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Abstract: Transformer-based image captioning models have recently achieved remarkable perfor-
mance by using new fully attentive paradigms. However, existing models generally follow the
conventional language model of predicting the next word conditioned on the visual features and
partially generated words. They treat the predictions of visual and nonvisual words equally and
usually tend to produce generic captions. To address these issues, we propose a novel part-of-speech-
guided transformer (PoS-Transformer) framework for image captioning. Specifically, a self-attention
part-of-speech prediction network is first presented to model the part-of-speech tag sequences for
the corresponding image captions. Then, different attention mechanisms are constructed for the
decoder to guide the caption generation by using the part-of-speech information. Benefiting from
the part-of-speech guiding mechanisms, the proposed framework not only adaptively adjusts the
weights between visual features and language signals for the word prediction, but also facilitates the
generation of more fine-grained and grounded captions. Finally, a multitask learning is introduced
to train the whole PoS-Transformer network in an end-to-end manner. Our model was trained and
tested on the MSCOCO and Flickr30k datasets with the experimental evaluation standard CIDEr
scores of 1.299 and 0.612, respectively. The qualitative experimental results indicated that the captions
generated by our method conformed to the grammatical rules better.

Keywords: image captioning; transformer; part of speech; multitask learning

1. Introduction

Image captioning is the task of generating the grammatically correct description of an
image, which has been attracting much attention in the field of image understanding [1–8].
With the success of deep learning, image captioning models have recently achieved great
progress. A typical deep neural network for an image captioning model generally follows
an encoder–decoder paradigm, where a deep convolutional neural network (CNN) is intro-
duced as the encoder to learn visual representations from the input image, while a recurrent
neural network (RNN) serves as the decoder to recursively predict each word. Recently,
the transformer-based image captioning models have shown superior performance to the
conventional CNN-RNN models by using fully attentive paradigms. Despite great ad-
vances made in the model architectures, existing models still have two limitations: (i) they
treat the predictions of visual and nonvisual words equally at each time step, leading to
ambiguous inference; (ii) they have the tendency to generate minimal sentences, which
is common in datasets. Consequently, how to organize phrases and words to accurately
express the semantics of an image remains a challenging task.

The neuroscience research on language processing has demonstrated that the brain
contains partially separate systems for processing syntax and semantics [9,10], which
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provides us a new prospective to overcome the limitations of existing image caption-
ing models. Naturally, the traditional encoder–decoder framework can be improved
by imposing an analogous separation. Considering that in English the part-of-speech
(PoS) tag sequences contain rich grammatical rules available to infer the corresponding
words (We use the Stanford constituency parser to obtain the PoS tags of captions. URL:
https://www.nltk.org/book/ch05.html (accessed on 15 November 2022), in this paper,
we intend to improve the grounding performance of image captioning by using the PoS
information. Figure 1a illustrates an example of an image caption with its corresponding
PoS tags. From Figure 1a, we can observe that the different parts of speech of the words
play specific grammatical roles in the caption. For example, the determiners (DET) and
adjectives (ADJ) are generally used to modify the nouns (NN). The adpositions (ADP), such
as in and on, play the role of connecting two noun phrases so as to establish their semantic
relationship. All the PoS tags play an important role in generating the caption since they
correspond to words one by one. Consequently, it is essential to master the PoS of each
word for generating grammatically correct sentences. Besides, some PoS tags, such as ADJ
and NOUN are closely related to the visual features of the image while some PoS tags, such
as the second ADP (corresponding to the word on) in the PoS tag sequence, are irrelevant
to any visual features. As a result, there is a need to find more ways to highlight the PoS
information contained in sentences so that they can provide additional guidance for one
captioner to distinguish between visual and nonvisual words.

(a)

(b)

Figure 1. An example of PoS-guided caption generation. The PoS and word information are main-
tained in separate streams. (a) The PoS tags and the corresponding words in an image description
sentence. (b) Our model first predicts the most appropriate subsequent PoS by the previous words at
each time step. Then, the obtained PoS information is used to guide the visual and linguistic attention
for the word prediction. “<BOS>” and “<EOS>” denote the beginning and end of all the sentences,
respectively. “<EOP>” is short for “<End of PoS>”, which is the end of all the PoS sequences.

Aiming to obtain the syntactic information contained in the sequence of PoS tags,
we first introduce a PoS predictor to predict the PoS tag of the next word, which can be
integrated with the image captioning model seamlessly. As shown in Figure 1b, the PoS tag
of the next word is predicted based on the previous words while the PoS information pro-
vided by the PoS predictor is utilized to guide the generation of the next word. For instance,
after the words a and red as well as their PoS tags are generated, the PoS predictor uses the
word embeddings of a and red as inputs to predict the PoS tag NOUN. Meanwhile, the PoS
information of DET, ADJ, and NOUN are utilized by the image caption model to predict
the next word firetruck. Unlike the existing transformer-based captioners that treat all word
predictions equally, the sequence of partially generated tags can help evaluate the effect of
visual features and language signals on the word prediction. As illustrated in Figure 1a,
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when the word on is to be generated, the visual features are actually not very helpful at the
current time step. However, the conventional transformer-based image captioners take no
effective measures but simply concatenate attended visual features and language signals in
each decoder layer, i.e., the irrelevant visual features are also used to predict the next word.
As a result, the captioners are easily distracted by irrelevant visual concepts, leading to the
generation of incorrect words. In contrast, after the partial PoS tag ADP of the next word
on is available, the captioners can exploit the information of partially generated PoS tags to
balance the effect of visual features and language context, e.g., the language cues would
be paid more attention to at the current time step, which facilitates the generation of the
correct word on.

In order to make a transformer-based image captioning model effectively align the
generated words with the visual or nonvisual features of an image and further generate
the grammatically correct captions with the help of the PoS information, we propose a
PoS-Transformer framework based on a new learning paradigm. Specifically, the process
of generating captions is divided into two stages: PoS prediction and caption generation.
The PoS tag of the next word is predicted in the first stage, which is much easier than
predicting the next word directly, since the number of PoS tags is far less than that of words.
In the second stage, two different PoS-guided attention modules are proposed on top of the
PoS guiding information, visual features, and linguistic context, which enables the decoder
to adaptively attend to visual features and language signals. As a result, the PoS predictor,
the PoS-guided attention modules, and the encoder–decoder captioning network closely
collaborate to enhance the performance of image captioning. The main contributions of our
work can be summarized as follows:

• We propose two kinds of PoS-guided attention mechanisms based on the PoS infor-
mation, adaptively adjusting the effect of visual features and language signals on the
word prediction, to encourage the generation of more grounded captions.

