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Abstract: In order to alleviate the situation that small objects are prone to missed detection and
false detection in natural scenes, this paper proposed a small object detection algorithm for adaptive
feature fusion, referred to as MMF-YOLO. First, aiming at the problem that small object pixels are
easy to lose, a multi-branch cross-scale feature fusion module with fusion factor was proposed,
where each fusion path has an adaptive fusion factor, which can allow the network to independently
adjust the importance of features according to the learned weights. Then, aiming at the problem that
small objects are similar to background information and small objects overlap in complex scenes,
the M-CBAM attention mechanism was proposed, which was added to the feature reinforcement
extraction module to reduce feature redundancy. Finally, in light of the problem of small object size
and large size span, the size of the object detection head was modified to adapt to the small object
size. Experiments on the VisDrone2019 dataset showed that the mAP of the proposed algorithm
could reach 42.23%, and the parameter quantity was only 29.33 MB, which is 9.13% ± 0.07% higher
than the benchmark network mAP, and the network model was reduced by 5.22 MB.

Keywords: multi-scale feature fusion; adaptive fusion factor; attention mechanism; small object detection

1. Introduction

As an important research topic in the field of computer vision, visual object detection
technology has a wide range of applications in the fields of swarm intelligence, security
surveillance, and the modern military [1]. Among many vision tasks, aerial detection is of
great significance for national defense and civil use. Compared with large- and medium-
sized objects whose detection accuracy has been improved to a whole new level, small
objects have the characteristics of weak features and less information, especially in satellite
remote sensing images and UAV free-angle shooting images, which are taken from similar
backgrounds or images. It is very difficult to distinguish between adjacent objects, and it is
more challenging when faced with complex environments such as low illumination and
shadow occlusion.

The rapid development of deep learning and graphics processor technology has
brought the performance of object detection algorithms to a new height. At present,
object detection algorithms based on deep learning are mainly divided into two-stage
and single-stage. The two-stage detection algorithm first generates a large number of
candidate regions on the image, and then adjusts the position and range of the object
region and classifies the object on this basis. Typical algorithms include Fast R-CNN [2],
Faster R-CNN [3], Mask R-CNN [4], and other R-CNN series algorithms. The single-
stage detection algorithm omits the generation of a priori frame, and directly generates
object category probability and prediction frame coordinate information through regression
analysis, mainly YOLO [5], SSD [6], YOLO9000 [7], YOLOv3 [8], YOLOv4 [9], and detection
algorithms such as RetinaNet [10].
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In object detection, it is generally considered that the size of the object is a small
object when it is small relative to the size of the original image, and the existing small
object definition methods are mainly divided into absolute size definition and relative size
definition [11]. Taking the definition of COCO [12] objects, a common dataset in the field of
object detection, COCO object definition, the object below 32 × 32 pixels in the figure is
a small object. The relative size definition defines a small object from the relative ratio of
the object to the image, and objects that are less than 10% of the image size or more are
small objects [13]. In this paper, according to the definition of small objects in the general
dataset COCO, objects smaller than 32 × 32 pixels are defined as small objects.

Because a small object has few pixels, its feature expression ability is weak, and there
is less representative feature information. In order to enhance the expression ability of
small object features, [14] adopted a top-up feature pyramid FPN feature fusion strategy to
fuse deep features with shallow features, which increased the possibility of object detection,
but also increased the background information. Hu J et al. [15] proposed the Squeeze and
Excite (SE) block, which dynamically refines the features and significantly enhances the
feature representation ability, but only focuses on enhancing the channel information of the
features. R2-CNN [16] introduced the attention model to reduce the influence of complex
background on small object detection and the false alarm rate, but due to the lightweight
of its backbone network, the feature extraction ability was reduced. Zhang Yin et al. [17]
proposed a feature enhancement module (FEM) for the problems of the low amount of
effective information for feature extraction of the backbone network and the weak ability
of feature map information representation. In this way, the multiple receptive field features
in the lower-level feature map are fused, which enhances the feature extraction ability, but
at the same time, brings a lot of feature redundancy.

It can be seen from the above that the detection of small objects in natural images faces
the following challenges:

• The small object has few pixels, and the object scale spans large;
• The expression ability of small object features is weak, and the detection accuracy

is low;
• The background image of the small object is complex, the background information is

highly similar to the small object, and it is easily disturbed by the background.

In response to the above challenges, we make the following contributions and propose
a small object detection algorithm combining multi-branch multi-scale feature fusion with
the fusion factor and an improved attention mechanism, referred to as MMF-YOLO.

1. For the problem of large scale changes of small objects like objects, we designed a
multi-scale, multi-path, and multi-flow feature fusion module, referred to as MMF-
Net. Among them, the features of multi-branch fusion have unique fusion factors.

2. In order to focus the “gaze” of the network on the representative local object region
after convolution and accurately separate the background information from the object
information, a new attention mechanism (M-CBAM) was designed, which was added
to the feature strengthening extraction to increase attention to the features to be
extracted, so that the convolution can pay attention to the feature map with less
sample information.

