
Citation: Kim, E. Adaptive Dynamic

Search for Multi-Task Learning. Appl.

Sci. 2022, 12, 11836. https://doi.org/

10.3390/app122211836

Academic Editor: Andrea Prati

Received: 23 September 2022

Accepted: 17 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Adaptive Dynamic Search for Multi-Task Learning
Eunwoo Kim

School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
eunwoo@cau.ac.kr

Abstract: Multi-task learning (MTL) is a learning strategy for solving multiple tasks simultaneously
while exploiting commonalities and differences between tasks for improved learning efficiency and
prediction performance. Despite its potential, there remain several major challenges to be addressed.
First of all, the task performance degrades when the number of tasks to solve increases or the tasks
are less related. In addition, finding the prediction model for each task is typically laborious and can
be suboptimal. This nature of manually designing the architecture further aggravates the problem
when it comes to solving multiple tasks under different computational budgets. In this work, we
propose a novel MTL approach to address these issues. The proposed method learns to search in
a finely modularized base network dynamically and to discover an optimal prediction model for
each instance of a task on the fly while taking the computational costs of the discovered models
into account. We evaluate our learning framework on a diverse set of MTL scenarios comprising
standard benchmark datasets. We achieve significant improvements in performance for all tested
cases compared with existing MTL alternatives.

Keywords: multi-task learning; dynamic model search; cost-adaptive solution; memory efficiency;
destructive interference

1. Introduction

Undoubtedly, deep learning has been a popular choice of learning strategies in many
fields of study [1] and has achieved remarkable success in solving challenging problems
in computer vision and machine learning [2–6]. To that end, it became a general trend
for practitioners to develop a neural network model specifically tailored for a given task
to improve the performance [4,6,7]. With high memory requirements for an increasing
number of tasks as well as manual efforts in designing the architectures, however, this
approach (i.e., one network for a single task) is often found to be non-scalable and presents
challenges to be employed for multifunctional devices with limited resources [8].

To address this issue, multiple tasks are learned simultaneously via a shared network
architecture in a multi-task learning regime (MTL) [9,10]. MTL is a learning strategy for
solving multiple tasks at the same time while exploiting commonalities and differences across
tasks. This learning strategy turned out to be effective for diverse applications [3,11–16].
Nonetheless, there remain several challenges that need addressing. First, the performance
can degrade when the number of tasks to be learned is high or the tasks are not closely
related [17,18]. Second, manually designing novel architectures for MTL is challenging due to
the difficulty of curating optimal prediction models. Last but not least, a naïve MTL approach
entails highly demanding efforts when cost-adaptivity is required (i.e., performing tasks
adaptively for different computational and memory costs). This also requires searching for
the corresponding network models manually. Despite the practical benefit of tackling it, this
combinatory problem has not been addressed rigorously as of yet.

In this work, we propose a novel MTL approach that is cost-adaptive and enables
dynamic model search. Given a computation budget, our approach produces a network
suited for each task automatically (without the need to design the architecture) on the fly
and instance-wise (i.e., a network for an instance). The proposed approach provides a

Appl. Sci. 2022, 12, 11836. https://doi.org/10.3390/app122211836 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211836
https://doi.org/10.3390/app122211836
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0840-0044
https://doi.org/10.3390/app122211836
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211836?type=check_update&version=1

Appl. Sci. 2022, 12, 11836 2 of 16

wide range of solutions with respect to different computational budgets for each task, as
shown in Figure 1. This is achieved by exploring multiple network models automatically
(without the need to manually design the architecture) on the fly and instance-wise in a
single learning procedure. To this end, we develop a unified framework that consists of two
major components, namely backbone and search networks. The backbone network provides
a pool of candidate models of different sizes and configurations, from which the search
network selects a set of models of different sizes that is most suitable for a given instance
with different computational requirements. To offer diverse choices of candidate models,
we finely modularize the backbone architecture that constitutes the basic building blocks
of disjointed collections of parameters. Then, we construct a new modularized residual
block containing the basic building blocks to enrich the search space for competitive
dynamic search. The proposed framework is trained for the task performance as well as
the computational cost using stochastic gradient descent in an alternating manner. The
overall framework of the proposed approach is illustrated in Figure 2. Once the training is
complete, the search network can discover different models of choice trading off between
the performance and the computational cost for each instance of a task. This can save a
significant amount of time and effort in training models of different costs individually.

Figure 1. A graphical illustration for a cost-adaptive search of the proposed approach on three tasks
(classification datasets). For each instance of a task, ours method discovers a set of different models
(represented by blue circles from A to D shown to the right of the figure) trading off between task
performance and computational cost in the presented search network, whereas existing model search
approaches can find only a single model (represented by either N, K, or M).

Figure 2. Overall framework of the proposed method which consists of two major components:
backbone and search networks. The proposed method updates the parameters (orange dotted
lines) for the chosen models in the backbone and the search network by considering both task
performance (loss) and computational cost (regularizer). The chosen models have trade-offs between
task performance and computational cost shown in the top right.

Appl. Sci. 2022, 12, 11836 3 of 16

We evaluate the proposed approach for a range of multi-task learning scenarios using
the standard image classification datasets. The experimental results show that the proposed
dynamic search method not only achieves higher classification accuracy in the target tasks
compared with other existing MTL approaches with a notable performance margin but
also provides cost-adaptive solutions. Interestingly, the proposed method can address
task difficulty (i.e., searching models with low and high computation costs for easy and
hard tasks, respectively) and implicitly group similar instances across tasks (datasets).
We further provide comprehensive analyses to validate the effectiveness of the proposed
approach. The contributions of this work are mainly fourfold:

• We propose a novel MTL approach that simultaneously solves the problem of interfer-
ence among instances, manual design efforts, and cost-adaptive search.

