
Citation: He, L.; Ou, J.; Ba, M.; Deng,

G.; Yang, E. Imitative Reinforcement

Learning Fusing Mask R-CNN

Perception Algorithms. Appl. Sci.

2022, 12, 11821. https://doi.org/

10.3390/app122211821

Academic Editor: Andrea Prati

Received: 11 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Imitative Reinforcement Learning Fusing Mask R-CNN
Perception Algorithms
Lei He 1 , Jian Ou 1,*, Mingyue Ba 2, Guohong Deng 1 and Echuan Yang 3

1 Key Laboratory of Advanced Manufacturing Technology for Auto Parts, Ministry of Education,
Chongqing University of Technology, Chongqing 401320, China

2 Chongqing Chang’an Automobile Co., Chongqing 400023, China
3 College of Mechanical Engineering, Chongqing University of Technology, Chongqing 401320, China
* Correspondence: oujian@cqut.edu.cn

Abstract: Autonomous urban driving navigation is still an open problem and has ample room for
improvement in unknown complex environments. This paper proposes an end-to-end autonomous
driving approach that combines Conditional Imitation Learning (CIL), Mask R-CNN with DDPG.
In the first stage, data acquisition is first performed by using CARLA, a high-fidelity simulation
software. Data collected by CARLA is used to train the Mask R-CNN network, which is used for
object detection and segmentation. The segmented images are transformed into the backbone of
CIL to perform supervised Imitation Learning (IL). DDPG means using Reinforcement Learning
for further training in the second stage, which shares the learned weights from the pre-trained CIL
model. The combination of the two methods is an innovative way of considering. The benefit is
that it is possible to speed up training considerably and obtain super-high levels of performance
beyond humans. We conduct experiments on the CARLA driving benchmark of urban driving. In
the final experiments, our algorithm outperforms the original MP by 30%, CIL by 33%, and CIRL
by 10% in the most difficult tasks, dynamic navigation tasks, and in new environments and new
weather, demonstrating that the two-stage framework proposed in this paper shows remarkable
generalization capability in unknown environments on navigation tasks.

Keywords: Mask R-CNN; DDPG; conditional imitation learning

1. Introduction

Autonomous driving has made significant progress in the last decade. To date, there
are two main paradigms for vision-based autonomous driving systems: the mediated
perception approach, which makes driving decisions by parsing the entire scene, and the
behavioral reflection approach, which maps input images directly to driving actions via a
regulator [1]. The behavioral reflection approach, also known as the end-to-end approach,
has performed reasonably well over the last five years. Imitation learning for end-to-end
autonomous driving has attracted academic attention.

There are two trends in training research for end-to-end driving models. One is rein-
forcement learning. Our knowledge, however, indicates that many current reinforcement
learning-based driving methods are based on trial-and-error reinforcement learning. These
methods are difficult to apply to the real world because the training process is not safe.
Imitation learning is the second method. Despite the ease of understanding and imple-
menting imitation learning, policies that only learn from expert demonstrations may be
unable to recover from mistakes as a result of a lack of a recovery process. For example,
the DeepMind parkour paper [2] used 6400 CPU hours to achieve the results in the paper.
Sample Efficiency is not really noticeable on these platforms, it can be allowed to run in
this virtual environment, but in realistic scenarios such as robotic tasks, it poses a major
obstacle, after all; it is costly to keep a robot running for many hours in reality.

Appl. Sci. 2022, 12, 11821. https://doi.org/10.3390/app122211821 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211821
https://doi.org/10.3390/app122211821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8158-2054
https://doi.org/10.3390/app122211821
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211821?type=check_update&version=2

Appl. Sci. 2022, 12, 11821 2 of 19

However, refs. [3–5] shows that when only a single RGB image is used as input, only
the presence or absence of obstacles can be detected, but the exact location of the obstacles
is unknown, especially in some extreme weather such as rain, snow, and fog which can
produce noise on the camera image and ultimately bring about inadequate acquisition
of information about the driving environment around the vehicle. To compensate for
these deficiencies, the acquired images are semantically segmented. In computer vision,
image segmentation differs from classification and target detection in that it is usually a
low-level or pixel-level vision task, as the spatial information of the image is important
for semantically segmenting different regions. Segmentation aims to extract meaningful
information for analysis.