3. In order to improve the classification probability and regression coefficient of small
objects, a shallow object detector was added for the small size of small objects. Simul-
taneously, in order to reduce the computational load of the network, the detection
head in the deepest layer of the network was discarded. At the same time, in order
to ensure the correct detection of larger-sized objects in small objects, shallower and
deeper detection heads were reserved.
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2. Materials and Methods
2.1. Materials

Computer vision has been a very active research direction since entering the 21st
century. With the continuous innovation of image acquisition equipment, the explosive
growth of visual information production, the continuous improvement of machine com-
puting power, and the introduction of deep neural network model, the image processing
technology in the field of vision is changing with each passing day, and the applicable
field scenes are constantly expanding [18]. There are four mainstream tasks in computer
vision: image classification, object detection, object identification, and image segmentation,
and its technology is widely used in video analysis, remote sensing imaging [19], security
monitoring [20], and medical [21] fields. Some of the latest research on computer vision in
the field of deep learning is introduced below.

Aiming at recognizing small proportion, blurred, and complex traffic signs in natural
scenes, Liu S et al. [22] proposed a traffic sign detection method based on RetinaNet-NeXt
and adopted ResNeXt to improve the detection accuracy and effectiveness of RetinaNet,
transfer learning and group normalization to accelerate network training, and improve
the accuracy and recall of traffic sign detection. Sun X et al. [23] proposed a unified part-
based convolutional neural network (PBNet) that was specifically designed for composite
object detection in remote sensing images. A context refinement module was designed to
generate more discriminative features by aggregating local and global context information,
which enhanced the learning of part information and the ability of feature representation.
A multi-mode medical image fusion with deep learning [24] will be proposed, according
to the characters of multi-modal medical imaging, medical diagnostic technology, and
practical implementation.

2.1.1. Small Object Detection

The research on object detection in the field of deep learning has been extensively
studied, and has good effects and influence. With the development of deep learning, the
detection of small objects has gradually begun. The authors of [25] proposed a scale match-
ing method to align object scales between two datasets to obtain favorable representations
of tiny objects. Although it effectively improved the detection performance of small objects,
it required a lot of prior knowledge. SNIP [26] and SNIPER [27] use a scale regularization
strategy to guarantee that the object size is within a fixed range of images of different reso-
lutions. SNIPER uses super-resolution to recover the information of low-resolution objects,
and adopts the strategy of regional sampling to further improve the training efficiency.

The addition of a super-resolution network will increase the network overhead and
bring a burden to the network. Inspired by reference image super-resolution, EFPN [28]
proposes an extended pyramid network from the perspective of enhancing feature map
resolution to build a feature layer with more geometric details. It was designed for small
objects by S.R. Noh et al. [29], who proposed a feature-level super-resolution method
that uses high-resolution object features as supervision signals and matches the relevant
receptive fields of input and object features; however, due to the imperfect construction of
its FTT module, the restoration of the feature resolution is not effective. Chen Y et al. [30]
proposed a feedback-driven data provider to balance the loss of small object detection.
TridentNet [31] builds parallel multi-branch networks with different receptive fields by
deepening the width of the network, and generates different small object features to
improve performance, but increases the amount of network parameters. The above methods
improve the performance of small object detection to varying degrees, but they are either
for a certain type of object or not universal.

2.1.2. Feature Fusion

In the network, shallow features generally lack abstract semantic information and
rich geometric details, while deep layers are just the opposite of shallow layers. In order
to make the features have both deep fine-grained features and shallow high-resolution
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spatial position information, the study is mainly from the perspective of feature fusion.
Common fusion technologies mainly include feature splicing, feature summation, and the
multiplication of corresponding elements. Although these fusion technologies can bring
rich feature information between different stages, their processing of feature information is
indistinguishable. That is, the convolution in the forward propagation treats all features
equally. In fact, this will bring a lot of negative information, which will cause challenges to
small object detection. Therefore, it is particularly important to selectively fuse features.

Zhang G J et al. [32] improved the RCNN and FPN structures, designed and integrated
a global context network and a pyramid local context network, extracted context infor-
mation globally and locally, and introduced a spatially aware attention module to guide
the network to focus on more informative regions and generate more appropriate image
features. M2Det [33] proposed a multi-level feature pyramid network (MLFPN) to build
a more efficient feature pyramid to detect objects of different scales, using the decoding
layer of the U-shaped module as the detection object feature. This improved the detection
rate of objects, but increased the complexity of the network due to the complex U-shaped
structure. The learnable weights for feature fusion were proposed in BiFPN [34], but ig-
nored the influence of the dataset on weights. ASFF [35] proposed a data-driven pyramid
feature fusion strategy that learns a method of spatially filtering conflicting information to
suppress inconsistency, but its universality is low. Recently, Gong [36] began to study the
weights of feature fusion, and generated a set of fusion weights by statistical methods and
introduced them into the FPN structure, which further improved the detection performance
of small objects.

Although these detection algorithms have excellent detection capabilities in natural
images, their performance and application in small object detection in specific scenes are
poor such as in UAV aerial images and satellite remote sensing images.

The main algorithms of small object detection are summarized in chronological order
as shown in Table 1.

Table 1. Introduction to the mainstream algorithms of deep learning small object detection.

Chronological Algorithm Backbone Method

2015 Faster R-CNN [3] ResNet-50 It improves the fully connected layer and implements the stitching
of multi-task loss functions.