• Our cost-adaptive search enables producing multiple models of different costs in a
single shot rather than learning a single model of a cost at a time.

• We present a new modularized residual block to enrich the search space and encourage
discovering high-performance models.

• The experimental results show the superiority of the proposed method compared to
existing strong MTL approaches for a diverse set of MTL scenarios.

This paper is organized as follows. In Section 2, we briefly review the related works on
multi-task learning, resource-efficient learning, and dynamic model search. The proposed
method for discovering multiple models by dynamic model search is described in Section 3.
In Section 4, we present various experimental results on several benchmark datasets to
demonstrate the efficiency and competitiveness of the proposed method.

2. Related Work
2.1. Multi-Task Learning

Multi-task learning (MTL) is a learning strategy for solving multiple tasks at the same
time while exploiting commonalities and differences across tasks. Compared with training
models separately for each task, MTL can improve the learning efficiency as well as the
performance of individual tasks [9]. The fundamental idea is to utilize the inductive bias
contained in related tasks via a shared representation, which is essentially accomplished by
sharing parameters [10] either with a single shared network [13,19] or multiple networks
with soft parameter sharing [11,20]. Naturally, many MTL approaches have capitalized on
learning inherent commonalities among tasks via architectural variations [11,21]. If tasks
are less related, however, these approaches can degrade due to the negative interference
arising between the tasks [17,18]. Notably, the performance can degrade further when
the samples within a task are of limited relevance. On the contrary, our method explicitly
learns for each sample in a task in an instance-wise manner and dynamically generates
an optimal network without the need to manually modify the architecture, resulting in a
significant increase in performance.

2.2. Resource-Efficient Learning

In this work, we focus on memory-efficient MTL by performing multiple tasks within
a single shared architecture without introducing many parameters. Several recent works
constructed a k-in-1 type network architecture to provide adaptive solutions for different
computational requirements [8,13,22–24]. Essentially, they address MTL by executing a
different part of a model and save memory footprints that arise in the opposite case of
using multiple task-specific models. Recently, the authors of [25] proposed solving MTL
with respect to different memory budgets while offering a range of solutions from a single
model. Our approach complements their work by addressing the potential suboptimality
in their hand-crafted framework via dynamic model search.

2.3. Dynamic Model Search

In recent years, there has been a surge in automating the design of neural network
architectures [14–18,26–30]. In this paradigm of automatic model search, the search method

Appl. Sci. 2022, 12, 11836 4 of 16

dynamically discovers an optimal configuration of a network structure given a base architec-
ture containing multiple choices of building blocks [17,28–31] or a set of hyperparameters
to choose from [26,32]. While avoiding the effort of manual design, this approach can
improve the performance over conventional hand-designed network models with the same
model capacity [4,33]. Our work is closely related to a few recent works that performed
automated model search for MTL [17,31,34]. Notably, however, they were not capable of
executing a cost-adaptive search with respect to different computational costs from their
learned models, whereas our method produces a range of different solutions with respect
to tasks and computation budgets. What is more, the proposed method produces a bespoke
solution for each instance, potentially avoiding interference among instances across tasks.

2.4. Contributions

The main contribution of this work is in the development of a dynamic, cost-adaptive
search procedure that can solve multi-task learning (MTL) problems effectively within
a single training phase. Our cost-adaptive search enables producing multiple models of
different costs in a single shot rather than resulting in a single model of a cost at a time,
which to our best knowledge has not been addressed in existing works in the MTL literature.
This can provide various choices of models trading off between the model performance
and cost so that one can save a significant amount of time and effort in training different
models for different budgets while solving multiple tasks simultaneously. We highlight the
important features of each of the dynamic search approaches in Table 1.

Table 1. Algorithmic comparison of the dynamic search methods with respect to different functionali-
ties: multi-task learning (MTL), cost-adaptive search (CAS), and instance-wise search (IwS). Here, g
and r are the numbers of groups (or channels) and residual blocks, respectively, and l and e are the
numbers of layers and experts in each layer, respectively.

Method MTL CAS IwS Search Space

RNP [27] 7 3 3 (2g)l

RoutingNet [17] 3 7 7 gr

SkipNet [30] 7 7 3 2r

BlockDrop [28] 7 7 3 2r

VirtualNet [25] 3 7 7 g
DEN [31] 3 7 3 gr

MT-SGF [35] 3 7 7 (2g)l

TRL [34] 3 7 7 (2g)l

Ours 3 3 3 (2g)r

3. The Proposed Method

The proposed multi-task learning framework consists of two major components: a
backbone network and a search network. In essence, the backbone network is a large
base network that is modularized and serves a search space in which the search network
explores to choose the final prediction model (Section 3.1). The search network is designed
to select multiple models of different computational costs from the backbone network for
each instance of a task (Section 3.2). The entire framework is trained from end to end using
the standard gradient descent as well as a policy gradient methods, with the objective
of maximizing the performance of different models of sizes selected from the backbone
network while regularizing the computational costs of them (Section 3.3). After training,
our framework produces a diverse set of prediction models all at once for a given instance
of a task. The overall framework and workflow are illustrated in Figure 2.

3.1. Backbone: Modularization for Diverse Models

We constructed a backbone network based on the popular residual network [4,36].
The basic residual block (ResBlock) in the residual network has two convolution layers
of weight tensors, and we split each convolution layer of the ResBlock into g groups to

Appl. Sci. 2022, 12, 11836 5 of 16

modularize the weight tensors. Specifically, letW1 ∈ Rw×h×ni×no andW2 ∈ Rw×h×no×no

be the weight tensors corresponding to the two layers in the ResBlock, where w, h, ni, and
no are the width, height, and the number of input and output channels, respectively. Then,
the modularized residual block, which we term ResBlock-M, contains g channel groups in
each layer with their corresponding weight tensorsW11,W12, ...,W1g,W21,W22, ...,W2g,
where

W1i ∈ Rw×h×ni× no
g , i = 1, 2, ..., g,

W2i ∈ Rw×h× no
g ×no , i = 1, 2, ..., g.

