.

Table 2. Computational time (seconds) for different methods to identify 300 images.

Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

15 × 10 0.46 55.46 0.78 61.03 2.36 15.83
20 × 15 0.46 143.15 0.78 140.65 3.49 21.74
25 × 20 0.61 323.80 0.98 329.51 4.92 28.17

3.4. Robust Regression Model Based on Occlusion Training

In practice, there may be too few images in each object, and these images contain
a lot of non-face information. A face image with a scarf-occluded face was used as the
training sample, and a face image without occlusion but with different lighting conditions
was used as the recognition object (see Figure 10). Table 3 shows the results of identifying
downsampled images with a resolution of 25 × 20 pixels. The results in Table 3 and
Figure 11 prove that the algorithm has strong robustness and outperforms other algorithms,
even with a small number of training samples.
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3.5. Analysis of Verification Results of Different Data
3.5.1. Continuous Occlusion Results for the Extended Yale B Database

The Extended Yale B [23] face database is comprised of 64 face images per object that
contain different lighting conditions (see Figure 12). There are a total of 38 objects, of which
the 11th and 13th objects have only 60 images. The 12th contains 59, the 15th has 62, and
the 14th, 16th, and 17th have 63. Therefore, in the experiment, the first 26 images of each
object were selected as training samples, and the last 33 images were randomly occluded
as test samples. A total of 38 objects were selected. Each image was downsampled from
the original 165 × 120 pixels to 15 × 10 pixels, 20 × 15 pixels, and 25 × 20 pixels for
the analysis.
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Figure 13 shows occlusion maps of different proportions that were used with the test
samples. The results of Extended Yale B database recognition are shown in Tables 4 and 5.
The results in the table show that the proposed BPLRC method was significantly better
than the LRC, SRC, CRC, ESRC, and Module LRC (five-block processing) algorithms. For
25 × 20 pixels images, the average time taken for the BPLRC algorithm to identify each
image was 0.08 s (see Table 6), and the calculation time was not very long. However,
lengthening the calculation time of the LRC algorithm is sometimes necessary in exchange
for higher robustness. For example, in Table 4, the higher the occlusion rate of the test
image, the greater the difference between the accuracy of the BPLRC and LRC methods.
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Figure 13. Occlusion maps of different proportions used with the test samples: (a) face image with
an occlusion ratio of 10%; (b) face image with an occlusion ratio of 20%; (c) face image with an
occlusion ratio of 30%; (d) face image with an occlusion ratio of 40% [Reprinted with permission from
Elsevier [20]. Copyright 2013, Neurocomputing].
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Table 4. Accuracy (%) of different methods when identifying 10%-, 20%-, 30%-, and 40%-occluded
face images in the Extended Yale B database.

Occlusion Rate Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

10%
15 × 10 60.21 47.29 43.06 33.25 4.94 64.51
20 × 15 65.15 64.83 60.05 47.45 32.46 77.27
25 × 20 66.83 67.78 67.46 46.73 68.42 78.87

20%
15 × 10 43.46 41.63 35.89 28.79 5.02 59.57
20 × 15 52.47 55.74 52.23 41.87 32.30 74.40
25 × 20 57.58 59.49 61.48 40.91 67.62 76.00

30%
15 × 10 26.95 31.58 27.51 23.52 5.26 51.28
20 × 15 40.83 45.69 40.99 33.73 30.78 71.85
25 × 20 46.33 45.61 50.80 34.53 68.66 74.00

40%
15 × 10 21.29 25.36 22.57 19.70 4.70 40.19
20 × 15 29.11 32.70 32.69 27.43 30.46 66.59
25 × 20 37.16 33.25 39.95 26.95 67.30 68.74

Table 5. Accuracy (%) of different methods when identifying 10% vertically and 20% diagonally
occluded face images in the Extended Yale B database.

Occlusion Rate and Method Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

10% (Vertical
Occlusion)

15 × 10 58.21 51.51 46.81 31.34 3.11 64.19
20 × 15 65.15 66.91 63.08 45.21 54.70 70.41
25 × 20 67.62 70.41 71.05 46.73 56.86 74.72

20% (Diagonal
Occlusion)

15 × 10 33.25 40.27 33.01 24.80 3.35 33.25
20 × 15 40.43 51.12 54.39 39.39 42.50 75.44
25 × 20 46.25 63.32 63.32 35.33 69.06 76.79

Table 6. Computational time (seconds) for different methods to identify 1254 images.

Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

15 × 10 0.83 248.20 1.40 255.64 6.89 45.69
20 × 15 0.9 770.95 1.59 860.85 12.67 72.87
25 × 20 1.04 2231.74 2.03 2073.83 15.08 100.86

However, randomly generating occlusion blocks to occlude the faces in the Extended
Yale B dataset needs to be more comprehensive. The two special cases of vertical and
diagonal occlusion also need to be considered. The vertical occlusion of 10% of faces is
shown in Figure 14a,b, and the diagonal occlusion of 20% of faces is shown in Figure 14c,d.

It can be seen from Table 5 that, compared to the recognition accuracy of BPLRC when
images are randomly occluded by 10%, in most cases, the recognition accuracy of BPLRC
is higher than that of LRC, SRC, CRC, ESRC, and Module LRC. For example, in the case
of 20% diagonal occlusion, the SRC method has better recognition accuracy than BPLRC
for images downsampled to 15 × 10 pixels. The biggest reason is the particularity of the
occlusion distribution and the small size of the image after downsampling. The results in
Table 5 show that, with the diagonal face occlusion in this special case, good results can
also be obtained when using the BPLRC method.
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(a) (b) (c) (d) 

Figure 14. Test samples with vertical occlusion of 10% and diagonal occlusion of 20%: (a,b) face
images with 10% vertical occlusion; (c,d) face images with 20% diagonal occlusion [Reprinted with
permission from Elsevier [20]. Copyright 2013, Neurocomputing].

3.5.2. Continuous Occlusion Results with the ORL Database

There were 10 grayscale images per object in the ORL [24] face database for a total
of 40 objects. Some of these images were different in terms of shooting time, lighting,
facial expressions (eyes open/closed, smiling), and facial details (glasses). All images
in the ORL database were selected for the experiment. The first six images were used
as training samples. The last four images were randomly occluded as test samples (see
Figure 15). The pixel size of each image was downsampled from the original 112 × 92 pixels
to 15 × 10 pixels, 20 × 15 pixels, and 25 × 20 pixels for the experiments.
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Figure 15. Some images from the ORL database: (a) the ORL database without occluded images;
(b) the ORL database with 10%-occluded images [Reprinted with permission from Elsevier [20].
Copyright 2013, Neurocomputing].

The processing method for the ORL database was consistent with the Extended
Yale B database. The results of ORL database recognition are shown in Tables 7 and 8.
Table 9 shows the calculation time for different methods to identify 160 images in the ORL
dataset. The proposed BPLRC method also significantly outperformed the LRC, SRC, CRC,
ESRC, and Module LRC (five-block processing) algorithms when using this database. The
computation time of the BPLRC method is moderate, and its computational complexity is
lower than that of the SRC and ESRC methods. Synthesizing the results of BPLRC on the
AR, Extended Yale B, and ORL datasets demonstrated the effectiveness of the proposed
BPLRC for solving face occlusion problem.
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Table 7. Accuracy (%) of different methods when identifying 10%-, 20%-, 30%-, and 40%-occluded
face images from the ORL database.

Occlusion Rate Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

10%
15 × 10 83.13 63.13 73.13 78.75 39.38 93.75
20 × 15 90.63 30.00 75.63 35.00 76.25 96.88
25 × 20 91.25 69.38 83.13 75.63 82.50 95.63

20%
15 × 10 78.13 46.25 61.25 59.38 41.25 88.75
20 × 15 82.50 15.63 68.75 23.75 78.13 93.13
25 × 20 88.75 53.75 71.88 54.38 84.38 93.75

30%
15 × 10 56.25 36.25 50.00 51.51 37.50 85.63
20 × 15 65.00 13.75 52.50 13.75 76.25 93.13
25 × 20 69.38 43.13 58.13 43.75 80.00 91.88

40%
15 × 10 39.38 23.75 35.00 34.38 34.38 83.75
20 × 15 45.00 10.00 40.00 11.88 75.63 88.13
25 × 20 46.25 29.38 48.13 29.38 83.75 88.75

Table 8. Accuracy (%) of different methods when identifying 10% vertically and 20% diagonally
occluded face images from the ORL database.