• We incorporate the PoS prediction model and the PoS-guided attention modules into
the transformer-based captioning architecture to build a unified end-to-end image
captioning framework, boosting the performance of image captioning by separating
syntax and semantics for the prediction of each word.

• We optimize the proposed PoS-Transformer network by a multitask learning method
on the Flickr30k and MSCOCO benchmark datasets, respectively. Extensive experi-
ments demonstrate the effectiveness of our method.

The remainder of this paper is organized as follows. Section 2 introduces the related
work, especially the prevailing deep-learning-based methods. Our proposed framework
and its multitask learning for image captioning are detailed in Section 3. The experimental
results are reported in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

Image captioning. The mainstream image captioning methods generally follow the
encoder–decoder paradigm, where image features extracted by a CNN are fed into an
RNN to generate the corresponding sentence. For example, Xu et al. [11] first utilized soft
and hard attention mechanisms to attend to the different CNN grid features of an image
when generating each word. Lu et al. [12] presented an adaptive attention mechanism to
determine where to attend to visual features for the word prediction. After that, Ander-
son et al. [13] further introduced an attention mechanism over the region-based features
extracted by an object detector. Despite progress made on the basis of visual attention
mechanism over object features, these approaches suffer from catastrophic forgetting in
long-term memory, leading to limited performance improvement. To overcome the limita-
tions of RNN-based image captioning models, plenty of transformer-based models [14–22],
following fully attentive paradigms, have recently been presented and have improved the
performance remarkably. For example, Herdade et al. [15] developed an object relation
transformer (ORT) captioning model, which explicitly incorporated spatial relationships
between region features through geometric attention. Li et al. [23] introduced entangled
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attention into a transformer-based sequence modeling framework that performs attention
over visual features and semantic attributes simultaneously. Recently, a large amount of
methods have been explored to improve image understanding with the help of a scene
graph, as it contains rich semantic information. For example, Yang et al. [24] proposed
a method that first used the sentence’s scene graph to learn a dictionary, and then incor-
porated it with the image’s scene graph for the description generation. Yao et al. [25]
presented a model that integrated both the semantic and spatial object relationships as
image representation. Since the scene graph constructed a series of semantic relationship
information, the model achieved comparable results. Zhao et al. [26] proposed a multilevel
cross-modal alignment (MCA) module to align the image scene graph with the sentence’s
scene graph at a different level. Although the existing captioning approaches have achieved
impressive results, they still follow the conventional way of modeling language and suffer
from the limitations mentioned above.

PoS-based image captioning. Recently, some works have also introduced the PoS
information into image captioning models [27–29]. However, these methods are all based
on long short-term memory (LSTM) networks, while our model exploits the transformer-
based captioning architecture and fully attentive paradigm, which is essentially different
from them. The model proposed by Zhang et al. [27] is the most related to ours; they
integrated the PoS information with two popular image captioning models. However, their
models suffered from dependencies between distant positions since the hidden states of
LSTM were used to predict the PoS sequences. He et al. [28] utilized PoS tags as switches
to guide the generation of the visual words. However, they required an external PoS tagger
in both the training and test stages, which was limited in practice. In our PoS-Transformer,
a PoS prediction network, as a part of the framework, is seamlessly integrated with other
parts of PoS-Transformer. Consequently, the captions can be generated word by word at
the inference time without any extra PoS taggers. Deshpande et al. [29] used the part-of-
speech information to generate diverse captions. They first predicted a PoS sequence for an
image and then employed the PoS sequence as the guiding information to generate image
captions. However, they quantized the space of POS tag sequences by using a classification
model, which harmed the generation of fine-grained captions. Unlike existing PoS-based
image captioning models, our proposed PoS-Transformer framework is able to process both
word sequences and PoS sequences in parallel during training. On one hand, by means of
cross-attention, PoS-Transformer establishes the relationship between the visual features
and PoS information as well as the relationship between the partially generated words
and PoS information. On the other hand, PoS-Transformer also captures the self-attention
within the PoS information, which is helpful to adaptively adjust the weights between
visual features and language signals for the word prediction.

3. Approach

The proposed PoS-Transformer model aims to guide the process of caption generation
with the part-of-speech information on top of the Transformer architecture. Notably, our
method follows a novel learning paradigm, which maintains the PoS and word information
in separate streams for image captioning. Specifically, PoS-Transformer is composed of
four parts: (1) a visual subencoder that exploits the deep visual representation on the basis
of a self-attention mechanism; (2) a language subencoder that represents language signals;
(3) a self-attention PoS predictor (SAPP) which is used to predict the category of PoS and
obtain the PoS information for generating the next word in the captioning process; (4) a
PoS-guided multimodal decoder which provides two alternative attention mechanisms,
i.e., single attention (SAT) and dual attention (DAT), to integrate and decode visual features,
language signals, and PoS information. Figure 2 illustrates the overall architecture of the
proposed PoS-Transformer model.
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Figure 2. The overall architecture of PoS-Transformer for image captioning. Our framework consists
of four parts: the visual subencoder, the language subencoder, the PoS predictor, and the PoS-guided
multimodal decoder. The captioning generation includes three steps: (1) encoding the visual features
and language signals separately; (2) obtaining the PoS information by predicting the subsequent PoS;
and (3) generating the final caption with PoS guidance to the usage of visual and language cues. Our
PoS-Transformer can dynamically adjust the weights between visual features and language signals to
produce more fine-grained sentences.

3.1. Dual-Way Encoder

Different from the local operator essence of convolution [3,30], the full transformer cap-
tioning networks, effectively accessing information globally via self-attention mechanism,
have recently been proposed and achieved promising performance. However, the existing
transformer-based captioning architectures are still based on the conventional language
model, which generates the captions word by word regardless of the grammatical struc-
tures, leading to the limitations mentioned above. Consequently, it is essential to construct
a novel image captioning architecture, which not only separates syntactic structure and
word semantics, but has the ability to guide the usage of visual and language information.
To reach this goal, inspired by the ETA model [23], we first propose a dual-way encoder
that contains a visual subencoder and a language subencoder to obtain the visual features
and language signals attended to, respectively.