Note that the ith weightsW1i andW2i are associated with the ith groups in two layers
in ResBlock-M. Rather than utilizing convolutional channels in each layer as a single group,
as deep learning methods generally apply [4,6], we treated them in a finer way for searches.
Based on the modularization, we constructed the ith building block as two consecutive ith
groups in ResBlock-M (see Figure 3). The building blocks can then be chosen by the search
network to construct the final prediction model to perform a task.

Figure 3. (a) The conventional residual block (ResBlock) contains a single building block with
its function F(·), and the output is F(x) + x. (b) Our modularized residual block (ResBlock-M)
contains g disjointed building blocks (represented by different colors) with their corresponding
functions F1(·), F2(·), ..., Fg(·). The output is α1F1(x) + α2F2(x) + · · ·+ αgFg(x) + x, where αi ∈ {0, 1}
determines the usage of Fi(·) (best viewed in color).

By using the building blocks, we define the operation in the modularized residual
block. In the conventional residual block (ResBlock), we have the following operation:

F(x) + x, (1)

where x ∈ Riw×ih×ni is an input for the block and F(·) is a function consisting of two layers
withW1 andW2. If ni does not match with no, then we bridge the gap by applying zero
padding or a 1 × 1 convolution. In ResBlock-M, we have g functions according to the
number of groups (i.e., F1(x), F2(x), · · · , Fg(x)), where Fi(·) contains the ith building block.
The operation of the proposed residual block becomes

α1F1(x) + α2F2(x) + · · ·+ αgFg(x) + x, (2)

where αi ∈ {0, 1} determines whether to use the function Fi(·). Notice that the operation in
Equation (2) is order-invariant for the functions (or their associated groups). This enriches

Appl. Sci. 2022, 12, 11836 6 of 16

the search space by providing more diverse choices for the network model compared with
module-based approaches which, in general, have g compositions [8,37], and the number of
possible compositions increases to 2g. Therefore, the chance of finding a better model increases
with the larger, finely modularized search space under the same baseline model.

3.2. Dynamic Model Search

The search network discovers multiple model structures instance-wise dynamically by
exploring a collection of candidate models in the backbone. For now, we assume that we
are searching for a single model for each instance. Suppose that the backbone network has
r ResBlock-M, each of which has g building blocks. The search network can select nothing
(equivalent to layer skipping) for all of the building blocks, providing (2g)r candidate
models (search space) in the backbone. Given an input instance x, the search network
(The model structure, which is simple, is described in Section 4.2) outputs the probability
distribution over 2g compositions of g building blocks in each ResBlock-M. To produce a
model, the output of the search network S(·; θs) is obtained as follows:

S(x; θs) = [sij] ∈ [0, 1]2
g×r, (3)

where θs denotes the set of parameters in the search network. Each column of [sij] reveals
the probabilities of selecting building blocks over 2g candidates in a ResBlock-M (i.e.,
∑i sij = 1, ∀j). Here, 2g is the number of elements in the power set of a residual block
containing g building blocks. From S(x; θs), we collect a model structure A:

A = [αij] ∈ {0, 1}2g×r ∼ S(x; θs). (4)

Here, αij = 1 or αij = 0 indicates whether to select the ith composition of the building
blocks in the j-th ResBlock-M or not, respectively. The probability of a candidate model for
an instance x is computed as follows:

π(A; x) =
2g

∏
i=1

r

∏
j=1

αij � sij, (5)

where � is the element-wise multiplication operator. One of (2g)r candidate models is
chosen by the search network when an instance x is given.

In the proposed method, the search network enables an instance-wise search by
discovering a suitable model for each instance of a task, rather than searching for a single
model for each task [17,26,29,30]. This will prevent potential destructive interference not
only between tasks but also within tasks. Our method can provide an on-the-fly bespoke
solution tailored to each sample.

In order to perform cost-adaptive predictions for different computational require-
ments on a per sample basis, the search network explores models for the costs in a single
learning procedure. The discovered models will have trade-offs between task accuracy and
resource usage (e.g., the number of parameters and FLOPs). This is achieved by simply
introducing multiple model structures Al and learning multiple regularizers accordingly
for the computational costs as described in the following section. This approach could be
more efficient than other model search methods [17,29], as they choose a single model of a
trade-off at a time (i.e., one individually trained model for a cost). If another computational
cost is required for a device, then the existing methods need to be retrained to explore
another trade-off for the budget.

In addition, we learned a single search network to discover models with respect to
the tasks and computational costs, which is universal, unlike introducing multiple search
networks (i.e., one search network for a task or a cost). This strategy can naturally supervise
all associated tasks at the same time and learn task relationships, producing solutions
tailored for each task (see Section 4.3).