Xi Liang [6] proposes a feature fusion and scaling-based single-shot detector (FS-SSD)
for small object detection in UAV images. Six experiments were conducted on the PASCAL
VOC and two UAV image datasets. The experimental results show that the proposed
method can achieve comparable detection speed, but its accuracy is better than the six state-
of-the-art methods. In this work [7], the YOLO V3 is used to detect the network of objects
in the picture. In addition, a steering angle circuit has been designed and implemented to
measure the direction of the car. The steering angle measurements are used with object
detection (vehicles and pedestrians) to warn when these objects are close to the driving car
(10 m). Once an object has been detected using the YOLO V3, the height of the object is used
to measure the distance of the detected object. Affordable and low cost while achieving
positive and competitive results, this system can be used at night and in dark environments.

Across all imitative learning methods, performance dropped by at least 2 when transi-
tioning to challenging navigation tasks. Possibly this is due to the model not being able to
generalize to new towns using different textures and 3D models. Overall, the experimental
results of the method emphasize the importance of generalization for learning-based senso-
rimotor control methods [8]. As well as this, imitation learning’s ability to generalize to
complex conditions and unseen environments is dependent on the training data, so there
is room for improvement [9]. In summary, robustness to extreme driving conditions and
generalization performance to a variety of environments are the two main challenges for
autonomous urban driving.

This paper addresses severe weather conditions by combining reinforcement learning
with imitation learning and fusing Mask R-CNN algorithms [10]. The problem of general-
ization in imitation learning exists, and it can be addressed by reinforcement learning using
semantic segmentation of images and using image enhancement. A pre-trained imitation
learning model is used to initialize the participant network by sharing weights with the
participant network. A reward function can be used to interact with the environment and
then receive a reward based on how the interaction is performed.

Unlike the data-driven process of imitation learning, reinforcement learning RL is a
self-learning algorithm that allows self-driving cars to perfect their driving performance
through repeated trials without depending on humanly set rules or manual driving data.
The comprehensive model in this paper is based on DDPG, an actor-criticism algorithm
based on replayed memory. [11] In this paper, the actor network is initialized by sharing
weights with an imitation learning pre-trained model and optimizing it according to a
reward function. By interacting with the environment and receiving rewards, the driving
agent can learn a driving strategy that performs well in dynamic navigation tasks. An
abbreviated framework for this paper is shown in Figure 1.

Appl. Sci. 2022, 12, 11821 3 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 20

designed. Current reinforcement learning algorithms are opaque, and in most cases, we
have only high-level intuition about what a reinforcement learning algorithm can learn
and how it will work. For most problems, we want the algorithm to be predictable and
interpretable. The least explanatory and predictable approach is a large neural network
that learns the desired knowledge from scratch, given only low-level reward signals or an
environmental model (like AlphaGo Zero).

In addition to this, the paper will also consider bad weather [12–14] bad weather.
These papers suggest that there is still room for improvement, and it has not yet been
determined whether the most promising robustness enhancement techniques require
structural modifications, data enhancement schemes, modifications to the loss function,
or a combination of these. The relevant solution in this paper is to use Mask-RCNN [10]
for multiple processing of obstacles, including obstacle recognition and instance segmen-
tation to process obstacles to obtain information about them and add a pre-trained model
for imitation learning to add robustness.

Figure 1. Structural framework of this paper.