2016 YOLOv1 [5] GoogLeNet It takes the entire graph as input to the network, regressing the
location and category of the BBox directly at the output layer.

2016 SSD [6] VGG16
The use of multi-feature mapping can be comparable to
FasterRCNN in some scenarios, and the network optimization
is simple.

2017 Mask R-CNN [4] VGG16/Resnet It redesigned the backbone network structure and replaced RoI
Pooling with RoI Align.

2017 YOLOv2 [7] Darknet19 It proposes a joint training method of object detection and
classification using a new multi-scale training method.

2018 YOLOv3 [8] Darknet53 It proposes multi-scale predictions.

2019 Trident [31] ResNet It designed the Trident parallel network to increase the width of the
network and proposed the concept of parallel network.

2019 M2Det [33] VGG-16/
ResNet-101 It proposed a multi-layer feature pyramid network.

2020 EfficientFet [34] MobileNet It proposed a two-way pyramid network, BiFPN.

2020 YOLOv4 [37] CSPDarkent It adopted various training skills and improved the loss function
and maximum suppression method.

2021 EFPN [28]
Feature texture transfer (FTT) and foreground-background balance
loss functions were designed to mitigate the area imbalance of the
foreground and background.

2021 TPH-YOLOv5 [9] CSPDarknet It integrated transformer prediction heads (TPH) and CBAM
into YOLOv5.

2021 YOLOX [38] CSPDarknet It decoupled the detection head and used dynamic
sample matching.
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2.2. Methods
2.2.1. MMF-YOLO Algorithm

The YOLO series network has a simple structure and improves the speed while
ensuring the accuracy. Therefore, it has received extensive attention and application.
In order to take into account the accuracy and speed at the same time, inspired by the
YOLOX [38] network, this paper proposes the MMF-YOLO algorithm for the problems of
overlapping small objects and large scale changes in complex scenes. It uses the backbone
network of YOLOX, adds the MMF-Net multi-scale fusion module to the neck layer, and
modifies the size of the object detection head. The overall algorithm structure is shown
in Figure 1.
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Figure 1. Overall framework of the MMF-YOLO algorithm.

From Figure 1, we can see that the network structure is roughly divided into three main
bodies: the feature extraction network (backbone), the feature fusion network (neck), and
the detection head (head). The whole process of the algorithm can be simply summarized
as follows: the training images are extracted to obtain different levels of features, and then
the features of different levels are output to the detection head through feature fusion, and
the detection head completes the position adjustment of the prediction box to perform the
detection task.

The specific process is as follows: the image goes through the backbone network
CSPDarknet for feature extraction. First, the image goes through a Focus network structure
to reduce the width and height to half the original size, so the width and height infor-
mation is concentrated on the channel, and the channel is expanded to four times the
original size. Then, the number of channels is further expanded through a convolution
block, which consists of a conventional convolution, normalization, and Silu activation
functions. Then, residual blocks of four different convolution kernels are used to filter the
image information features, and to obtain four feature maps feat0, feat1, feat2, feat3 of the
middle layer, respectively. These four features are input into the MMF-Net module for
multiscale fusion.

Meanwhile, because the proportion of small objects in the picture is small, it is equiva-
lent to local information relative to the entire picture, and the detection heads with a size
of 20 × 20 in the three detection heads of the original YOLOX network are considered
global relative to small objects, which is not conducive to the identification of small objects.
Therefore, it is discarded, and in order to increase the classification score of small object
detection, the feature fusion module through which feature feat0 passes is pulled out of
a detection head.
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The following will introduce the MMF-Net module structure and the improved atten-
tion mechanism and the size-changed object detection head structure, respectively.

2.2.2. MMF-PANet Feature Fusion Module

The network mainly relies on shallow features to detect small objects because the
shallow features contain the complete shape and position information of the small objects,
which are still in the initial stage of the network and have not been fully processed. The
ability to express features is limited, and the receptive field is small. The global contextual
information perception is weak and cannot be well adapted to small object detection.
Therefore, in order to allow the shallow features to retain the spatial location information
of their small objects, increase the connection of contextual information so that it can be
fused with high-level semantics, and improve the utilization of foreground information,
we propose a cross-scale, multi-path, and multi-flow feature fusion module with fusion
factors, referred to as MMF-Net, which adds adaptive weights to each fusion branch, and
its structure is shown in Figure 2.
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Figure 2. The MMF-PANet module structure with the branch fusion factor.

As can be seen from Figure 2, MMF-Net is composed of the fusion of features between
different scales including two bidirectional fusion paths, namely the top–up and top–down
paths. Compared with the original feature fusion network, five branches are added, two of
which are the direct fusion of features across multiple levels and three skip connections,
which can avoid the loss of object information during downsampling or pooling operations.
The deep features are first fused with adjacent layers through the top–down path, while
further feature extraction is completed, and P3, P2, P1, P0 are obtained, respectively. Then,
when passing through a bottom–up aggregation path, it is fused with the features of the
top–up path output and the output of the backbone network to obtain D0, D1, and D2,
respectively. In addition, considering that feature extraction at the same time as layer-by-
layer splicing will lead to the loss of some feature information. In the feature fusion module,
we added multiple radial paths of features feat1, feat2, and feat3 produced by the backbone
network to P0, D0, D1, and D2, respectively.