Appl. Sci. 2022, 12, 11836 7 of 16

3.3. Optimization

Suppose that a set from dataset D consists of data instances from different tasks and
their task numbers (i.e., D = {(xt, yt)|(xt, yt) ∈ Dt, ∀t}), where xt and yt are the data
instance and its label, respectively, from the tth datasetDt. The proposed method optimizes
the expected loss to learn two sets of parameters, θb and θs, for the backbone architecture
and the search network, respectively. We define the objective function that contains the loss
functions of the selected models with regularization for all instances as follows:

min
θb ,θs

E(xt ,yt)∈D,Al∼S(xt ;θs)

c

∑
l=1
Ml(Al ; xt, yt), (6)

whereMl(Al ; xt, yt) , L
(

f (xt; θb,Al), yt

)
+Rl(Al), L denotes a loss function, f denotes

the selected model, c is the number of different computational budgets, andAl is the model
structure for the lth budget selected by the search network by optimizing the following
regularization:

Rl(Al) = λl

(
1
n

n

∑
j=1

pj(Al)

Tj

)2

. (7)

Here, pj(Al) denotes the number of parameters specified by Al in the jth ResBlock-M,
Tj denotes the total number of parameters in the jth ResBlock-M, and λl is the lth weighting
factor. By optimizing c different regularizations, the search network is taught to generate c
models (Al , l = 1, 2, ..., c) of different computational budgets.

In order to optimize Equation (6) with respect to θb and θs, we introduce an alternating
optimization strategy which alternatively learns θs to optimize the models’ losses and the
regularizer and learns a set of parameters in θb corresponding to the generated models to
improve their task performance. We optimize the parameters in θb specified by the selected
model structures from Al(l = 1, 2, ..., c) for each instance using a standard gradient descent
method. To learn the set of parameters θs, we adopt a common approximation strategy
in policy gradient methods [38] due to the difficulty of computing the exact expected
value in Equation (6) with respect to θs. Suppose that J(θs) is the objective function with
respect to θs. By using the log derivative trick on the expected loss with the probability π
in Equation (5), we approximate the gradient of J(θs) as follows:

∇θs J(θs)

= E(xt ,yt)∈D

[
c

∑
l=1

∑
∀Al

M̂l · ∇θs π(Al ; xt)

]

= E(xt ,yt)∈D

[
c

∑
l=1

∑
∀Al

M̂l · π(Al ; xt)
∇θs π(Al ; xt)

π(Al ; xt)

]

= E(xt ,yt)∈D,Al∼S(xt ;θs)

[
c

∑
l=1
M̂l · ∇θs log π(Al ; xt)

]

≈ E(xt ,yt)∈D

[
c

∑
l=1

∑
Al∈Â

M̂l

|Â|
· ∇θs log π(Al ; xt)

]
,

(8)

where M̂l ,Ml(Al ; xt, yt). The last relation approximates the computation of all possible
models in the search space using a set of model structures Â randomly sampled from
S(xt; θs) [39]. This learning approach resembles a single-step Markov decision process
(MDP) by predicting all actions at once via Ak based on a rewardMk [28]. In addition,
we apply the epsilon-greedy method [40] on the output S(xt; θs) when approximating the
gradient to allow for a more dynamic search of the network models.

The proposed method, which we named ADM, is summarized in Algorithm 1. In the
algorithm, we adopt an alternating optimization approach to learn the sets of parameters

Appl. Sci. 2022, 12, 11836 8 of 16

θb and θs, where we update each set of parameters until convergence in every learning
step. We update the parameters in θb with respect to the discovered network model
for each instance. After finishing the learning procedure, we have a trained backbone
architecture containing a pool of candidate models and a trained global search network
that has knowledge of multiple tasks.

Algorithm 1 ADM: Adaptive Dynamic Search for MTL

1: Input: D, λl (l = 1, 2, ..., c), c, learning steps ns
2: Initialize: θb, θs

3: for i = 1 to ns do
4: repeat
5: Choose c model structures Al (l = 1, 2, ..., c) from S
6: Update θb from (6)
7: until convergence
8: repeat
9: Update θs from (8)

10: until convergence
11: end for
12: Output: Learned sets of parameters θb and θs

4. Experiments

The proposed method, which we named ADM for Adpative Dynamic search for
Multi-task learning, was evaluated over a range of multi-task learning problems. In the
following subsections, we describe the experimental set-up, the implementation details of
the proposed method, and the results for four scenarios.

4.1. Set-Up

Each task involved the problem of performing image classification, comprising one of
the following standard benchmark datasets: CIFAR-10 and CIFAR-100 [41], Tiny-ImageNet
(https://www.kaggle.com/competitions/tiny-imagenet/data, accessed on 22 September
2022), STL-10 [42], or Mini-ImageNet [43]. We further employed CIFAR-MTL [17], the
multi-task version of CIFAR-100 that contains 20 superclasses, and each superclass has 5
subclasses, for which we treated each superclass as a task. For Mini-ImageNet, we followed
the practice in [17], wherein we randomly chose 50 classes and created 10 tasks of 5 different
classes from the chosen classes. We generated 10 different sets of 50 classes and reported
the averaged results.

In this work, we consider the four following scenarios:

• Scenario 1: The first scenario is learning two tasks from two datasets of the same
domain, CIFAR-10 and CIFAR-100, where each dataset corresponds to a task.

• Scenario 2: The second scenario is a three-task learning problem comprising three
datasets (CIFAR-100, Tiny-ImageNet, and STL-10), where each task characterizes
different image scales and the number of classes.

• Scenarios 3 and 4: Following a previous work [17] (model selection for MTL), we use
the CIFAR-MTL and Mini-ImageNet datasets as other scenarios which are 20-task and
10-task learning problems, respectively.

Table 2 shows the summary of the scenarios.

Table 2. Summary of four experimental scenarios with the corresponding architectures.