(1) Visual subencoder: In Figure 3, the region-based visual features of an image
extracted by a pretrained Faster-RCNN model are utilized as the input of visual subencoder.
Given a set of region-based visual features V = {v1, v2, . . . , vN} extracted from an input
image, where N is the number of visual regions in an image, the visual features V are
first projected to a d-dimensional space via a fully connected layer to adapt to the visual
subencoder’s dimensionality. Then, the projected features V0 = {v0

1, v0
2, . . . , v0

N} ∈ RN×d

are input into the visual subencoder with L attention blocks. To be specific, the output of
the lth (0 ≤ l < L) layer is input into a multihead module (MH) [31] in the (l + 1)th layer,
which is then followed by an AddNorm operation:

V̂ l+1 = AddNorm(MH(V l , V l , V l)), (1)

and a positionwise feed-forward network (FFN) [31] is adopted to further transform the
outputs, which is also encapsulated within the AddNorm operation:

V l+1 = AddNorm(FFN(V̂ l+1)). (2)

Eventually, we can obtain VL, i.e., the output of our visual subencoder, which repre-
sents the considered visual features, on basis of the self-attention mechanism.
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(2) Language subencoder: Given a caption Y = {Y1, Y2, . . . , YM}, where Yi denotes
the ith word in the sentence and M is the number of words. To adapt the language
subencoder’s dimensionality, all tokens are first embedded to d-dimensional vectors
through an embedding matrix and then fed into the positional encoding module for the
relative and absolute position information. Finally, we obtain the initial input features
W0 = {w0

1, w0
2, . . . , w0

M} ∈ RM×d, which are input to the language subencoder with L atten-
tion blocks. Different from the visual subencoder, the output of the lth (0 ≤ l < L) layer is
passed into the masked multihead (MMH) module [31] to ensure that the prediction for the
tth word wt depends only on the previous words w1:t−1, and the output of the (l + 1)th
layer is denoted as follows:

Ŵ l+1 = AddNorm(MMH(W l , W l , W l)),

W l+1 = AddNorm(FFN(Ŵ l+1)).
(3)

Recursively, the output of the Lth layer, denoted as WL, can be obtained and used as
the language signals to be fed into the following decoder.

3.2. Self-Attention PoS Predictor

In the self-attention PoS predictor, we also use a randomly initialized word-embedding
matrix and positional encoding to project the input tokens Y = {Y1, Y2, . . . , YM} to d-
dimensional vectors P0 = {p0

1, p0
2, . . . , p0

M} ∈ RM×d. The PoS prediction model takes the
projected features P0 as the initial input to N, the first attention block. Similar to the
language subencoder, the output of the (n + 1)th layer can be represented as:

P̂n+1 = AddNorm(MMH(Pn, Pn, Pn)),

Pn+1 = AddNorm(FFN(P̂n+1)).
(4)

Finally, the output of the Nth decoder stack is used as the PoS information to predict
the probability distribution of the next word’s PoS as follows:

p(st|Yt−1) = So f tmax(WPoS · PN
t−1 + bPoS), (5)

where PN
t−1 denotes the hidden state corresponding to the (t − 1)th PoS, the embedded ma-

trix WPoS ∈ Rd×C , the bias vector bPoS ∈ RC , Yt−1 denotes the previously generated words,
and C is the class number of PoS. Meanwhile, as shown in Figure 3, the PoS information
PN

t−1 is then passed to the PoS-guided multimodal decoder to guide the caption generation.

Figure 3. The structure of the single-attention-based multimodal decoder model with part-of-
speech guidance.
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3.3. PoS-Guided Multimodal Decoder

(1) PoS-guided single attention: Different from the traditional transformer decoder, we
introduce a single cross-attention over the fused features of visual features and language
signals by virtue of the PoS information.

As shown in Figure 3, for the (l + 1)th layer, the input Fl is fed into an MMH module,
followed by the AddNorm operation:

F̂l+1 = AddNorm(MMH(Fl , Fl , Fl)). (6)

Note that F0 = WL. Subsequently, the output F̂l+1 is fed into one multihead cross-
attention module to perform the attention task over visual features VL as follows:

F̄l+1
V = MH(F̂l+1, VL, VL),

F̄l+1 = AddNorm(F̄l+1
V ).

(7)

Since the PoS information is beneficial for both visual words and nonvisual words, it is
used to attend to the fused features of visual features and language signals during training.
Meanwhile, it is also added to the considered fused features, to provide the decoder with
the PoS information. To be specific, we utilize the PoS information PN as the query vectors
to perform the cross-attentions over F̄l+1 as follows:

F̃l+1 = AddNorm(MH(PN , F̄l+1, F̄l+1), PN). (8)

Finally, the output of the multimodal decoder can be obtained as follows:

Fl+1 = AddNorm(FFN(F̃l+1)). (9)

(2) PoS-guided dual attention: Although the single attention mechanism utilizes the
POS information to facilitate the generation of grounded captions, it cannot adaptively
adjust the weights between visual features and language signals at each decoding time step.
Inspired by the ETA model [23], we first introduce the dual attention mechanism into the
multimodal decoder, which employs the PoS information to attend to the visual features
and language signals, respectively. In addition, a gated controller module is inserted after
the dual attention module, which enables the decoder to dynamically adjust the weights
between the visual features and language signals.

As depicted in Figure 4, the dual attention module is inserted between the MMH and
FFN modules, which allows the decoder block to apply attention over the output visual
features VL and language signals WL of the dual-way encoder simultaneously. Similar to
the single attention, we have:

F̂l+1 = AddNorm(MMH(Fl , Fl , Fl)). (10)

where F0 = PN . Then, the output F̂l+1 is passed into two multihead cross-attention
modules to perform the attention task over language signals WL and visual features VL:

V l+1 = MH(F̂l+1, VL, VL),

Sl+1 = MH(F̂l+1, WL, WL).
(11)

Next, as shown in Figure 4, the gated controller module is introduced into the decoder
to dynamically specify the weights of Sl+1 and V l+1 on the word prediction. Concretely,
the context gate Cl+1 of the gated controller is determined by the visual features V l+1,
the language signals Sl+1, and the current self-attention output F̂l+1:

Cl+1 = σ([V l+1, F̂l+1, Sl+1] ·WC), (12)
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where Cl+1 ∈ RM×1, WC ∈ R3d×1, [·] and σ(·) denote the vector concatenation and sigmoid
function, respectively. The gate value Cl+1 and its complement part (1− Cl+1) control the
flow of visual features V l+1 and language signals Sl+1, respectively, we have:

El+1 = V l+1 � Cl + Sl+1 � (1− Cl),

Fl+1 = AddNorm(FFN(AddNorm(F̂l+1, El+1))),
(13)

where � represents the Hadamard product and El+1 ∈ RM×d denotes the output of the
gated controller module.

Figure 4. The structure of the dual attention based multimodal decoder model with part-of-speech
guidance. The multimodal representations are first learned based on the dual attention with PoS
guidance. Then, the gated controller is introduced to adaptively measure the contribution of visual
and language cues for predicting words.

Finally, the output FL of the PoS-guided SAT or DAT module is input into the word
classifier to predict the next possible word as follows:

p(yt|Yt−1, VL) = So f tmax(Wword · FL
t−1 + bword), (14)

where FN
t−1 is the hidden state corresponding to the (t − 1)th word, the embedded matrix

Wword ∈ Rd×D , the bias vector bword ∈ RD , and D is the size of the vocabulary.