The original innovations and contributions of this work are reflected in the following
aspects:
1. This paper proposes a two-stage framework called CIL-DDPG, which combines re-

inforcement learning and imitation learning using obstacle position information as
additional input, and Mask-RCNN [10] is used for image segmentation. The collec-
tion of CIL and DDPG is an innovative development; previous releases have used
the two methods separately as one development algorithm; secondly, this paper has
made innovations such as obstacle information fusion in CIL.

2. A new reward function is designed to learn an alternative autonomous driving strat-
egy in a dynamic scenario. Extensive experiments on the CARLA simulator bench-
mark show that the work in this paper enables the network to overcome the effects
of image noise.
To better explain the content of this paper, the rest of the paper is organized as fol-

lows. Section 2 discusses some important related works, while Section 3 discusses the
Mask-RCNN concepts. Section 4 discusses the concepts of conditional imitation learning.
The reinforcement learning algorithm is described in Section 5. Section 6 contains simula-
tion experiments. Finally, findings are offered, along with potential future study areas.

Figure 1. Structural framework of this paper.

The related issues to be addressed in this paper are as follows:
It is not hard to have a reward function. However, designing a reward function that

allows the agent to learn the desired behavior is difficult. In short, sparse rewards can make
learning difficult for the agent, but if a lot of manually designed rewards are added by the
individual, the agent may learn unintended behaviors if the rewards are poorly designed.
Current reinforcement learning algorithms are opaque, and in most cases, we have only
high-level intuition about what a reinforcement learning algorithm can learn and how it
will work. For most problems, we want the algorithm to be predictable and interpretable.
The least explanatory and predictable approach is a large neural network that learns the
desired knowledge from scratch, given only low-level reward signals or an environmental
model (like AlphaGo Zero).

In addition to this, the paper will also consider bad weather [12–14] bad weather.
These papers suggest that there is still room for improvement, and it has not yet been
determined whether the most promising robustness enhancement techniques require
structural modifications, data enhancement schemes, modifications to the loss function, or
a combination of these. The relevant solution in this paper is to use Mask-RCNN [10] for
multiple processing of obstacles, including obstacle recognition and instance segmentation
to process obstacles to obtain information about them and add a pre-trained model for
imitation learning to add robustness.

The original innovations and contributions of this work are reflected in the follow-
ing aspects:

1. This paper proposes a two-stage framework called CIL-DDPG, which combines
reinforcement learning and imitation learning using obstacle position information as
additional input, and Mask-RCNN [10] is used for image segmentation. The collection
of CIL and DDPG is an innovative development; previous releases have used the two
methods separately as one development algorithm; secondly, this paper has made
innovations such as obstacle information fusion in CIL.

2. A new reward function is designed to learn an alternative autonomous driving
strategy in a dynamic scenario. Extensive experiments on the CARLA simulator
benchmark show that the work in this paper enables the network to overcome the
effects of image noise.

To better explain the content of this paper, the rest of the paper is organized as follows.
Section 2 discusses some important related works, while Section 3 discusses the Mask-

Appl. Sci. 2022, 12, 11821 4 of 19

RCNN concepts. Section 4 discusses the concepts of conditional imitation learning. The
reinforcement learning algorithm is described in Section 5. Section 6 contains simulation
experiments. Finally, findings are offered, along with potential future study areas.

2. Related Work

Deep learning-based image segmentation algorithms, such as VGGNet [15] and
ResNet [16], are extremely well-preferred. The image pixels are labeled, so each pixel
shares certain features, such as color, intensity, and texture. To date, these two networks
still have an extremely high dominance in the field of feature extraction.

Long J et al. [17] presented FCN networks at CVPR in 2015, proposing full convention-
alization of neural networks, using convolutional layers instead of the final fully connected
layer to complete the segmentation task. Many network models still borrow the structure
of FCN networks to this day.

Zhang et al. [18] proposed an algorithm called Mask Scoring R-CNN that was used
for traffic monitoring to obtain comprehensive vehicle information such as vehicle type,
speed, length, current driving lane, etc. Eventually, the average recognition accuracy for
the model and the number of axles was above 97% and 88%, respectively.