Scenario No. Tasks Datasets Architecture

1 2 CIFAR-10, CIFAR-100 WRN-32-4
2 3 CIFAR-100, Tiny-ImageNet, STL-10 ResNet-42
3 20 CIFAR-MTL SimpleConvNet
4 10 Mini-ImageNet SimpleConvNet

https://www.kaggle.com/competitions/tiny-imagenet/data

Appl. Sci. 2022, 12, 11836 9 of 16

We compare ADM with strong MTL alternatives: the cross-stitch network [11], routing
network [17], PackNet [13], NestedNet [8], and VirtualNet [25]. Among them, VirtualNet
and ADM are able to perform cost-adaptive predictions which can produce a larger number
of solutions for different computational costs than the other compared methods. The results
for PackNet, NestedNet, and VirtualNet were taken from [25] for the first two scenarios.
Additionally, the results for the cross-stitch network and routing network were taken
from [17] for CIFAR-MTL and Mini-ImageNet. For all experiments, we used the same
network architectures as the ones used in the compared methods for fair comparisons.

4.2. Implementation Details

We used three convolutional neural networks from small-scale to large-scale in this
work: a simple convolutional network [17], (Since it does not have residual connections,
the search space for the backbone architecture becomes (2g − 1)r.) residual network [4],
and wide residual network [36]. When we applied the residual networks for the first
and second scenarios, we constructed architectures suitable for the CIFAR and ImageNet
datasets, respectively. The fully connected layers in the backbone networks were not
modularized to groups. The search network consisted of three conventional residual
blocks (six convolutional layers) and one fully connected layer for Scenarios 1 and 2, and it
consisted of four convolutional layers and one fully connected layer for Scenarios 3 and 4.
Note that the size of the search network was smaller than the backbone, and the memory
increment was marginal.

The backbone network was pretrained before we started to optimize the framework.
During pretraining, we randomly dropped some building blocks, similar in spirit to [44].
While it resembled our procedure of dynamic search, we found that this strategy improved
the overall performance, even though we fine-tuned the parameters in the backbone in the
alternating optimization procedure. All compared methods were initialized with Xavier
initialization [45] and trained using the Nesterov Accelerated Gradient optimizer [46] with
a momentum decay of 0.9, following the standard set-up. For the search network, we used
the Adam optimizer [47]. When learning the parameters of the selected models, we applied
the standard weight decay. We used batch sizes of 128 and 64 for the first and second
scenarios, respectively, where the initial learning rate was 0.1 and decreased by 10 when
converging, while the batch size was 256 for the rest of the scenarios, where the initial
learning rate was 0.01 and reduced by 10. We applied different λk values to construct
models of different computational budgets.

4.3. Results
4.3.1. Scenario 1

We first applied the proposed method, ADM, to the first scenario and compared it
with several recent approaches that can perform multiple tasks: NestedNet, PackNet, (A
modified version of PackNet was applied as in [25]) and VirtualNet, including a multi-task
learning baseline method. While NestdNet and PackNet produce outputs corresponding
to tasks under different computational budgets (number of parameters), VirtualNet and
ADM can produce a larger number of outputs for tasks and budgets. Note that the number
of outputs (models) with respect to computational budgets in VirtualNet should be the
same as the number of tasks [25], which limits its applicability, whereas ADM allows the
search network to choose the number of different computational budgets regardless of the
number of tasks. (Here, the number of computational budgets c is set to three.) We used
WRN-32-4 [36] for all compared approaches, whose total number of parameters was
7.4 million.

Figure 4 shows the experimental results, where ours give the average of the individual
results of all instances for each task. At first, the solutions obtained by ADM improved
over the baseline while using a lower number of parameters for both tasks. Overall, ADM
produces three outputs of different computational budgets, and all of them outperformed
other methods being compared while consuming lower computational budgets. Since the

Appl. Sci. 2022, 12, 11836 10 of 16

proposed approach performed adaptive dynamic search for each instance, it could produce
a bespoke model and the solution for each instance rather than giving a single hand-crafted
model for a task. Aside from that, it automatically selected an optimal structure, enabling
performance improvement compared with other competitors that are based on a fixed
manual model structure. Notice that the models explored by the search network were
distributed in a region (5.3–6.7 million) in the computational budget. This is potentially be-
cause the probability of choosing the compositions of the intermediate number of building
blocks was dominant among 2g possible compositions using g building blocks, whereas the
probability of choosing extreme cases (i.e., compositions with few or most of the building
blocks chosen) was scarce when optimizing the loss function (Equation (6)).

2 3 4 5 6 7 8

Number of parameters (millions)

94.4

94.6

94.8

95

95.2

95.4

95.6

95.8

A
c
c
u

ra
c
y
 (

%
)

CIFAR-10 (Task 1)

2 3 4 5 6 7 8

Number of parameters (millions)

75

76

77

78

79

A
c
c
u

ra
c
y
 (

%
)

CIFAR-100 (Task 2)

Baseline (Backbone)

PackNet

NestedNet

VirtualNet

ADM (Ours)

Figure 4. Classification results of the multi-task problem using the CIFAR-10 and CIFAR-100 datasets
(two tasks). All the methods are based on the WRN-32-4 architecture, consuming 7.4 million parameters.

4.3.2. Scenario 2

Then, we evaluated ADM for the second scenario, where there were three tasks of
different input scales to solve. This scenario was more difficult to solve than the previous
one because the associated tasks contained different distributions and domains. To solve
this problem, we introduced task-specific input layers for all compared methods that were
the same as those in the previous scenario. Similar to the previous experiment, NestedNet
and PackNet produced three outputs of different computational budgets for the tasks,
and VirtualNet and ADM produced nine different solutions with respect to the tasks and
budgets. Following the practice in [25], all methods were compared based on the ResNet-42
architecture, whose number of parameters was 28.2 million.