Occlusion Rate and Method Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

10% (Vertical
Occlusion)

15 × 10 89.38 36.88 53.13 58.75 85.63 91.25
20 × 15 85.63 17.50 60.00 24.38 91.25 95.00
25 × 20 89.38 47.50 63.13 55.00 90.63 93.13

20% (Diagonal
Occlusion)

15 × 10 23.75 13.75 30.63 31.25 53.13 76.25
20 × 15 28.13 5.63 36.88 3.75 85.63 85.63
25 × 20 27.50 17.50 26.88 12.50 85.63 85.63

Table 9. Computational time (seconds) for different methods to identify 160 images.

Image Size
Method

LRC SRC CRC ESRC Module LRC BPLRC

15 × 10 0.16 9.30 0.19 11.16 0.48 2.97
20 × 15 0.10 40.83 0.16 22.23 0.60 3.46
25 × 20 0.13 24.08 0.22 20.70 0.66 4.06

In the ORL datasets, the two special cases of vertical occlusion of the face and diagonal
occlusion of the face were also considered. Vertical occlusion of 10% of the face is shown in
Figure 16a,b, and diagonal occlusion of 20% of the face is shown in Figure 16c,d.
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[Reprinted with permission from Elsevier [20]. Copyright 2013, Neurocomputing].
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It can be seen from Table 8 that, compared to face images randomly obscured by 10%
and 20%, the recognition accuracy of the BPLRC method has decreased. However, the
BPLRC method also obtains the best results when compared to other related methods.

4. Discussion

As has been reported in the literature [10,11,14,18], LRC, SRC, and CRC use the
residues between the Euclidean distance measurement model and the test image. There
are advantages and disadvantages to each. From the above experimental results, ESRC
identification is, in many cases, inferior to the SRC method. The proposed BPLRC algorithm
aims to determine the characteristics of the best face recognition and then use the LRC
method to classify them. Therefore, the measurement method of the BPLRC algorithm is
Euclidean distance.

To fully verify that the BPLRC method’s recognition performance is better than other
methods, in addition to identifying accuracy indicators this chapter introduces precision,
recall, and F1score indicators to evaluate the model. Because AR, Extended Yale B, and
ORL datasets include many categories, each category cannot be evaluated locally. All the
methods involved in this paper were evaluated globally by calculating precision, recall,
and F1score, which were >0.7 in all categories. When precision, recall, and F1score are
equal to 0, the samples representing a certain category are incorrectly identified. The more
of such categories there are, the worse the model’s performance.

4.1. Continuous Occlusion Analysis of the AR Database

The AR dataset contains 100 classes of target faces. Discussing the assessment metrics
for all categories takes time and effort. We set the threshold for precision, recall, and
F1score to 0.7 and then analyzed the number of categories that were greater than 0.7. If the
threshold was too large or too small, the value was close and it was not easy to compare
the performance of the following methods.

As shown in Table 10, BPLRC identifies face images containing only scarf occlusion,
sunglasses occlusion, or mixed occlusion whose number of precision, recall, and F1score >
0.7 categories is more than or equal to other methods. Precision, recall, and F1score equal
to 0 was present in less categories than other methods. The model evaluation indicators
involved in the table, combined with the identification accuracy of the experimental part,
show that the proposed method can effectively solve the face occlusion problem in the
AR face dataset. However, other relevant algorithms, such as the LRC, SRC, CRC, and
ESRC methods, have poor identification performance, partly because they belong to linear
models and are, in turn, susceptible to anomalous variables or abnormal points. The key to
the SRC, CRC, and ESRC methods, compared to the LRC method, is that they regularize the
model coefficient, which improves the robustness of the linear model to some extent. From
the results relating to identification of scarf occlusion, the SRC, CRC, and ESRC methods
are much better than the LRC method. The results relating to identification of sunglasses
occlusion show that the LRC method is superior to the SRC, CRC, and ESRC methods.
This indicates the effect of a face image linearly represented by the same category of face
image, which is generally better than a face image linearly represented by all categories of
face images. To circumvent this drawback, that LRC is extremely poor in robustness, block
arrangement is combined with the LRC method. Block arrangement achieves excellent
recognition performance in LRC and ensures that more useful face information is extracted.
Module LRC only retains the most useful block, thus keeping too little effective information
which further leads to its inferior recognition performance compared to BPLRC.
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Table 10. The number of categories that identified performance indicators to an extent greater than
0.7 or single categories that were wrongly identified from AR datasets for different methods.