3.4. Training Details

As shown in Figures 3 and 4, the SAT-based and DAT-based multimodal decoder
have the same input visual features, language signals, and PoS information as well as the
same output vectors. The two outputs of our models are utilized to predict the next word
and its PoS tag, which, respectively, correspond to two different objective functions. Thus,
in practice, the network weights of these two models can be trained concurrently by a
supervised multitask learning.

For an input image, assume its region-based visual feature vector as V, the corresponding
ground-truth caption Y∗ = {y∗0 , · · · , y∗T} and the ground-truth PoS tags S∗ = {s∗0 , · · · , s∗T}.
For the self-attention PoS predictor, the cross-entropy (XE) loss for the PoS prediction is:

LPoS = −
T

∑
t=0

log(pϕ(s∗t |Y∗t−1)), (15)
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where ϕ represents the parameters of the SAPP network.
The parameters θ of our image captioning model (including dual-way encoder and

PoS-guided multimodal decoder) is optimized via minimizing the following cross-entropy
loss Lword between the generated captions and the ground truths:

Lword = −
T

∑
t=0

log(pθ(y∗t |Y∗t−1, V). (16)

Combining the word prediction loss Lword with the PoS prediction loss LPoS, the total
loss function for our proposed PoS-Transformer framework can be defined as:

L = Lword + λ · LPoS, (17)

where λ is a trade-off factor between the PoS loss and the word loss. Thus, all the parameters
of the PoS-Transformer network can be optimized by minimizing the total loss function.

As can be seen from Figure 2, when minimizing the XE loss Lword, the parameter ϕ
of the SAPP network will also be optimized, which indicates that the word prediction can
be considered as the leading task of the whole model. At the same time, when the XE
loss LPoS is minimized, only the PoS predictor in the whole framework will be updated.
Thus, the training of SAPP plays a role of auxiliary task for the main task. By means of the
ground-truth PoS tags, the PoS prediction model can be well optimized, which provides
the main task with the auxiliary optimization direction of the parameter ϕ. Consequently,
with the guidance of SAPP, the image captioning part of our whole framework can be
encouraged to generate more grounded and fine-grained captions.

At inference time, PoS-Transformer needs not employ any PoS tagger to tag each word
in the generated sentences since it actually utilizes the current hidden state of the SAPP
network as the PoS information to guide the caption generation.

4. Experiments
4.1. Datasets

MSCOCO [32]: This popular benchmark dataset contains 123k images and each of
them is equipped with five manually annotated sentences. We adopted the offline Karpathy
splits [33], which assigns 113k images for training, 5k images for validation, and 5k images
for testing. Following the same settings in prior studies, we converted all sentences to
lowercase, deleted the punctuation characters, tokenized each caption, and constructed
a vocabulary including 9487 words by selecting the words which appeared more than
five times.

Flickr30k [34]: Flickr30k consists of 31k images with five text descriptions each. Fol-
lowing prior studies [11,35], we used the publicly available split which divides Flickr30k
into 29k/1k/1k for training/validation/test, respectively.

4.2. Evaluation Metrics

To evaluate the performance of different captioning methods, we used the full set of
the standard evaluation metrics, including BLEU [36], METEOR [37], ROUGE-L [38],
CIDEr [39], and SPICE [40]. All these metrics were calculated directly by using the
MSCOCO caption evaluation tool (https://github.com/tylin/coco-caption (accessed on
15 November 2022)). BLEU is an n-gram precision-based metric, METEOR performs uni-
gram matching, and SPICE computes an F1-score over caption scene-graph tuples, i.e., the
balance between the precision and the recall. Notably, CIDEr is specially designed to
evaluate the image captioning model. It obtains the similarity between the captions to be
evaluated and the reference captions by calculating the TF-IDF weights of each n-tuple
to evaluate the effectiveness of the image captioning. The number of times an n-gram wk

https://github.com/tylin/coco-caption


Appl. Sci. 2022, 12, 11875 10 of 18

occurs in a reference sentence sij is denoted by hk(sij) or hk(ci) for the candidate sentence
ci. The TF-IDF weighting gk(sij) for each n-gram wk can be formulated as:

gk(sij) =
hk(sij)

∑wl∈Ω hl(sij)
log(

|I|
∑Ip∈I

min(1, ∑q hk(spq))
), (18)

where ω is the vocabulary of all n-grams and I is the set of all images in the dataset.
The CIDEr score for n-grams of length n is computed by using the average cosine similarity
between the candidate sentence and the reference sentences, which accounts for both
precision and recall:

CIDErn(ci, Si) =
1
m ∑

j

gn(ci) · gn(sij)

||gn(ci)||||gn(sij)||
,

CIDEr(ci, Si) =
N

∑
n=1

wnCIDErn(ci, Si),

(19)

Empirically, the uniform weights wn = 1/N work the best and N = 4. The higher the
CIDEr score, the better the resulting discourse quality.

4.3. Experimental Settings

(1) Data preprocessing: To gain the PoS tags of the reference captions in the training set,
we employed the tagger provided by the Stanford University Natural Language Processing
Research Group (https://Nlp.stanford.edu/software/tagger.shtml#Download (accessed
on 15 November 2022)). Specifically, the PoS set included 12 universal PoS tags, such as
verb (VERB), noun (NOUN), adjective (ADJ), etc.

(2) Implementation details: For the self-attention PoS predictor and language suben-
coder, we utilized randomly initialized word embeddings W0, whose dimensionality was
equal to d, and then summed the input vectors and their sinusoidal positional encodings [8].
For the visual subencoder, we used the pretrained Up-Down model [13] to extract the 2048-
dimensional bottom-up features of the detected objects and linearly projected them to the
512-dimensional input visual vectors. Following the same settings as in [31], the latent
dimensionality in each head was set to dh = d/h = 64, where the latent dimensionality d
was 512. The number of attention blocks L in the visual subencoder, language subencoder,
and PoS-guided multimodal decoder ranged in {1, 2, 4, 6} and that of the POS prediction
model N was set to 3. During the training stage, we used the Adam optimizer [41] with
20,000 warm-up steps and a batch size of 10. Our models were first trained for 30 epochs
with the cross-entropy loss and then further optimized with the CIDEr reward [42] for
additional 30 epochs with a fixed learning rate of 5× 10−6. In the inference stage, the beam
search strategy was adopted [8] with a beam size of three.

4.4. Ablation Studies

To validate the impacts of different modules and settings in our models on the cap-
tioning performance, we conducted extensive ablations including different numbers of
encoding and decoding layers L, different values of the hyperparameter λ, and different
PoS-guided attention mechanisms.