The performance comparison is shown in Figure 5. Similar to the previous result,
ADM achieved excellence performance compared with the other methods. The baseline
performed much worse than ours while requiring a larger number of parameters (e.g., for
Task 3, from 1.5× to 3× larger number of parameters). ADM also performed better than
VirtualNet under a similar budget which could produce varying solutions of different costs
(e.g., for Task 3, 9–19 million parameters). From the figure, we can observe that the perfor-
mance improvement was notable for STL-10 when comparing the models of the highest cost
(i.e., from 4% to 11% higher accuracy than other methods while taking a reduced budget
of around 35%). It is interesting to note that the search network automatically explored a
wider range of models with lower cost requirements when the number of classes was lower
(i.e., easier). In other words, the search network chose models of a lower number of param-
eters for Task 3, the easier task (10 classes, 10–18 million), than the harder tasks of Task 1
(100 classes, 13–22 million) and Task 2 (200 classes, 18–23 million). This tendency indicates
the benefit of the single universal search network learning the comprehensive knowledge
from all the tasks. Figure 6 gives the selected models for three different images. The
search network automatically discovers a cost-intensive model for an indistinguishable im-
age (top) and a model of a low-cost requirement for a clearly discriminating image (bottom).

Appl. Sci. 2022, 12, 11836 11 of 16

5 10 15 20 25 30

Number of parameters (millions)

69

70

71

72

73

74

75

76

A
c
c
u
ra

c
y
 (

%
)

CIFAR-100 (Task 1)

5 10 15 20 25 30

Number of parameters (millions)

54

55

56

57

58

59

60

A
c
c
u
ra

c
y
 (

%
)

Tiny-ImageNet (Task 2)

5 10 15 20 25 30

Number of parameters (millions)

70

72

74

76

78

80

82

84

A
c
c
u
ra

c
y
 (

%
)

STL-10 (Task 3)

Baseline (Backbone)

PackNet

NestedNet

VirtualNet

ADM (Ours)

Figure 5. Classification results of the multi-task learning problem using three datasets (three tasks):
CIFAR-100, Tiny-ImageNet, and STL-10. All the methods are based on ResNet-42 (29.8 million
parameters).

Lobster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1 1

1

1

1 1

1

1 1 1

1

1 1 1 1 1 1

1

1

Lamp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

Deer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

Figure 6. The selected model structures for three images of different tasks. The backbone architecture
is ResNet-42, which contains 20 ResBlock-M, indicated on the x axis. The number of building blocks
is three, thus we have 23 = 8 choices for the building blocks in each ResBlock-M (e.g., 1 indicates
nothing is chosen, and 8 indicates all the building blocks are selected on the y axis). The difficulty of
the images decreases from top to bottom.

4.3.3. Scenario 3

In order to see how ADM compared against other methods when there was a larger
number of tasks to solve, we evaluated ADM on CIFAR-MTL. Recall that this is a 20-task
learning problem. We compared them with a cross-stitch network and routing network,
which can perform such tasks. Note that it is difficult for NestedNet, PackNet, and Vir-
tualNet to train a large number of tasks within a single architecture because the size of
assigned parameters for each task will be reduced too much as the number of tasks in-
creases. They are trained for less than five tasks and hence are limited in learning capacity
for scenarios where there are many tasks to learn and solve. We employed the same ar-
chitecture used in the routing network [17] for comparison. The architecture consisted
of four convolutional layers without the residual connection and three fully connected
layers occupying 74,000 parameters. The search network in ADM produced two models of
different parameter budgets in this scenario.

The experimental results of the scenario are summarized in Table 3, where we compare
the approaches for classification accuracy (i.e., average accuracy for all tasks) and the number
of parameters used in the applied network. The experiment also shows the excellence of the

Appl. Sci. 2022, 12, 11836 12 of 16

proposed method for many tasks compared with the multi-task learning baseline and other
methods. Specifically, the proposed method performed better than the routing network, the
major competitor based on model selection giving the highest accuracy among the competitors,
by a margin of 4.5–6.6% under the reduced number of parameters (around 25–50% parameters).
Note that the cross-stitch network and routing network generally allowed larger memory
than the baseline due to their stitching and routing mechanisms. That aside, the compared
methods did not produce a set of distributed solutions as ours did in a trained framework.
This scenario also shows the benefit of the proposed method for many tasks.

Table 3. Average classification results with the numbers of parameters of the compared methods for
CIFAR-MTL (20 tasks). The accuracies of the other methods were borrowed from [17].

Accuracy Number of Parameters

Baseline 42.0% 74,000
Cross-stitch network [11] 54.0% 74,000↑

Routing network [17] 61.0% 74,000

ADM (ours) 65.5% 38,000
67.6% 56,000

4.3.4. Scenario 4

To further compare the proposed method with the competitors of the previous scenario
in a large number of tasks, we followed the experiment in [17] using Mini-ImageNet (10-
task learning). We compared the same approaches to the previous scenario under the
architecture applied in [17], which occupied 140,000 parameters. The proposed method
produced two network models of different parameter budgets, which are 60,000 and 110,000,
respectively, from the search network.

Table 4 shows the performance comparison of the compared approaches. Notably,
ADM outperformed other methods by a larger margin than the previous experiment (i.e.,
14.5–22.5% higher accuracy). Aside from that, the proposed method required fewer pa-
rameters than the compared approaches (43–80% reduced parameters). While the routing
network, a strong competitor, performed better than the baseline and the popular cross-
stitch network as it consumed a similar number of parameters, it performed much poorer
than the proposed method while occupying a larger number of parameters. The adaptive
dynamic search under the rich search space in ADM allows the chance to discover an opti-
mized model and the solution for each instance, which therefore delivers such remarkable
performance improvement compared with other alternatives.

Table 4. Average classification results with the numbers of parameters of the compared methods for
Mini-ImageNet (10 tasks). The accuracies of the other methods were borrowed from [17].