Occlusion Test Other Measurement Model
Performance Indicators

Method

LRC SRC CRC ESRC Module LRC BPLRC

Scarf occlusion

Precision > 0.7 6 24 38 4 77 86
Recall > 0.7 8 46 70 24 91 94

F1Score > 0.7 5 33 53 6 90 93
Precision, recall, and F1Score = 0 81 24 15 50 2 1

Sunglasses
occlusion

Precision > 0.7 37 27 25 13 72 75
Recall > 0.7 54 48 54 41 85 93

F1Score > 0.7 42 30 43 23 89 94
Precision, recall, and F1Score = 0 29 29 15 31 2 0

Mixed occlusion

Precision > 0.7 4 15 34 1 93 96
Recall > 0.7 5 51 26 26 86 91

F1Score > 0.7 45 20 69 1 93 93
Precision, recall, and F1Score = 0 23 7 7 16 1 0

4.2. Extended Yale B Database Analysis and Discussion

Extended Yale B datasets include 38 target faces. As shown in Table 11, when BPLRC
recognizes 10%, 20%, and 30% of face images, its number of categories where precision,
recall, and F1score are >0.7 is more than other methods. When BPLRC identifies 40% of
the face image, its number of precision categories >0.7 is more than other methods, but
the number of recall and F1score categories > 0.7 is less than the Module LRC method. In
fact, in face recognition, precision indicators are more important than recall and F1Score.
For example, when the precision value is too low in the family access control system, it
is possible to identify strangers as family members. When the recall value is too low,
even family members cannot be identified (though you can enter the house by inputting a
password), and there will be no severe theft incidents. F1score is the harmonic mean of two
metrics, and simply provides a summary evaluation of model performance. According to
the results in Table 11, the number of precision, recall, and F1score categories equal to 0
is only 1 or 0; thus, the model’s identification performance cannot be evaluated from the
number of precision, recall, or F1Score categories equal to 0.

Table 11. The number of categories that identified performance indicators to an extent greater than 0.7
or single categories that were wrongly identified from Extended Yale B datasets for different methods.

Occlusion Rate
and Method

Other Measurement Model
Performance Indicators

Method

LRC SRC CRC ESRC Module LRC BPLRC

10% (Random
Occlusion)

Precision > 0.7 16 12 16 0 17 30
Recall > 0.7 28 19 31 4 24 31

F1Score > 0.7 17 15 22 0 16 32
Precision, recall, and F1Score = 0 0 0 0 0 0 0

20% (Random
Occlusion)

Precision > 0.7 8 10 12 0 15 29
Recall > 0.7 21 13 24 5 22 28

F1Score > 0.7 7 7 12 0 16 31
Precision, recall, and F1Score = 0 0 0 0 0 0 0

30% (Random
Occlusion)

Precision > 0.7 4 4 4 0 16 25
Recall > 0.7 21 2 19 2 24 25

F1Score > 0.7 2 1 4 0 15 27
Precision, recall, and F1Score = 0 0 0 0 0 0 0

40% (Random
Occlusion)

Precision > 0.7 2 0 2 0 10 17
Recall > 0.7 12 1 12 1 29 24

F1Score > 0.7 0 0 1 0 25 17
Precision, recall, and F1Score = 0 0 0 0 0 0 0
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Table 11. Cont.