Its calculation process can be expressed as:

P3 = f 1×1
conv( f eat3) (1)

P2 = Cat(P3, f eat2) (2)

P1 = Cat( f 1×1
conv( f 1×1

conv(P2)), f eat1) (3)

P0 = Cat(Cat
(

f 1×1
conv

(
f 1×1
conv(P1)

)
,

f eat0

)
, f eat3) (4)
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D0 = f 1×1
conv( f 1×1

conv(P0)) (5)

D1 = Cat( f 3×3
conv(D0), P1) (6)

D0 = Cat(Cat

Cat
(

f 3×3
conv( f 1×1

conv
(

f 1×1
conv(D1)

)
),

f eat2

)
,

f 1×1
conv(P2)

, f eat3) (7)

Equations (1)–(7) clearly show the direction of each feature in each path in the fea-
ture fusion module MMF-Net. In the formula, f 3×3

conv and f 1×1
conv represent the conventional

convolution operations with convolution kernel sizes of 3× 3 and 1× 1, respectively, Cat
represents feature map stitching operation, f eat3, f eat2, f eat1, f eat0 ∈ RC×H×W .

The feature fusion module that adds multiple paths can bring a large number of other
size features to each level, alleviating the limitation of a fixed size. The feature information
carried by each scale feature map has its own characteristics. For example, the shallow
features focus on the location, contour, and other information of the object, and the receptive
field is relatively small, which is not sensitive to global information and depends on the
context content. The deeper features mainly express the detailed information such as the
texture semantics of the object, and the receptive field is relatively large, which can take
into account the overall situation. In the fusion, all the information will be treated equally
and fused indiscriminately, which will cause a problem. The background information
of each feature is accumulated, so the network mistakenly believes that the received
information is important information, and it is also used as the main feature for subsequent
feature enhancement extraction, so it is easy to misjudge the detection of small objects and
is counterproductive.

In order to solve this problem, we added a fusion factor to each fusion path, which
can improve the scale invariance of features and reduce the interference of background
information to screen effective features for the network, reduce feature redundancy, and
enhance the representation ability of small object features. It adaptively assigns weights to
each fusion channel, and assigns different weights to the feature information from different
levels, so that the fused features have both shallow high-resolution spatial information and
deep feature detail semantic information, contacts the context content, and use the context
information to detect small objects.

We set a learnable fusion factor α for the features that flow to the fusion path, and
used weight normalization to constrain the value range of each weight so that α ∈ (0, 1).
In order to prevent the gradient from disappearing due to zero weight, given a parameter
e = 0.001, the network adjusts the weight according to the value of each feature tensor and
controls the proportion of each feature map in the fused feature information to represent
the importance of features at different scales. The dynamic adjustment of the fusion factor
determines the retention of all information in each feature. The fusion factor is added to
the optimizer as a hyperparameter, and is optimized along with the parameters of the
optimizer until an optimal weight is learned.

The feature calculation with the fusion factor added can be expressed as:

Fj = fconv(
αj[1]·Pin

j1 + αj[2]·Pin
j2 + · · ·+ αj[i]·Pin

ji

αj[1] + αj[2] + · · ·+ αj[i] + e
) (8)

where fconv represents a series of convolutional operations; αj[i] represents the ith fusion
factor of the jth layer feature; Pji represents the ith feature to be fused in the j layer; Fj
represents the feature output after fusing all the features and multiplies each input feature
with the corresponding fusion weight factor to obtain the final feature.

2.2.3. Improvements to the Attention Mechanism

In order to effectively distinguish the foreground–background information in com-
plex scenes during feature enhancement, only improving the possibility of small object
information being enhanced, we decided to add an attention mechanism with little addi-
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tional overhead to the network model, through which critical features are promoted and
suppressed that are not vital to the current task. Considering that both spatial position
information and detailed semantic information may be the key to the accuracy of small
object detection, the coordinate attention mechanism (CA) [39] and the convolutional block
attention module attention mechanism (CBAM) [40] can be used as attention mechanisms to
be added. Both CA and CBAM simultaneously filter the information of the two dimensions
of feature channel and feature space, but their internal mechanisms and impact factors
are different. Nevertheless, it is not only the type of attention mechanism that affects the
capture of an area of an intensive object, but also the location of the joining modules. Thus,
to obtain the effect of the two attention mechanisms on the network model, the following
experiments were performed on them separately, and the experimental results are shown
in Table 2.

Table 2. Effects of different attention mechanisms on the network model performance.

Attention Mechanism mAP/%

CA_v1 32.63
CBAM_v1 32.95

CA_v2 33.10
CBAM_v2 33.27

v1 in Table 2 means adding an attention mechanism between the backbone network
and the neck, while v2 means adding an attention mechanism when the neck performs
feature extraction. It can be seen from Table 1 that when CA and CBAM were added
between the backbone network and the neck, it had a negative effect on the performance
of the network. When the two were added to the neck separately, they showed different
effects. CA did not affect the network performance improvement, while CBAM increased
the mAP of the model by 0.17%. Therefore, we chose the CBAM to alleviate the problem of
information interference caused by densely connected objects.

Furthermore, in order to allow the initial features entering the attention mechanism to
better focus on the foreground information, and to filter the background information that is
highly similar to the small object, we improved the attention mechanism.