Due to an evolution based on Mask R-CNN networks, the combination of ResNeXt-
101+FPN can be said to be the best feature learning now. The specific improvement includes
the segmentation loss, varying from the original FCIS polynomial cross-entropy based on
single-pixel softmax to single-pixel signed binary cross-entropy. ROIAlign, an interpolation
of feature maps, solves the misalignment problem. Therefore, in this paper, Mask R-CNN
is used.

In 2016, Bojarski et al. [19] trained a CNN to drive autonomously on different types of
roads and achieved over 10 miles of lane-keeping. The network achieved an autonomous
driving rate of 98% through real-world testing.

Another deep CNN, PilotNet, was trained using road images from a single front-
facing camera paired with driver-generated steering angles captured inside the cabin [20].
A drawback of the above work is that their performance comes from a large amount of
training data with manual markers.

Hesham et al. [21] consider that most existing solutions only consider visual camera
frames. Therefore, this work, proposed a convolutional long short-term memory recurrent
neural network (C-LSTM), which is an end-to-end approach to learning visual and dynamic
time-dependent driving. Although their study ultimately achieved good performance, the
nature of the vision-based study failed to avoid the effects of the weather environment.

Codevlla et al. [22] used high-level commands as additional input to build a con-
ditional imitation learning (CIL) model. Another end-to-end example is the ICCV 2019
Learning to Drive Challenge, where Columbia University’s deep learning team rounds out
the top two. The fusion of data from camera sensors and visual maps resulted in significant
performance improvements. While these end-to-end approaches have proven to perform
well in real-world experiments, the robustness and generality need to be improved.

Wang et al. [23] proposed a new navigation command that does not require human
involvement and a new model structure, the angular branching network. Furthermore, in
addition to segmentation information, depth information can also improve the performance
of the driving model. They conducted experiments in both qualitative and quantitative
evaluation to show the effectiveness of the model.

In recent years, deep reinforcement learning (DRL) methods for decision-making in
self-driving cars have been increasingly researched. One reason is its great success on many
artificial intelligence tasks; another well-known shortcut of imitation learning is the weak
generalization performance and the risk of overfitting the training data.

However, decision-making in autonomous driving remains a challenge. Reinforce-
ment learning (RL) has been used to obtain correct behavior in uncertain environments
automatically, but it cannot guarantee the performance of the final policy.

Appl. Sci. 2022, 12, 11821 5 of 19

Maxime et al. [24] propose a general approach to enhance the probabilistic guarantees
of RL agents. An exploration policy is derived before training, constraining the agent from
choosing among actions that satisfy the desired probability specification in a linear time
logic (LTL) representation. Reducing the search space can simplify reward design.

Jianyu Chen et al. [25] proposed a framework that allows model-free deep reinforce-
ment learning to be applied to challenging urban autonomous driving scenarios. A bird’s-
eye view input representation was designed to reduce sample complexity, and visual
coding was used to capture low-dimensional latent states. While the adaptation method
outperforms the baseline, it does not solve the task perfectly. By using reinforcement
learning (RL), strategies can be learned and improved automatically without any manual
design. However, current RL methods are usually unsuitable for complex urban scenarios.
Furthermore, to perform more complex autopilot tasks, we would design a more efficient
reward function [26].

This section presents some related work that combines reinforcement learning with
imitation learning. The core idea is that the agent can learn quantitative parameters from the
image data, which can represent information about the state of the road. These parameters
are then used to control the vehicle.

Over the past decade of its role, researchers have achieved good results with end-to-
end approaches. However, the approach is generally poorly adapted to the environment,
especially for dynamic traffic environments. Image information is acquired by using the
front-facing camera of one’s vehicle, which is then fed into a carefully designed convolu-
tional network to extract features that represent the current state of the vehicle environment.
The feature information is then fed back into the reinforcement learning framework for
learning. Finally, the reinforcement learning model directly outputs the amount of steering,
throttle, etc., that the vehicle will control at the next moment in time.