(1) Effect of encoding and decoding layers: To investigate the impact of the number
of encoding and decoding layers, we applied the single-attention-based PoS-Transformer
(SAT-PoS-Transformer) model with different numbers of stacked blocks L ∈ {1, 2, 4, 6}
on Flickr30k, as well as the dual-attention-based PoS-Transformer (DAT-PoS-Transformer)
model on MSCOCO and Flickr30k, respectively. For simplicity, the numbers of stacked
blocks in the encoder and decoder were set to the same value. Table 1 shows the perfor-
mance of SAT-PoS-Transformer and DAT-PoS-Transformer with different L’s on Flickr30k.
We can observe that these two models achieved the best performance when using four
encoding and four decoding layers. This was due to the fact that deeper layers enabled

https://Nlp.stanford.edu/software/tagger.shtml#Download
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the encoder of the captioner to represent more complicated relationships between ob-
jects and the decoder to provide more discriminative latent vectors for the prediction
of words. However, if the number of layers becomes large, the risk of overfitting also
increases. Table 2 reports the performance of DAT-PoS-Transformer with different L’s on
the MSCOCO dataset. Similarly, we can see that the generated image captions by our pro-
posed models reached the highest scores on all metrics when L = 4. Thus, all subsequent
experiments used four layers.

(2) Effect of the hyperparameter λ: To analyze the impact of the hyperparameter λ on
the captioning performance, we applied our PoS-Transformer models with different values of
λ on MSCOCO and Flickr30k, respectively. The experimental results of SAT-PoS-Transformer
and DAT-PoS-Transformer on Flickr30k are illustrated in Table 3. It can be seen that DAT-PoS-
Transformer with λ = 0.75 had the highest scores on most metrics and a pretty high BLEU-4
and ROUGE-L scores (only slightly lower than the highest 0.287 and 0.492, respectively).
For SAT-PoS-Transformer, it reached relatively optimal performance when λ = 1.00. As can
be seen from Table 4, when the coefficient λ of the PoS loss function increased to 0.50, DAT-
PoS-Transformer obtained the highest scores in terms of all metrics on MSCOCO.

(3) Effect of single attention and dual attention: As shown in Tables 1 and 3, the image
captions generated by SAT-PoS-Transformer with L = 4 and λ = 1.00 reached the highest
scores on most metrics. It can be also observed from Table 3 that DAT-PoS-Transformer
significantly outperformed SAT-PoS-Transformer in terms of all metrics. Based on the dual
attention mechanism, the best CIDEr score increased from 0.601 to 0.612 on the Flickr30k
dataset, which validated the superiority of dual attention over single attention.

Table 1. The performance of PoS-Transformer with different numbers of encoding and decoding
Layers on Flickr30k dataset. B@1, B@2, B@3, B@4, M, R, C, and S are short for BLEU-1, BLEU-2,
BLEU-3, BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE, respectively.

L
SAT-PoS-Transformer DAT-PoS-Transformer

B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

1 0.687 0.501 0.365 0.265 0.215 0.480 0.590 0.162 0.695 0.521 0.383 0.280 0.215 0.488 0.595 0.160
2 0.685 0.505 0.368 0.269 0.219 0.482 0.593 0.164 0.698 0.523 0.384 0.282 0.219 0.489 0.598 0.164
4 0.697 0.522 0.386 0.285 0.220 0.490 0.601 0.164 0.699 0.524 0.387 0.286 0.221 0.489 0.607 0.162
6 0.690 0.512 0.374 0.271 0.222 0.484 0.597 0.161 0.696 0.518 0.380 0.278 0.219 0.488 0.586 0.158

Table 2. The performance of DAT-PoS-Transformer with different numbers of encoding and decoding
layers on MSCOCO.

L B@1 B@2 B@3 B@4 M R C S

1 0.752 0.592 0.455 0.351 0.274 0.560 1.132 0.205
2 0.755 0.594 0.459 0.356 0.278 0.563 1.139 0.209
4 0.762 0.601 0.465 0.359 0.282 0.567 1.155 0.211
6 0.756 0.595 0.460 0.355 0.280 0.564 1.146 0.210

Table 3. The performance of PoS-Transformer with different values of hyperparameter λ on
Flickr30k dataset.

λ
SAT-PoS-Transformer DAT-PoS-Transformer

B@1 B@2 B@3 B@4 M R C S B@1 B@2 B@3 B@4 M R C S

1.00 0.697 0.522 0.386 0.285 0.220 0.490 0.601 0.162 0.699 0.524 0.387 0.286 0.221 0.489 0.607 0.162
0.75 0.698 0.519 0.379 0.276 0.219 0.484 0.593 0.160 0.703 0.527 0.388 0.284 0.221 0.489 0.612 0.166
0.50 0.693 0.518 0.381 0.279 0.222 0.487 0.591 0.162 0.697 0.524 0.388 0.287 0.220 0.492 0.599 0.159
0.25 0.691 0.518 0.376 0.274 0.220 0.484 0.591 0.159 0.695 0.522 0.387 0.284 0.196 0.488 0.583 0.154
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Table 4. The performance of DAT-PoS-Transformer with different values of hyperparameter λ on
MSCOCO “Karpathy” test split.

λ B@1 B@2 B@3 B@4 M R C S

1.00 0.762 0.601 0.465 0.359 0.282 0.567 1.155 0.211
0.75 0.764 0.605 0.469 0.360 0.279 0.565 1.150 0.210
0.50 0.766 0.606 0.469 0.363 0.282 0.569 1.161 0.211
0.25 0.760 0.602 0.464 0.357 0.280 0.566 1.145 0.209

4.5. Quantitative Analysis

According to the ablation studies, we compared our best DAT-PoS-Transformer model
with the competitive methods on Flickr30k and MSCOCO datasets.