We let the initial feature f ∈ RC×H×W first pass through the channel attention mech-
anism CAM, increasing the weight on the channel and reducing the features in other
dimensions, so that the information on the channel can be focused during feature extraction.
Then, the Hadamard product of the weights output by the CAM and the initial features
is performed to obtain the intermediate features fc ∈ RC×H×W , where the information is
focused on the channel. Then, the intermediate features are input into the spatial attention
mechanism SAM, and the intermediate features go through the Sigmoid function in space,
and the weight coefficients about the spatial position are obtained based on the channel
information, and the coefficients are between (0, 1). It is multiplied with the initial feature
tensor elements one-to-one, and the feature information fs ∈ RC×H×W of the corresponding
spatial position on the channel is obtained. Finally, fc and fs are added in the channel
dimension to obtain the complementary information of the feature in the channel and space.
The effective information is prepared in advance for the next convolution, and the final
feature fcs ∈ RC×H×W is output.

Unlike the original CBAM attention mechanism, we multiplied the initial features
with the corresponding weights through the SAM attention mechanism. This was to make
the network targeted when performing feature extraction, reducing the overhead of other
dimensions, and speeding up the efficiency of the network operation. The structure of the
improved attention mechanism is shown in Figure 3.
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Figure 3 shows the overall architecture of the M-CBAM attention mechanism. The cal-
culation process of the M-CBMA attention mechanism can be represented by Formula (9):

fcs = Add( f ∗ CAM( f ), f ∗ SAM( f ∗ CAM( f ))) (9)

∗ represents the Hadamard product, that is, the corresponding multiplication of
two matrix elements, and Add represents the addition of the feature information on the
channel of the feature map.

In order to verify the effectiveness of the improved attention mechanism, we added
the basic network to the original attention mechanism CBAM and the improved attention
mechanism M-CBAM to conduct the following comparative experiments. The experimental
results are shown in Table 3.

Table 3. Comparison of the experimental results of the attention mechanism.

Attention Mechanism mAP/%

- 33.10
CBAM 33.27

M-CBAM 33.53

As can be seen from the table, compared to the mAP of the original CBAM, our
improved M-CBAM increased by nearly 0.2%, which was 0.43% higher than the ba-
sic network, which showed that our improved attention mechanism is more helpful to
the network.

2.2.4. Feature Enhancement Extraction and Object Detection Head

The small object of the natural image is highly similar to the background information,
especially at night or in the case of weak lighting conditions. In order to distinguish
between the two lots of information, we used multi-scale multi-path multi-flow feature
fusion module processing; although it can bring rich information at each scale, it can
also inevitably bring feature overlap and background information that is highly similar
to the object. In order to obtain more information that is beneficial to small objects, we
performed feature enhancement extraction after feature fusion, and further filtered the
fused information.

The feature enhancement extraction module (FEE) is a double residual structure, as
shown in Figure 4, which consists of two paths. One of the paths uses the convolution
kernel of 3 × 3 conventional convolution as the filter to extract features. Meanwhile, in
order to extract the effective information of a large number of small objects, we chose to
place the M-CBAM into the 1 × 1 filter and the 3 × 3 filter between filters. The purpose was
to make the network focus on the channel and space dimensions before filtering the feature
information, thus focusing the effective information of each fused feature on the channel
and space while discarding unnecessary features. The structure of the feature enhancement
extraction module with the addition of the M-CSAM attention mechanism is shown in
Figure 4.
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Figure 4. Simplified structure diagram of FEE.

Figure 4 shows the simple structure of the feature extraction module, M-C represents
M-CBAM, and its specific calculation process can be expressed as:

Pa = Add

(
f 1×1
conv(x), f 3×3

conv

(
C
(

f 1×1
conv

(
f 1×1
conv( f in)

))))
(10)

Pb = f 1×1
conv(x) (11)

f out = Add(Pa, Pb) (12)

Among them, f in represents the input feature; Pa represents the feature output in
the main path in the residual structure; Pb represents the secondary residual edge feature
output; and f out is the final output feature.

Unlike the large- and medium-sized objects in the image, the small objects are small in
size, and some small objects even have only a few pixels to a dozen pixels, so their detection
mainly relies on shallow features. Since the features of the shallow network have not been
subjected to a large number of downsampling and the information about the small object in
the features has not been lost, it is necessary to use the output of the shallow features as the
detection head while simultaneously considering that the small-size detection head is not
helpful for small object detection, and its existence will increase the network calculation
amount. After balancing the two, we decided to abandon the small-size detection head
extended by the deep network. Because the small object pixels were between 0 and 32 × 32,
and the scale changed greatly, detection heads of different scales were required to complete
the detection task. Therefore, the detection head extended from the shallower and deeper
features in the original network was retained. Finally, the size of the detection head was
determined as 160 × 160, 80 × 80, and 40 × 40, and its structure is shown in Figure 5.
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It is worth noting that in order to avoid conflicts between classification and regres-
sion tasks in the same convolution, the structure of the MF-YOLO algorithm inherits the
detection head of the YOLOX decoupling method, and its structure is shown in Figure 6.
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Figure 6. Comparison between the coupling detector and decoupling detector.