Mingxing Peng et al. [27] proposed a two-stage framework called IPP-RL. In their
IPP model, the visual information captured by the camera is compensated by the steering
angle calculated by a pure tracking algorithm. It can therefore operate well in adverse
weather conditions. However, with reliance on visual information, there may be obstacle
misdetection, and the approach is still inadequate in more challenging and complex driving
conditions where vehicles are unable to grasp safe distances for collisions.

Xiaodan Liang et al. [28] proposed a general and rule-based Controllable Imitative
Reinforcement Learning (CIRL). To alleviate the low exploration efficiency of large continu-
ous action spaces, the CIRL initializes the pre-trained model weights of the actor network
through imitation learning. Furthermore, CIRL also proposes adaptive strategies and
steering angle reward functions for different control signals (i.e., following, straight ahead,
right turn, left turn) to improve the model’s ability to handle varying situations. The
heavyweight references relevant to this study are shown in Table 1.

Table 1. Summary table of algorithms related to this article.

Algorithm Name and Reference Brief Methodology Highlights Limitations

Imitation learning fusing
Pure-Pursuit

Reinforcement Learning)

In their IPP model, the visual
information captured by the

camera is compensated by the
steering angle calculated by a

pure tracking algorithm.

It is robust to lousy weather
conditions and shows remarkable

generalization capability in
unknown environments on a

navigation task.

IPP-RL uses Pure-Pursuit to
increase computing power and

does not meet real-time
requirements; in addition to this,

it results in a complex model with
reduced robustness.

Controllable Imitative
Reinforcement Learning (CIRL)

The CIRL initializes the
pre-trained model weights of the

actor network through
imitation learning.

CIRL also proposes adaptive
strategies and steering angle

reward functions for different
control signals (i.e., following,
straight ahead, right turn, left
turn) to improve the model’s

ability to handle
varying situations.

CIRL does not perform image
classification and image

enhancement, and in practice,
some false detections occur.

Appl. Sci. 2022, 12, 11821 6 of 19

3. Mask R-CNN
3.1. Structure of Mask R-CNN

Mask-RCNN [10] is the best paper of ICCV2017. Mask-RCNN is an improvement
on Faster-RCNN by adding a fully connected segmentation sub-network. The model
changes from two tasks (classification + regression) to three tasks (classification + regression
+ segmentation). The structure allows the semantic segmentation of the target while
implementing object detection. The detection is first done on the image to find out the
ROIs in the image, pixel correction is performed for each ROI using ROIAlign, and then
the prediction of the different instance belonging classification is performed for each ROI
using the designed FCN framework to obtain the image instance segmentation result
finally. Mask R-CNN is a two-stage framework, where the first stage scans the image
and generates proposals (proposals, i.e., regions that are likely to contain a target), and
the second stage classifies the proposals and generates bounding boxes and masks. The
workflow of Mask-RCNN is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

CNN

Mask
branch

RPN

iuput

Box regression classification

Convolutional
backbone

RoIAlign layer

Fixed size feature map

Feature
map

Fully connected layershead

output

Figure 2. The workflow of Mask-RCNN.

3.2. Dataset Acquisition
It is recommended that standardized fonts such as Times New Roman and Arial are

used with a font size no smaller than 10 pt. In order to compare CIRL and CIL in the later
experimental results, the paper uses the same experimental setup as [7] to validate the
effectiveness of our imitation reinforcement learning.

The information obtained by the sensors is from the forward-facing image camera,
the velocity measurements from the simulator, and the navigation planner by the gener-
ated control commands. In this paper, the CARLA simulator is used, as in [16]. The dataset
includes RGB images, controls, and measurements for each step.

The dataset was collected in the CARLA simulator, using the specified keys on the
keyboard to control the car to collect images and labels in the city as a sample set.