Accuracy Number of Parameters

Baseline 51.0% 140,000
Cross-stitch network [11] 56.0% 140,000↑

Routing network [17] 59.0% 140,000

ADM (ours) 73.5% 60,000
74.6% 110,000

4.4. Analysis
4.4.1. Qualitative Analysis

One of the features of the proposed method is that it learns multiple tasks in an
instance-wise fashion. Figure 7 provides similar images given a query image from each
task. The similar images had their model structures explored by the search network, which
were similar to that of the query image. One interesting aspect is that for the first query
image (“rocket”), the similar images (“birds”) in Task 3 (third row) were taken from the

Appl. Sci. 2022, 12, 11836 13 of 16

search network because their corresponding model structures resembled that of the query
image. Since Task 3 had no similar images to the query image, the search network explored
other images that had a similar shape to that of the query regardless of the class attribute. A
similar analysis was applied to the chosen images in Task 2 (second row). The results show
that instance-wise model selection can grasp the similarity of instances across the tasks
without prior knowledge of the task relationship, making it a useful strategy for MTL.

Figure 7. Qualitative results of the proposed method for Scenario 2 (three tasks). Given a query
(standalone) image from each task, we drew similar images whose selected model structures were
almost similar to that of the query image. Similar images from the top to bottom rows were from
Tasks 1–3, respectively. Best viewed in color (×2).

4.4.2. Ablation Study

We also provide an ablation study of the proposed method on Mini-ImageNet in
Scenario 4. Since ADM performs cost-adaptive search (CAS) and instance-wise search
(IWS), we demonstrated the benefit of the proposed method compared with that without
CAS, IWS, or both. Note that the problem of ADM without CAS (i.e., c = 1 in Equation (6))
reduced to that of dynamic model search methods for multi-task learning [17,31]. Figure 8
shows the ablation study results. Overall, the proposed method (ADM) performed better
than other approaches that do not perform CAS, IWS, or both. In particular, ADM without
instance-wise search (green) gave a clear performance drop compared with ADM (red) and
ADM without cost-adaptive search (blue). This shows the importance of instance-wise
search, which can avoid negative interference among instances. Even though ADM without
cost-adaptive search performed better than that without instance-wise search, it required
individual training of multiple models corresponding to the number of computational
costs. We can also observe that searching for a model of a single cost was more favorable
when instance-wise search was not allowed. From the figure, we can see that the proposed
method, which was able to perform cost-adaptive search in an instance-wise manner, gave
excellent performance while producing a set of widely distributed solutions in a single
trained architecture, making it highly efficient and competitive.

60 70 80 90 100 110

No. parameters (K)

69

70

71

72

73

74

75

A
c
c
u

ra
c
y
 (

%
)

ADM

ADM w/o CAS

ADM w/o IWS

ADM w/o CAS+IWS

Figure 8. Ablation study on Mini-ImageNet. The results of the dotted lines were collected from
independently trained models. CAS = cost-adaptive search, and IWS = instance-wise search.

4.4.3. Average Model Structures of Different Computational Costs

Lastly, we provide the average generated model structures under three different
computational costs (c = 3) for all test instances of a task (CIFAR-100) in Scenario 2, which
are shown in Figure 9. For a higher computational cost, a larger number of building blocks

Appl. Sci. 2022, 12, 11836 14 of 16

was selected on average, whereas the search network selected a smaller number of building
blocks for a lower computational budget, even though it chose nothing (denoted by 1 on
the y axis) more frequently. We can also observe that the chosen model structures were
quite dynamic for the same task (i.e., the selected building blocks were expressed in a wide
range of the results). The average numbers of the selected building blocks (the total number
of building blocks g was 3) in a ResBlock-M (and the average parameter densities) for the
budgets were 2.2 (73%), 1.7 (57%), and 1.4 (45%) from top to bottom, respectively. This
verifies the dynamic model search of the proposed method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

Figure 9. Average of the selected model structures for the CIFAR-100 test datasets in Scenario 2 under
three different computational budgets (c = 3), which decrease from top to bottom. The backbone
architecture was ResNet-42, which contains 20 ResBlock-Ms, indicated on the x axis. The number of
building blocks was three, and thus we had eight choices for the building blocks in each ResBlock-M.

5. Conclusions

We presented ADM, a novel MTL approach for searching on-the-fly and cost-adaptive
prediction models for each instance of a task. The proposed method can produce a set
of widely distributed on-the-fly solutions, trading off between task performance and
computation cost, and one can adaptively choose a suitable model for a given task with its
required budget. To achieve the goal, we introduced a new modularized residual block,
called ResBlock-M, that serves a rich search space and enables order-invariant searching
for discovering a high-performance model. The effectiveness of the proposed method
was validated for several MTL problems. Note that since the proposed method implicitly
captures the relationship between tasks, it may be ineffective when learning a range of tasks.
We will investigate possible directions to incorporate an explicit measure and consider the
relevance between tasks in future work.

Funding: This research was supported in part by BK21 FOUR (Fostering Outstanding Universities
for Research) Program funded by Ministry of Education of Korea (No.I22SS7609062) and in part by
the Chung-Ang University Research Grants in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2022, 12, 11836 15 of 16

Conflicts of Interest: The author declares no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.
3. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,

7–13 December 2015.
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
5. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In

Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016.
6. Huang, G.; Liu, Z.; Weinberger, K.Q.; van der Maaten, L. Densely connected convolutional networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.
8. Kim, E.; Ahn, C.; Oh, S. NestedNet: Learning Nested Sparse Structures in Deep Neural Networks. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.
9. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
10. Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098.
11. Misra, I.; Shrivastava, A.; Gupta, A.; Hebert, M. Cross-stitch networks for multi-task learning. In Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
12. Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

13. Mallya, A.; Lazebnik, S. PackNet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

14. Sun, X.; Panda, R.; Feris, R.; Saenko, K. Adashare: Learning what to share for efficient deep multi-task learning. Adv. Neural Inf.
Process. Syst. 2020, 33, 8728–8740.