Figure 6 shows the two structures of the detector coupling head and the decoupling
head. Our network used two 1 × 1 convolutions to complete the detection regression and
classification tasks, respectively. This structure can speed up the model convergence speed
and improve the detection accuracy.

3. Experiment
3.1. Experiment Platform

The experiment in this paper was based on the Ubuntu18.04 operating system, the deep
learning environment was equipped with the CUDA11.0 and Pytorch1.7.0 frameworks, and
the NIVDIA RTX3080Ti GPU was used to accelerate the model training. Taking YOLOX as
the experimental base model, we used the YOLOXs model as the pre-training weight, and
performed the network improvement and optimization on it.

3.2. Introduction to the Dataset VisDrone

In order to verify the effectiveness of the proposed method for problems such as small
object continuity and occlusion, we selected VisDrone [41], a dataset captured by drones
that contains a large number of scale-variant objects, occlusions, and class imbalances with
complex backgrounds and variable angles. It is collected by the AISKYEYE team at the
Lab of Machine Learning and Data Mining, Tianjin University, China. It was shot using
different types of drones and included various scenes in various cities such as low light,
rainy weather, exposure, etc. Unlike conventional detection datasets, each image contains
hundreds of objects to be detected, and the dataset contains a total of 2.6 million annotated
boxes, and some objects that are very close to each other may also have overlapping
bounding boxes. Because the dataset is captured by drones, the annotation frames of
pedestrians and distant objects are very small, which poses a certain challenge to the ability
of the model to generate an a priori frame. The object size distribution of the VisDrone
dataset is shown in the Figure 7.

The training pictures of different scenes and different climates in the VisDrone dataset
are shown in Figure 8.
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Figure 7. The distribution of the number of small objects in the VisDrone dataset and the distribution
of the ground truth boxes. (a,b) Description of the size scale and number of objects in the dataset,
respectively.(a) Ratio of the object length to width and the number of occurrences of each ratio in the
dataset image. It can be seen from the figure that the object size ratio is mainly concentrated between
0 and 2. (b) Distribution of the number of objects of different sizes. The abscissa represents the object
size, and the ordinate represents the quantity of objects of different sizes. It can be seen from the
figure that the object size is mainly concentrated within 800 pixels, which is much smaller than the
32 × 32 size.
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3.3. Model Training and Evaluation Metrics

In this experiment, the small object dataset was divided into the training set and
verification set according to the ratio of 9:1, and Mosaic was used for image input into the
network. The experiment used transfer learning, a total of 130 epochs were trained, the
first 50 epochs were frozen training, the last 80 epochs were thawed, the initial learning
rate was set to 0.01; in the frozen training stage, the learning rate increased according to the
rate of 0.001 and in the thaw training according to the rate of 0.0001.

The experiments in this paper used evaluation metrics commonly used in deep learn-
ing, namely precision (Precision, P), recall (Recall, R), average precision (Average Preci-
sion, AP), and mean average precision (Mean Average Precision, mAP), and the model
parameter size.

AP is the area enclosed by the horizontal and vertical coordinates and the curve. The
calculation formulas of AP and mAP are:

AP =

1∫
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where P and R represent precision and recall, respectively.

4. Analysis of Experimental Results
4.1. Ablation Experiment Results

In order to verify the effectiveness of the proposed modules in the MMF-YOLO
algorithm for small objects, the VisDrone dataset was used to perform ablation experiments
on each module based on the YOLOXs model.

Head in Table 4 represents the detection head with the modified size, and Experiment µ

represents the experimental results of the basic network. Experiments ¬ and  indicate that
the base network was added to MMF-Net with the adaptive fusion factor and MMF-Net
without the fusion factor, respectively.

Table 4. Ablation experiment results.

Order
MMF-Net

M-CBAM Head mAP Paras/MB
+α −α

¬
√

35.73 38.12


√
35.32 38.12

®
√ √

41.21 29.3
¯

√ √
38.01 29.3

°
√

33.53 34.27
±

√ √
39.94 27.75

²
√

36.51 27.67
³

√ √ √
41.69 29.37

´
√ √ √

42.23 29.33
µ 33.10 34.11

Comparing the two with the basic network, it can be found that the proposed MMF-
Net multi-branch cross-scale skip connection fusion module could effectively improve the
detection accuracy of small objects, increase mAP to more than 35%, and only sacrificed
a small number of parameters. Compared with the baseline, they increased by 2.63% and
2.42%, respectively. Comparing the two, it can be seen that the fusion factor α could further
improve the accuracy of small object detection and increase the mAP of small objects to
35.73% without bringing any parameters.

Experiment ° indicates that adding the improved M-CBAM attention mechanism to
the base network increased mAP by 0.44%. Experiment ² showed that when the improved
Head module was added, the mAP of the model increased by 3.41% compared with the
basic network, and the size of parameters was reduced by 6.44 MB. It was proven that the
added large-size detection head was better than the small-size detection head for the task
of small object detection, and would reduce a lot of computation. Experiment ´ means
that the α-MMF-Net module and the M-CBAM attention mechanism and the improved
detection head were added to the network at the same time, and its mAP reached 42.23%.
Compared with the basic network, the mAP increased by nearly 10%, and the number
of model parameters was simplified to 29.33 MB, which was reduced by nearly 5 MB
compared to the original network, which verified the effectiveness of the proposed module
for small object detection tasks.