To obtain more image information, the image size was set to 800 * 600, the number of
vehicles to 15, the number of pedestrians to 30, and the FPS to 10. A total of approximately
700,000 images were acquired, including both the original RGB images and the converted
semantic segmentation images.

While the images were captured, the labels and control information was also saved
as CSV tables, with each row containing the vehicle position coordinates, vehicle pose,
control information, etc.

There are 28 labels corresponding to the images according to the CARLA default ac-
quisition method, but only five labels are used: speed, steer, throttle, brake, and high-level
Commands, as shown in Table 2. Steering range at [−1.0–1.0].−1.0 means full left rudder,
1.0 means full right rudder; throttle range at [0.0–1.0], 0 means no throttle, 1 means maxi-
mum throttle; brake range at [0.0–1.0],0 means no brake, 1 means maximum brake.

Table 2. Tag value information.

Serial No. Control Volume Type Description
1 Speed float -
2 Steer float [−1.0,1.0]
3 Throttle float [0.0,1.0]
4 Brake float [0.0,1.0]

5 High-level command int (2 Follow lane, 3 Left,
4 Right, 5 Straight)

Figure 2. The workflow of Mask-RCNN.

Algorithm 1 describes the Mask-RCNN pseudo-code flow.

Algorithm 1. Mask-RCNN

Input: the RGB images
Output: Image with category, mask and bounding box
Repeat: until there is no rgb image input

Step 1: The RGB images are fed into ResNet101 for feature fusion;
Step 2: Then two feature maps are generated as rpn_feature_maps and mrcnn_feature_maps;
Step 3: Different sizes of rpn_feature_maps are sent to the RPN in the feature extraction phase;

Step 4: After the RPN, the rpn_class, rpn_box and the anchor generator generated from the anchors, finally go
to the Proposal Layer;
Step 5: Mapping proposals of mrcnn_class, mrcnn_bboxes and iuput_image_meta to the final layer of the
DetectionTargetLayer;

Step 6: Generating a fixed-size feature map for each RoI using an RoI Align layer;
Step 7: The detections are combined with mrcnn_feature_maps to fpn_mask_graph;
Step 8: Final generation of mrcnn_masks.

End repeat

As can be seen, Mask R-CNN is trained by sending feature maps of different sizes to
the RPN in the feature extraction phase. The choice of multiple feature maps was chosen
because it is known that there are different sizes of targets on the graph. The advantage is
that when the targets are large, it is good to use low-resolution feature maps to detect large
targets; correspondingly, when the targets are small, it is good to use the high resolution to
detect small targets. This is the reason why the backbone chose resnet + fpn.

Appl. Sci. 2022, 12, 11821 7 of 19

After RPN, a large number of candidate regions are generated, which need to be cut
out using ROI on several feature maps of different sizes, i.e., the target region. The target
regions are then fed into ROIAlign (faster is ROIPooling) for subsequent classification
and regression.

3.2. Dataset Acquisition

It is recommended that standardized fonts such as Times New Roman and Arial are
used with a font size no smaller than 10 pt. In order to compare CIRL and CIL in the later
experimental results, the paper uses the same experimental setup as [7] to validate the
effectiveness of our imitation reinforcement learning.

The information obtained by the sensors is from the forward-facing image camera, the
velocity measurements from the simulator, and the navigation planner by the generated
control commands. In this paper, the CARLA simulator is used, as in [16]. The dataset
includes RGB images, controls, and measurements for each step.

The dataset was collected in the CARLA simulator, using the specified keys on the
keyboard to control the car to collect images and labels in the city as a sample set.

To obtain more image information, the image size was set to 800 * 600, the number of
vehicles to 15, the number of pedestrians to 30, and the FPS to 10. A total of approximately
700,000 images were acquired, including both the original RGB images and the converted
semantic segmentation images.

While the images were captured, the labels and control information was also saved as
CSV tables, with each row containing the vehicle position coordinates, vehicle pose, control
information, etc.