Occlusion Rate
and Method

Other Measurement Model
Performance Indicators

Method

LRC SRC CRC ESRC Module LRC BPLRC

10% (Vertical
Occlusion)

Precision > 0.7 18 20 18 2 8 25
Recall > 0.7 30 20 30 7 25 29

F1Score > 0.7 19 22 24 0 4 27
Precision, recall, and F1Score = 0 0 0 0 0 0 0

20% (Diagonal
Occlusion)

Precision > 0.7 7 17 14 2 18 26
Recall > 0.7 17 19 28 8 25 27

F1Score > 0.7 4 13 17 1 17 28
Precision, recall, and F1Score = 0 1 0 0 0 0 0

In summary, from the number of categories for each method with precision >0.7, the
proposed method identifies 10%, 20%, 30%, and 40% of faces, vertical occlusion of 10% of
faces, and diagonal occlusion of 20% of face images better than other related algorithms.

4.3. ORL Database Analysis and Discussion

The ORL dataset contains 40 classes of target faces. As shown in Table 12, when
BPLRC identifies random occlusion of 10%, 20%, and 30% of faces, 10% vertical occlusion
of faces, and 20% diagonal occlusion of faces, its number of precision, recall, and F1score
categories greater than 0.7 is greater than other related methods. The number of precision,
recall, and F1score categories equal to 0 is less than or equal to different related algorithms.
Therefore, the BPLRC method solves the face occlusion problem more effectively in the
ORL datasets than the other related algorithms, showing stronger robustness than LRC,
SRC, CRC, ESRC, and Module LRC. Combined with the identification accuracy obtained
from the previous experiments, we fully confirm that BPLRC improves upon both LRC and
Module LRC.

Table 12. The number of categories that identified performance indicators to an extent greater than
0.7 or single categories that were wrongly identified from ORL datasets for different methods.

Occlusion Rate and
Method

Other Measurement Model
Performance Indicators

Method

LRC SRC CRC ESRC Module LRC BPLRC

10% (Random
Occlusion)

Precision > 0.7 39 24 33 29 37 40
Recall > 0.7 38 27 32 27 37 40

F1Score > 0.7 39 18 30 25 37 40
Precision, recall, and F1Score = 0 0 1 0 1 0 0

20% (Random
Occlusion)

Precision > 0.7 38 14 27 13 36 40
Recall > 0.7 38 13 26 22 37 39

F1Score > 0.7 37 9 23 10 36 40
Precision, recall, and F1Score = 0 0 4 1 2 0 0

30% (Random
Occlusion)

Precision > 0.7 24 11 15 12 36 38
Recall > 0.7 26 10 17 15 34 38

F1Score > 0.7 16 5 8 7 34 38
Precision, recall, and F1Score = 0 1 7 1 6 0 0

40% (Random
Occlusion)

Precision > 0.7 14 5 18 5 39 39
Recall > 0.7 18 6 18 11 37 37

F1Score > 0.7 9 1 10 2 37 37
Precision, recall, and F1Score = 0 7 13 6 12 0 0

10% (Vertical
Occlusion)

Precision > 0.7 36 12 19 15 38 40
Recall > 0.7 36 15 24 25 36 39

F1Score> 0.7 36 8 15 11 36 39
Precision, recall, and F1Score = 0 0 3 0 1 0 0

20% (Diagonal
Occlusion)

Precision > 0.7 9 5 8 2 35 35
Recall > 0.7 9 6 14 8 34 34

F1Score > 0.7 4 1 4 1 33 33
Precision, recall, and F1Score = 0 25 27 21 27 0 0
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4.4. Comparison of Differences in Algorithms

The LRC method uses individual categories of training samples to represent the test
samples linearly. In contrast, the SRC, CRC, and ESRC methods use all categories of training
samples to represent the test samples linearly. Other differences are shown in Table 13,
with SRC being equivalent to the Lasso regression model and constraining the regression
coefficients using the L1 norm. CRC is equivalent to the ridge regression model, and the
regression coefficient is constrained using the L2 norm. At the same time, ESRC replaces the
metric of the SRC method with the Euler distance. The Module LRC and BPLRC methods
both determine the face features conducive to the LRC method and further determine the
category to which the image belongs. The BPLRC approach is similar to Module LRC in
that it considers the case of block combinations.

Table 13. Attribute comparison with prior methods.