(1) Results on the MSCOCO Karpathy test splits: In Table 5, we compared DAT-
PoS-Transformer with LSTM [43], SCST [42], ADP-ATT [12], LSTM-A [44], Up-Down [13],
RFNet [45], GCN-LSTM [25], SGAE [24], AVSG [26], and ORT [15] on the offline COCO
Karpathy test split. In addition, we also compared DAT-PoS-Transformer with part-of-
speech-based image captioning methods such as PoS-Guiding [28], Inject+PoS [27], PoS-
SCAN [46], and CNM [47]. LSTM introduced a deep model with two attention mechanisms
to distill information in images down to the most salient objects. LSTM-A improved LSTM
by emphasizing semantic attributes at the decoding stage. ADP-ATT introduced a visual
sentinel and sentinel gate to adaptively determine whether to attend to the visual regions
for the word prediction. Up-Down and RFNet improved the attention mechanism by
having it learn to identify selective spatial regions, which further boosted the performance
of the captioning generation. ORT developed an object relation transformer captioning
model which explicitly incorporated spatial relationships between region features through
geometric attention. GCN-LSTM, SGAE, and AVSG used a scene graph which contained
rich semantic information to improve the image understanding. As can be seen from Table 5,
compared with the existing PoS-based methods, our method had better performance on
most metrics when optimized with the self-critical loss [42]. Remarkably, the CIDEr score
and BLEU-4 score of our model could reach 129.9% and 39.3%, which were 2% and 4%
better than the best comparison model CNM [47], respectively. In addition, other than [28]
which exploited PoS tags as switches to decide whether or not to utilize visual features at
each time step, our method did not need any PoS tagger in the test stage. Compared to [27],
which also introduced a PoS prediction model to image captioning, our PoS-Transformer
model not only overcame the limitation of dependencies between distant positions in
language modeling, but also incorporated the novel PoS-guided attention module to more
flexibly adapt to the variation of PoS for each word. Furthermore, compared with the strong
baseline (Transformer), which followed the traditional language model, the proposed PoS-
Transformer model achieved better performance on all metrics, which demonstrated the
effectiveness of our model with the PoS guidance and dual attention mechanism.

(2) Results on the Flickr30k dataset: We also compared DAT-PoS-Transformer to
other methods trained by cross-entropy loss on the Flickr30k dataset. As can be seen in
Table 6, our method surpassed all other approaches in terms of BLEU-1∼BLEU-4 and
CIDEr. The METEOR and ROUGE-L scores of our method were worse than those of
Inject+PoS [27]. Remarkably, it improved on the performance of the Inject+PoS model on
CIDEr by 0.143 points (from 0.469 to 0.612). Thus, our method achieved better performance
in comparison with the existing PoS-based models. Notably, our model had superior
performance over the strong baseline (the original Transformer model) on all metrics,
which further validated that it was effective at generating the captions with PoS guidance.
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Table 5. Comparison of image captioning performance with state-of-the-art methods on MSCOCO
“Karpathy” test split.

Model PoS
Cross-Entropy Loss Self-Critical Loss

B@1 B@4 M R C B@1 B@4 M R C

LSTM [43] % - 0.296 0.252 0.526 0.940 - 0.319 0.255 0.543 1.063
SCST [42] % - 0.300 0.259 0.534 0.994 - 0.342 0.267 0.557 1.140
ADP-ATT [12] % 0.742 0.332 0.266 - 1.085 - - - - -
Up-Down [13] % 0.772 0.362 0.270 0.564 1.135 0.798 0.363 0.277 0.569 1.201
RFNet [45] % 0.764 0.358 0.274 0.565 1.125 0.791 0.365 0.277 0.573 1.219
GCN-LSTM [25] % 0.773 0.368 0.279 0.570 1.163 0.805 0.382 0.285 0.583 1.276
SGAE [24] % - - - - - 0.808 0.384 0.284 0.586 1.278
ORT [15] % 0.766 0.355 0.280 0.566 1.154 0.805 0.386 0.287 0.584 1.283
AVSG [26] % - - - - - 0.807 0.387 0.285 0.586 1.289

PoS-Guiding [28] " 0.711 0.279 0.239 - 0.882 - - - - -
Inject+PoS [27] " 0.761 0.335 0.301 0.605 0.951 - - - - -
PoS-SCAN [46] " - - - - - 0.802 0.380 0.285 - 1.259
CNM [47] " 0.776 0.371 0.279 0.573 1.166 0.808 0.389 0.284 0.588 1.279
DAT-PoS-Transformer " 0.766 0.363 0.282 0.569 1.161 0.808 0.393 0.290 0.589 1.299

Table 6. Comparison of image captioning performance with state-of-the-art methods on Flickr30k
caption dataset under cross-entropy loss.

Methods B@1 B@2 B@3 B@4 M R C

LSTM [43] 0.663 0.423 0.277 0.183 - - -
Soft-Att [11] 0.667 0.434 0.288 0.191 0.185 - -
Hard-Att [11] 0.669 0.439 0.296 0.199 0.185 - -
ATT-FCN [48] 0.647 0.460 0.324 0.230 0.189 - -
ADP-ATT [12] 0.677 0.494 0.354 0.251 0.204 0.467 0.531
SCA-CNN [49] 0.662 0.468 0.325 0.223 0.195 - -
Transformer (Base) 0.664 0.483 0.345 0.243 0.212 0.466 0.551
BCAN [50] 0.698 0.519 0.378 0.274 0.212 0.488 0.583
PoS-Guiding [28] 0.638 0.446 0.307 0.211 - - -
Inject+POS [27] 0.694 0.498 0.355 0.254 0.251 0.538 0.469
DAT-PoS-Transformer 0.703 0.527 0.388 0.284 0.221 0.489 0.612

4.6. Qualitative Analysis

Figure 5 shows some test images and their corresponding captions and PoS sequences
generated by PoS-Transformer and the Transformer baseline, respectively.

Intuitively, the descriptions generated by PoS-Transformer were more precise and
distinguishable compared to the Transformer baseline. The reason was that by introduc-
ing the PoS information guidance, our model was encouraged to align the visual words
with the grounding visual features, while the generated captions conformed to the gram-
matical rules better. More specifically, our model could generate more fine-grained and
grounded captions than the original Transformer model. Taking the fifth image as an
example, the Transformer baseline only generated a simple sentence a baseball player holding
a bat. Instead, our model generated the caption a baseball game in progress with the batter
up at the plate, which was more fine-grained and had the same semantic meaning as the
ground truth. In addition, in the last image, our model generated the feasible sentence a
large bird with a long beak walking on a beach, while the Transformer baseline inferred the
simple but wrong sentence a bird that flying in the air. Notably, the PoS tags generated by
our model included two more ADJ (large and long) and one NOUN (beak), which made
the description more vivid and detailed. Additionally, it can be seen from Figure 5 that in
most cases, the self-attention PoS predictor was able to precisely predict the PoS tags. It is
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worth noting that the corresponding word could also be inferred correctly even if its PoS
tag was incorrect, which implied that the PoS predictor actually played a role of auxiliary
task, and by means of the beam search strategy [8], the proposed model had the capability
to correct errors on the PoS tags to some extent.

GT: A man with glasses and his eyes closed dressed in a black shirt and a necktie.

Transformer: A man in a suit poses for a picture. 

PoS-Transformer: A man wearing a suit and tie with glasses. 

PoS: DET NOUN VERB DET NOUN VERB NOUN VERB NOUN.

GT: A motorcycle in the foreground parked in a dirt parking lot.

Transformer: A motorcycle that is parked in the dirt. 