15. Hazimeh, H.; Zhao, Z.; Chowdhery, A.; Sathiamoorthy, M.; Chen, Y.; Mazumder, R.; Hong, L.; Chi, E. Dselect-k: Differentiable
selection in the mixture of experts with applications to multi-task learning. Adv. Neural Inf. Process. Syst. 2021, 34, 29335–29347.

16. Raychaudhuri, D.S.; Suh, Y.; Schulter, S.; Yu, X.; Faraki, M.; Roy-Chowdhury, A.K.; Chandraker, M. Controllable Dynamic
Multi-Task Architectures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New
Orleans, LA, USA, 18–24 June 2022; pp. 10955–10964.

17. Rosenbaum, C.; Klinger, T.; Riemer, M. Routing networks: Adaptive selection of non-linear functions for multi-task learning. In
Proceedings of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

18. Zhao, X.; Li, H.; Shen, X.; Liang, X.; Wu, Y. A Modulation Module for Multi-task Learning with Applications in Image Retrieval.
In Proceedings of the ECCV, 15th European Conference, Munich, Germany, 8–14 September 2018.

19. Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional activation feature for
generic visual recognition. In Proceedings of the ICML, 31st International Conference on International Conference on Machine
Learning, Beijing, China, 21–26 June 2014.

20. Yang, Y.; Hospedales, T.M. Trace norm regularised deep multi-task learning. arXiv 2016, arXiv:1606.04038.
21. Jou, B.; Chang, S.F. Deep cross residual learning for multitask visual recognition. In Proceedings of the 24th ACM International

Conference on Multimedia, ACM, Amsterdam The Netherlands, 15–19 October 2016.
22. Zamir, A.R.; Wu, T.L.; Sun, L.; Shen, W.B.; Shi, B.E.; Malik, J.; Savarese, S. Feedback networks. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
23. Mallya, A.; Davis, D.; Lazebnik, S. Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights. In

Proceedings of the ECCV, 15th European Conference, Munich, Germany, 8–14 September 2018.
24. Kokkinos, I. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse

datasets and limited memory. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017.

25. Kim, E.; Ahn, C.; Torr, P.H.; Oh, S. Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

26. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. In Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

27. Lin, J.; Rao, Y.; Lu, J.; Zhou, J. Runtime neural pruning. In Proceedings of the Advances in Neural Information Processing
Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2181–2191.

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1023/A:1007379606734

Appl. Sci. 2022, 12, 11836 16 of 16

28. Wu, Z.; Nagarajan, T.; Kumar, A.; Rennie, S.; Davis, L.S.; Grauman, K.; Feris, R. Blockdrop: Dynamic inference paths in residual
networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, 18–23 June 2018.

29. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. In Proceedings of the 6th International Conference on
Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018.

30. Wang, X.; Yu, F.; Dou, Z.Y.; Darrell, T.; Gonzalez, J.E. Skipnet: Learning dynamic routing in convolutional networks. In
Proceedings of the ECCV, 15th European Conference, Munich, Germany, 8–14 September 2018.

31. Ahn, C.; Kim, E.; Oh, S. Deep Elastic Networks with Model Selection for Multi-Task Learning. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

32. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J. Efficient neural architecture search via parameter sharing. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018.

33. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

34. Strezoski, G.; Noord, N.V.; Worring, M. Many task learning with task routing. In Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

35. Bragman, F.J.; Tanno, R.; Ourselin, S.; Alexander, D.C.; Cardoso, J. Stochastic filter groups for multi-task cnns: Learning specialist
and generalist convolution kernels. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1385–1394.

36. Zagoruyko, S.; Komodakis, N. Wide residual networks. In Proceedings of the British Machine Vision Conference (BMVC 2016),
New York, NY, USA, 19–22 September 2016.

37. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-deep neural networks without residuals. In Proceedings of the 5th
International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

38. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function
approximation. In Proceedings of the 13th International Conference on Neural Information Processing Systems, Cambridge, MA,
USA, 1 January 2000.

39. Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef] [PubMed]
40. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press Cambridge: Cambridge, UK, 1998; Volume 2.
41. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,

ON, Canada, 2009.
42. Coates, A.; Lee, H.; Ng, A.Y. An Analysis of Single Layer Networks in Unsupervised Feature Learning. In Proceedings of the

AISTATS, 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011.
43. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. In Proceedings of the NIPS,

Workshop on Interpretable Machine Learning for Complex Systems, Barcelona, Spain, 9 December 2016; pp. 3630–3638.
44. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep networks with stochastic depth. In Proceedings of the ECCV, 14th

European Conference, Amsterdam, The Netherlands, 11–14 October 2016. 2016.
45. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th

International Conference on Artificial Intelligence and Statistics (AISTATS 2010), Sardinia, Italy, 13–15 May 2010.
46. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/kˆ 2). Dokl. AN USSR

1983, 269, 543–547.
47. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 2nd International Conference on Learning

Representations, Banff, AB, Canada, 14–16 April 2014.

http://dx.doi.org/10.1080/01621459.1949.10483310
http://www.ncbi.nlm.nih.gov/pubmed/18139350

	Introduction
	Related Work
	Multi-Task Learning
	Resource-Efficient Learning
	Dynamic Model Search
	Contributions

	The Proposed Method
	Backbone: Modularization for Diverse Models
	Dynamic Model Search
	Optimization

	Experiments
	Set-Up
	Implementation Details
	Results
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Analysis
	Qualitative Analysis
	Ablation Study
	Average Model Structures of Different Computational Costs

	Conclusions
	References