Method LRC [18] SRC [10,11] CRC [14] ESRC [17] Module LRC
[18] BPLRC

The basic
model

Linear
regression

model

Lasso
regression

model

Ridge
regression

model

Lasso
regression

model

Linear
regression

model

Linear
regression

model

Measuring
method

Euclidean
distance

Euclidean
distance

Euclidean
distance Euler distance Euclidean

distance
Euclidean
distance

Image
recognition

speed
Extremely fast Extremely slow Fast Extremely slow Relatively fast Relatively slow

Robustness Extremely weak Relatively weak Relatively weak Weak Relatively
strong Strong

Scope

1. Face image
with light
changes; 2. face
image with
expression
changes

1. Face image
with light
changes; 2. face
image with
expression
changes

1. Face image
with light
changes; 2. face
image with
expression
changes

1. Face image
with light
changes; 2. face
image with
expression
changes

1. Face image
with light
changes; 2. face
image with
expression
changes;
3. face
occlusion image

1. Face image
with light
changes; 2. face
image with
expression
changes;
3. face
occlusion image

Table 13 shows the differences in the LRC, SRC, CRC, ESRC, Module LRC, and BPLRC
methods. The linear model is susceptible to contaminated data [26] and LRC is directly
affected by contaminated data, while other RBCM algorithms are more robust than LRC
algorithms. Notably, Module LRC and BPLRC can identify the target images by effectively
using face features. If a small number of non-face images exist in the test sample, the
influence function in the literature [27] is used to obtain a clean sample set. From the
recognition results of the three face datasets, Module LRC and BPLRC are more suitable
for recognizing facial occlusion images and have strong robustness. The three datasets
contain various face images with light changes and expression changes. Therefore, all
RBCM methods (including LRC, SRC, CRC, ESRC, Module LRC, and BPLRC) can achieve
better results when setting a low occlusion ratio. At the same time, it shows that RBCM
methods can effectively solve the problem of illumination and facial expression changes.

5. Conclusions

The method proposed in this paper combines local image information into a whole,
reflecting both the local information and the overall information of the image. In the AR
datasets, face images with scarves were downsampled to 25 × 20 pixels as an example, and
the recognition accuracy of the BPLRC algorithm in identifying the face images with scarf
occlusion was 93.67%. The number of categories with precision, recall, and F1score greater
than 0.7 was 86, 94, and 93, respectively, and the number of categories with precision, recall,
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and F1score equal to 0 was 1. These indicators can indicate the degree of excellence various
algorithms have in identification. Furthermore, experiments on the Extended Yale B, ORL,
and AR datasets showed that the BPLRC algorithm was significantly better than other
related classification methods in identifying images with continuous occlusion. The LRC,
SRC, ESRC, and CRC algorithms did not remove occlusions, which caused them to learn a
lot of noise. As a result, model performance was worse than the Module LRC and BPLRC
models. Although Module LRC removes the continuous occlusion part, it only considers
retaining one block, and there may be less reserved effective face information than the
BPLRC method. Therefore, the BPLRC algorithm’s ability to identify face images is better
than other related algorithms.

BPLRC reorganizes different training samples and test samples through block ar-
rangement and combination, but the number of combinations increases exponentially with
the number of blocks. Compared to the LRC algorithm, the method proposed optimizes
face characteristics in the image while at the same time reducing the negative impact of
occlusion on the model. For example, the LRC method easily attributes face images with
scarf occlusion to a large number of beards, or other categories that have characteristics
similar to scarves. Compared to the Module LRC algorithm, this algorithm’s novelty lies in
retaining as many image block schemes as possible in order to retain useful face charac-
teristics. Additionally, the block arrangement can be combined with other algorithms that
are less robust. For example, when the number of blocks is five, the average time taken
with BPLRC in AR datasets for setting an image with a size of 25 × 20 pixels is 0.094 s, and
the calculation amount is relatively small. However, when the number of image divisions
is too large, many arrangement schemes will greatly reduce the recognition speed of the
BPLRC algorithm. In response to the defects of the BPLRC algorithm, in the future, the
rapid iteration method will be studied and the optimal or subsequent arrangement will
be found in many solutions to reduce the calculation amount, which should provide the
possibility of dividing more blocks.
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