PoS-Transformer: A motorcycle parked on a dirt field next to a fence. 

PoS: DET NOUN VERB ADP DET NOUN NOUN ADP PRT DET NOUN.

GT: A boat that is decorated with flags on the water.

Transformer: A boat  is sitting in the water.

PoS-Transformer: A small boat with a flag on it in the water.

PoS: DET NOUN NOUN ADP DET NOUN ADP DET ADP DET NOUN.

GT: Two people are snowboarding down a hill fast.

Transformer: A couple of men riding down a snow covered slope. 

PoS-Transformer: Two men are snowboarding down a snowy hill.

PoS: DET NOUN VERB VERB ADP DET NOUN NOUN.

GT: A batter up at the plate in a baseball game.

Transformer: A baseball player standing next to home plate. 

PoS-Transformer:A baseball game in progress with the batter up to plate. 

PoS: DET NOUN NOUN ADP NOUN ADP DET NOUN ADV PRT NOUN.

GT: A red plane flying through a blue sky.

Transformer: A red plane is flying in the sky.

PoS-Transformer: A red fighter jet flying through a blue sky. 

PoS: DET ADJ NOUN NOUN VERB ADP DET NOUN NOUN.

GT: The man and the little girl are walking past the statue.

Transformer: A large building with a statue in front of it.

PoS-Transformer: People walking past a statue in a town square.

PoS: NOUN VERB ADP  DET NOUN ADP DET NOUN NOUN.

GT: A bird standing on top of a beach next to water.

Transformer: A bird that is flying in the air. 

PoS-Transformer: A large bird with a long beak walking on a beach. 

PoS: DET ADJ NOUN ADP DET NOUN NOUN VERB ADP DET NOUN.

Figure 5. Examples of captions generated by standard Transformer and our proposed model as well
as ground truths. Moreover, the PoS sequences generated by our self-attention PoS predictor are also
presented. The correct and incorrect PoS tags are colored in green and red, respectively. Generally,
our method can generate more accurate and fine-grained captions.

We further visualized the image regions attended to and the variations of gate val-
ues in the gate controller during the caption generation in Figure 6. For each word, we
mainly analyzed its gate value of the gate controller in the last decoding block since it was
directly used to infer the next word. From Figure 6, we can observe that the proposed
model was able to correctly attend to the corresponding image regions when predicting
the visual words, e.g., baseball, game, and batter, while preventing itself from attending to
any image region if a nonvisual word was being generated, such as a, process, the, etc. To be
specific, our model assigned a pretty large gate value (over 0.9) for visual words. Note
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that some nonvisual words following NOUN, such as in and up, may also be assigned gate
values larger than 0.5, which was reasonable since these words actually represented the
relationships between objects, i.e., they were closely related to the visual words. The visual-
ization experiment could further demonstrate that our PoS-Transformer model effectively
took advantage of the PoS information to adaptively adjust the effect of visual features and
language signals on the word prediction.

a baseball game in progress with the batter up to plate
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Figure 6. Visualization of attention regions in the caption generation process for PoS-Transformer
and gate value of each generated word for controlling the flow of visual features and language
signals attended to. By virtue of the PoS information and gated controller, PoS-Transformer is able
to adaptively adjust the effect of visual features and language signals on the predicted visual or
nonvisual word.

5. Conclusions

In this paper, we presented PoS-Transformer, a novel transformer-based framework
for image captioning, to separate the grammatical structures and word semantics of cap-
tions and incorporate the PoS guiding information into the modeling. PoS-Transformer
seamlessly integrated the PoS prediction module with the transformer-based captioner for
a more grounded and fine-grained image captioning. By virtue of two proposed attention
mechanisms, the PoS-Transformer decoder effectively exploited the PoS information to
guide the caption generation, which not only adaptively adjusted the weights between
visual and language signals for more grounded captioning, but leveraged the PoS informa-
tion to generate more fine-grained sentences. Extensive experiments as well as ablation
studies demonstrated that our method could significantly boost the performance of image
captioning on top of the transformer-based architecture and substantially outperform other
PoS-based image captioning models on the Flickr30k and MSCOCO datasets.

The current PoS-Transformer model focuses on introducing syntactic structures into
the conventional language model in image captioning, which can play a better role in
robot interaction, preschool education, and other application fields. Additional visual and
semantic encoding approaches, such as exploiting the image attributes and the relative
geometry relations between the objects, are not integrated with PoS-Transformer. However,
it has been validated that these approaches can provide much richer visual and semantic
information to facilitate a high-quality caption generation. In our future work, we will
further enrich the representations of visual and semantic concepts to boost the performance
of PoS-Transformer.



Appl. Sci. 2022, 12, 11875 16 of 18

Author Contributions: Conceptualization, D.W. and B.L.; methodology, D.W. and B.L.; software,
D.W. and B.L.; validation, D.W. and B.L.; formal analysis, Y.Z. and R.Y.; investigation, D.W. and M.L.;
resources, D.W.; data curation, D.W. and B.L.; writing—original draft preparation, D.W.; writing—
review and editing, D.W., B.L., Y.Z. and P.L.; visualization, D.W. and B.L.; supervision, M.L.; project
administration, D.W.; funding acquisition, B.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant
number no. 62276266, no. 61801198, no. 62272461), the Graduate Innovation Program of China
University of Mining and Technology (grant number 2022WLJCRCZL270), and by the Postgraduate
Research & Practice Innovation Program of Jiangsu Province (grant number SJCX22_1134).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These datasets
can be found here: https://cocodataset.org/ (accessed on 15 November 2022) and http://shannon.
cs.illinois.edu/DenotationGraph/ (accessed on 15 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, N.; Liu, A.; Wong, Y.; Zhang, Y.; Nie, W.; Su, Y.; Kankanhalli, M.S. Dual-Stream Recurrent Neural Network for Video

Captioning. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2482–2493. [CrossRef]
2. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems; NIPS: Lake Tahoe, NV, USA, 2012; pp. 1106–1114.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances

in Neural Information Processing Systems; NIPS: Montreal, QC, Canada, 2015; pp. 91–99.
5. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
6. Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

7. Kalchbrenner, N.; Blunsom, P. Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 1700–1709.

8. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information
Processing Systems; NIPS: Montreal, QC, Canada, 2014; pp. 3104–3112.

9. Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [CrossRef]
[PubMed]

10. Thompsonschill, S. Dissecting the language organ: A new look at the role of Broca’s area in language processing. In Twenty-First
Century Psycholinguistics: Four Cornerstones; Routledge: New York, NY, USA, 2005 ; pp. 313–330.

11. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image
caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France,
6–11 July 2015; pp. 2048–2057.

12. Lu, J.; Xiong, C.; Parikh, D.; Socher, R. Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 375–383.

13. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6077–6086.