4.2. Comparative Experiments

In order to verify the reliability of the proposed network, we roughly divided the train-
ing into three stages, where each stage had 40 epochs, and randomly selected
one epoch in each stage to evaluate the baseline network YOLOX and MMF-YOLO, the
results of which are shown in Table 5.
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Table 5. Model evaluation at different stages.

40 Epoch/mAP (%) 80 Epoch/mAP (%) 120 Epoch/mAP (%)

YOLOX MMF_YOLO YOLOX MMF_YOLO YOLOX MMF_YOLO
11.57 13.68 31.84 40.35 33.23 41.45

We select the 40th epoch, the 80th epoch, and the 120th epoch for evaluation in the
three stages. As can be seen in Table 5, the benchmark and MMF-YOLO networks had low
mAPs in the 40th epoch experiment, but our network was slightly better, at 2.11% higher
than YOLOX. At the 80th epoch, after sufficient training, the network began to converge.
The mAP of YOLOX and MMF-YOLO reached a high level, while the mAP of MMF-YOLO
was higher, reaching 40.35%, which was 8.51% higher than that of YOLOX. At the 120th
epoch, the network was relatively stable and had completely converged. The accuracy
of the two networks was close to the best level, reaching 33.2% and 41.45%, respectively.
Our network showed better performance than the benchmark network at different stages.
Although the performance in the first stage was poor, the overall level was higher, which
proves that our network can effectively improve the accuracy of small object detection and
proves the reliability of the network.

In order to further verify the effectiveness of the proposed algorithm for small ob-
ject detection, we experimented with the MMF-YOLO algorithm and other mainstream
algorithms for object detection on the VisDrone dataset, and set the input image size to
640 × 640. Due to the limitation of the experimental equipment, some experimental data
were obtained by referring to the literature. The experimental results are shown in Table 6.

Table 6. Comparative experimental results.

Order Model Backbone Input Resolution mAP/% Paras/MB
¬ YOLOv5-L [9] CSPDarknet 1920 × 1920 28.88

 TPH-YOLOv5 [9] CSPDarknet 1536 × 1536 39.18

® Faster R-CNN [42] ResNet-50 1000 × 600 21.7

¯ Cascade R-CNN [42] ResNet-50 1000 × 600 23.2

° RetinaNet [42] ResNet-50 1000 × 600 13.9 36.53
± YOLOv3 [43] Darknet53 800 × 1333 22.46 234.9
² SSD [43] VGG16 800 × 1333 21.10 95.17
³ YOLOv4 [44] CSPDarknet 1000 × 600 30.7 244.11
´ YOLOX CSPDarknet 640 × 640 33.10 34.11
µ MMF-YOLO CSPDarknet 640 × 640 42.23 29.33

It can be seen from Table 6 that our network MMF-YOLO performed better on mAP,
up to 42.23%, and its input resolution was only 640 × 640, and the parameter size was
only 29.33 MB, which was 4.74 MB less than the original network. Compared with other
networks in the YOLO series, YOLOv5, YOLOv3, YOLOv4, the mAP increased by about
14%, 20%, and 12%, respectively, which may be further improved if the input resolution is
the same. Compared with the TPH-YOLOv5 network, the mAP increased by 3.05%, and it
used YOLOv5-L as the backbone network, while our network used the depth and width of
YOLOX-s, so its parameters were much larger than the improved network. Compared with
other mainstream algorithms with different input resolutions, the mAP also had different
improvements. Compared with the RetinaNet algorithm, the mAP had been improved
by 28.33%.

Table 7 shows the model parameter size and model calculation amount of the main-
stream deep learning algorithms. From Table 8, it can be seen that MMF-YOLO had the least
model parameters, only 29.33 MB, which was 5.22 MB less than the benchmark network,
sacrificing some computational complexity. The complexity increased to 63.5 G, which may
be the amount of computation brought by the process of increasing multiple fusion paths.
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Table 7. Comparison of the model parameters and computational amount.

Order Model Paras/MB FLOPs

¬ YOLOv5-L 178.09 114.413 G
 Faster R-CNN 522.21 402.159 G
® RetinaNet 36.53 166.711 G
¯ YOLOv3 234.9 155.249 G
° SSD 95.17 277.8 G
± YOLOv4 244.11

² YOLOX 34.11 26.657 G
³ MMF-YOLO 29.33 63.562 G

Table 8. Comparison of various types of AP between the mainstream algorithms and the MMF-
YOLO algorithm.

Model Car
/%

Bus
/%

Truck
/%

Van
/%

Pedestrian
/%

Motor
/%

People
/%

Tricycle
/%

Awn-Tri
/%

Bicycle
/%

TPH-YOLOv5 [9] 68.9 61.8 45.2 49.8 29.0 30.9 16.8 27.3 24.7 15.7
Faster R-CNN [42] 51.7 31.4 19.0 29.5 21.4 20.7 15.6 13.1 7.7 6.7
Cas R-CNN [42], * 54.6 34.9 21.6 31.5 22.2 21.4 14.8 14.8 8.6 7.6

RetinaNet [42] 45.5 17.8 11.5 19.9 13.0 11.8 7.9 6.3 4.2 1.4
YOLOv4 [44] 64.3 44.3 22.7 22.4 24.8 21.7 12.6 11.4 7.6 8.6

YOLOv3-LITE [45] 70.8 40.9 21.9 31.3 34.5 32.7 23.4 15.3 6.2 7.9
YOLOX 69.4 46.6 42.3 40.2 33.0 34.7 22.1 22.5 12.4 11.3

MMF-YOLO 77.7 58.6 54.19 49.12 47.97 40.4 30.4 29.4 15.39 19.2

* Cas R-CNN is Cascade R-CNN.

Table 8 shows a comparison of the various class accuracies of mainstream networks
and our algorithm. From Table 5, it can be seen that the AP of each category of Bi-YOLOX
was higher than other one-stage classical network algorithms, and the car category with
the highest AP reached 77.7%, which was 8.3% higher than the basic network and 32.2%
higher than that of RetinaNet.

Compared with the prototype network, the bus category was improved by up to 12%,
40.8% higher than RetinaNet, and the pedestrian class with high missed detection rate and
false detection rate was increased by as much as 14.97%. For the bicycle category with
a smaller object size, AP increased by 8%. Compared with TPH-YOLOv5, the accuracy of
MMF-YOLO in the three categories of bus, van, and awning-tricycle was slightly inferior,
but the difference between the two was not large. This is because the resolution of its
input image was much higher than that of the input image of the MMF-YOLO network.
If the size of the input image is the same, the MMF-YOLO network is likely to overtake
TPH-YOLOv5. Compared with the base network, the APs of each class of our network
had different degrees of improvement and were higher than their average accuracy. In
summary, the improved algorithm in this paper has significant advantages over other
algorithms in terms of the average detection accuracy or category accuracy or model size.

Figure 9 visually shows the accuracy comparison of each category between the clas-
sical network and the MMF-YOLO network. It is clear from Figure 9 that our network
occupied a high position in most categories and was higher than every category in the
original network.
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4.3. Visualize the Results

In order to analyze the detection results of the algorithm more directly, we randomly
selected sample images of small objects in the VisDrone test set for testing, and visualized
the comparison and analysis. Due to the rotation of the picture taken by the drone, the
object in the picture is blurred and the size of the distant object is small. Figure 10 shows
the detection results of a complex background, object occlusion, and multi-scale dense
small objects in the VisDrone dataset, respectively.
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Figure 10. Result detection of small objects in each scene, various weather, and different lighting
conditions in the VisDrone dataset. (a) represents the image to be detected, (b) represents the
detection result of the YOLOX model, and (c) represents the detection result of the MMF-YOLO model.
(1) represents the situation of a complex background under low light at night. It can be seen from
(1) that the YOLOX network had more missed detection instances for the people class, and some van
classes were incorrectly identified as the car class, and pedestrian and motor were detected as the
pedestrian class. However, the MMF-YOLO network is able to avoid these problems by correctly
detecting classes such as cars and people. The analysis showed that the pixels in the dataset such as
people are highly similar to the background, and the YOLOX network mistakenly identifies them
as background information, resulting in missed detection. (2) represents a dense small object with
many overlapping objects. The YOLOX network has different degrees of missed detection of the
people, pedestrian, and tricycle categories, and misidentified background information such as truck
categories, and our network could not only correctly detect these categories, but also had a high
level of confidence. (3) and (4) show the detection results of different scenes during the day and
under strong light, respectively. There were a lot of missed detections in the YOLOX detection results,
and the MMF-YOLO network could not completely detect small objects. However, compared with
the YOLOX network detection results, it was greatly improved, and it could detect small objects
that people may not be able to distinguish at a glance. (5) displays the detection results of small
objects with relatively large object pixels under the condition of weak night light. Both YOLOX and
MMF_YOLO networks correctly detected small objects of larger size, but the MMF_YOLO networks
generally had a high level of confidence and were able to detect small objects with very few pixels
that are not easily discoverable such as the motor and pedestrian categories.



Appl. Sci. 2022, 12, 11854 18 of 20

5. Conclusions

The factors affecting the detection accuracy of small objects mainly include the size
of the object pixel, background information being highly similar to the object pixel, object
overlap, and pixel blur. According to the problems of small object scale, large object
scale span in the image, and similar object and background information, we proposed
an improved MMF-YOLO algorithm. In order to alleviate the problem that the scale of small
objects is large and the object information is highly similar to the background information,
a feature fusion module capable of adaptive learning was proposed. By adding cross-scale
paths and skip connections, it brings deep high-level semantic information and shallow
spatial location information to fixed-size features, and filters redundant features for fusion
features through adaptive fusion factors such as the improved attention mechanism M-
CBAM, adding weight to the object information, filtering background information, and
overcoming the problem of object overlap. Finally, by adjusting the size of the object
detection head, the algorithm is adapted to the detection of objects of different scales,
which increases the probability of small objects being detected. Experiments show that the
proposed algorithm can significantly improve the mAP of small objects by 10%, and the
size of the parameters was reduced by about 5 MB.

Although the proposed algorithm improved the detection accuracy of small objects,
the detection effect of small objects with only a few pixels in the case of being occluded
was generally average, and the optimization of the prediction frame was not considered.
Therefore, this will be strengthened in future work.
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