14. Yu, J.; Li, J.; Yu, Z.; Huang, Q. Multimodal Transformer with Multi-View Visual Representation for Image Captioning. IEEE Trans.
Circuits Syst. Video Technol. 2020, 30, 4467–4480. [CrossRef]

15. Herdade, S.; Kappeler, A.; Boakye, K.; Soares, J. Image captioning: Transforming objects into words. arXiv 2019, arXiv:1906.05963.
16. Guo, L.; Liu, J.; Zhu, X.; Yao, P.; Lu, S.; Lu, H. Normalized and geometry-aware self-attention network for image captioning. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 10327–10336.

17. Cornia, M.; Stefanini, M.; Baraldi, L.; Cucchiara, R. Meshed-memory transformer for image captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10578–10587.

https://cocodataset.org/
http://shannon.cs.illinois.edu/DenotationGraph/
http://shannon.cs.illinois.edu/DenotationGraph/
http://doi.org/10.1109/TCSVT.2018.2867286
http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://www.ncbi.nlm.nih.gov/pubmed/11283309
http://dx.doi.org/10.1109/TCSVT.2019.2947482


Appl. Sci. 2022, 12, 11875 17 of 18

18. Pan, Y.; Yao, T.; Li, Y.; Mei, T. X-linear attention networks for image captioning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10971–10980.

19. Ji, J.; Luo, Y.; Sun, X.; Chen, F.; Luo, G.; Wu, Y.; Gao, Y.; Ji, R. Improving image captioning by leveraging intra-and inter-layer
global representation in transformer network. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC,
Canada, 2–9 February 2021; Volume 35, pp. 1655–1663.

20. Luo, Y.; Ji, J.; Sun, X.; Cao, L.; Wu, Y.; Huang, F.; Lin, C.; Ji, R. Dual-level Collaborative Transformer for Image Captioning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; pp. 2286–2293.

21. Zhang, X.; Sun, X.; Luo, Y.; Ji, J.; Zhou, Y.; Wu, Y.; Huang, F.; Ji, R. RSTNet: Captioning with Adaptive Attention on Visual and
Non-Visual Words. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN,
USA, 20–25 June 2021; pp. 15465–15474.

22. Liu, W.; Chen, S.; Guo, L.; Zhu, X.; Liu, J. CPTR: Full Transformer Network for Image Captioning. arXiv 2021, arXiv:2101.10804.
23. Li, G.; Zhu, L.; Liu, P.; Yang, Y. Entangled transformer for image captioning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 8928–8937.
24. Yang, X.; Tang, K.; Zhang, H.; Cai, J. Auto-encoding scene graphs for image captioning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 10685–10694.
25. Yao, T.; Pan, Y.; Li, Y.; Mei, T. Exploring Visual Relationship for Image Captioning. In Proceedings of the European Conference on

Computer Vision; Springer: Munich, Germany, 2018; pp. 711–727.
26. Zhao, S.; Li, L.; Peng, H. Aligned visual semantic scene graph for image captioning. Displays 2022, 74, 102210. [CrossRef]
27. Zhang, J.; Mei, K.; Zheng, Y.; Fan, J. Integrating Part of Speech Guidance for Image Captioning. IEEE Trans. Multimed. 2021,

23, 92–104. [CrossRef]
28. He, X.; Shi, B.; Bai, X.; Xia, G.; Zhang, Z.; Dong, W. Image Caption Generation with Part of Speech Guidance. Pattern Recognit.

Lett. 2019, 119, 229–237. [CrossRef]
29. Deshpande, A.; Aneja, J.; Wang, L.; Schwing, A.G.; Forsyth, D. Fast, diverse and accurate image captioning guided by part-of-

speech. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 10695–10704.

30. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems; NIPS: Long Beach, CA, USA, 2017; pp. 5998–6008.
32. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.
33. Karpathy, A.; Joulin, A.; Fei-Fei, L. Deep fragment embeddings for bidirectional image sentence mapping. arXiv 2014,

arXiv:1406.5679.
34. Young, P.; Lai, A.; Hodosh, M.; Hockenmaier, J. From image descriptions to visual denotations: New similarity metrics for

semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2014, 2, 67–78. [CrossRef]
35. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3128–3137.
36. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.
37. Satanjeev, B. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In

Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Ann Arbor, MI, USA, 25–30 June 2005;
pp. 228–231.

38. Szpakowicz, S. Text summarization branches out. In Proceedings of the 42nd Annual Meeting of the Association for Computa-
tional Linguistics, Barcelona, Spain, 21–26 July 2004.

39. Vedantam, R.; Lawrence Zitnick, C.; Parikh, D. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4566–4575.

40. Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. Spice: Semantic propositional image caption evaluation. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 382–398.

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-critical sequence training for image captioning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1179–1195.
43. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.
44. Yao, T.; Pan, Y.; Li, Y.; Qiu, Z.; Mei, T. Boosting Image Captioning with Attributes. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4904–4912.
45. Jiang, W.; Ma, L.; Jiang, Y.G.; Liu, W.; Zhang, T. Recurrent fusion network for image captioning. In Proceedings of the European

Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 510–526.
46. Zhou, Y.; Wang, M.; Liu, D.; Hu, Z.; Zhang, H. More Grounded Image Captioning by Distilling Image-Text Matching Model. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 4776–4785.

http://dx.doi.org/10.1016/j.displa.2022.102210
http://dx.doi.org/10.1109/TMM.2020.2976552
http://dx.doi.org/10.1016/j.patrec.2017.10.018
http://dx.doi.org/10.1162/tacl_a_00166


Appl. Sci. 2022, 12, 11875 18 of 18

47. Yang, X.; Zhang, H.; Cai, J. Learning to Collocate Neural Modules for Image Captioning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, South Korea, 27 October–2 November 2019; pp. 4249–4259.

48. You, Q.; Jin, H.; Wang, Z.; Fang, C.; Luo, J. Image captioning with semantic attention. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4651–4659.

49. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.S. Sca-cnn: Spatial and channel-wise attention in convolutional
networks for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5659–5667.

50. Jiang, W.; Wang, W.; Hu, H. Bi-Directional Co-Attention Network for Image Captioning. ACM Trans. Multim. Comput. Commun.
Appl. 2021, 17, 1–20. [CrossRef]

http://dx.doi.org/10.1145/3460474

	Introduction
	Related Work
	Approach
	Dual-Way Encoder
	Self-Attention PoS Predictor
	PoS-Guided Multimodal Decoder
	Training Details

	Experiments
	Datasets
	Evaluation Metrics
	Experimental Settings
	Ablation Studies
	Quantitative Analysis
	Qualitative Analysis

	Conclusions
	References