There are 28 labels corresponding to the images according to the CARLA default
acquisition method, but only five labels are used: speed, steer, throttle, brake, and high-
level Commands, as shown in Table 2. Steering range at [−1.0–1.0].−1.0 means full left
rudder, 1.0 means full right rudder; throttle range at [0.0–1.0], 0 means no throttle, 1 means
maximum throttle; brake range at [0.0–1.0],0 means no brake, 1 means maximum brake.

Table 2. Tag value information.

Serial No. Control Volume Type Description

1 Speed float -
2 Steer float [−1.0, 1.0]
3 Throttle float [0.0, 1.0]
4 Brake float [0.0, 1.0]

5 High-level command int (2 Follow lane, 3 Left,
4 Right, 5 Straight)

3.3. Image Enhancement

The size of the images captured by the CARLA simulator is 800 * 600, which is slow
and prone to over-fitting if used directly for training, so some processing is required first.

Firstly, the image was resized by cropping off the top part of the sky and the bottom
part of the car hood, leaving an 800 * 352 image, and then it was subsampled twice to
reduce the size by 200 * 88.

There are three reasons to explain this: firstly, due to the limitations of our equipment,
the video memory is too small to process large images, so reducing the size can improve the
speed of image processing; secondly, smaller images can use smaller convolutional kernels
to reduce the number of operations, which has been commonly used since VGG; thirdly,
a large image with fewer convolutional layers will lead to a higher dimension of Flatten,
and the final output will have a huge number of parameters, resulting in a complex model,
while smaller image inputs can simplify the model, avoiding the problem of overfitting.

As the captured images are too homogeneous, augmentation is required to increase
the data sample and its diversity.

Appl. Sci. 2022, 12, 11821 8 of 19

The typical image enhancement method is to flip the image, adjust the brightness, add
shadows and move the image. The Figure 3 below shows each enhancement method’s
before and after image comparison.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

3.3. Image Enhancement
The size of the images captured by the CARLA simulator is 800 * 600, which is slow

and prone to over-fitting if used directly for training, so some processing is required first.
Firstly, the image was resized by cropping off the top part of the sky and the bottom

part of the car hood, leaving an 800 * 352 image, and then it was subsampled twice to
reduce the size by 200 * 88.

There are three reasons to explain this: firstly, due to the limitations of our equip-
ment, the video memory is too small to process large images, so reducing the size can
improve the speed of image processing; secondly, smaller images can use smaller convo-
lutional kernels to reduce the number of operations, which has been commonly used since
VGG; thirdly, a large image with fewer convolutional layers will lead to a higher dimen-
sion of Flatten, and the final output will have a huge number of parameters, resulting in
a complex model, while smaller image inputs can simplify the model, avoiding the prob-
lem of overfitting.

As the captured images are too homogeneous, augmentation is required to increase
the data sample and its diversity.

The typical image enhancement method is to flip the image, adjust the brightness,
add shadows and move the image. The Figure 3 below shows each enhancement method’s
before and after image comparison.

Figure 3. The effect of image enhancement.

4. Imitation Learning
4.1. Conditional Imitation Learning

In this work, the structure of the model, the velocity module, and other settings are
consistent with CIL [3]. The biggest difference is the use of the output of Mask-RCNN.

Two fully connected layers connect all backbone speed modules. Each contains 512
units in the image module and 128 units in the speed module.

A fully connected layer connects the backbone with 512 units, and velocity modules
are composed of a fully connected layer with 512 units. Each branch is trained separately
using a high-level multi-branching-based mechanism command. Online enhancement
and method enhancement during training of the data network is performed as in CIL [3].

The image size is 200 * 88 * M, with M = 3 representing the input RGB image; with M
= 1, the input is a semantically segmented image.

The input is normalized, speeding up the gradient descent to find the optimal solu-
tion and accelerating the convergence to transform the pixel values between [0,1]. De-
pending on the backbone, the input M is adjusted to achieve different inputs to the model.
As shown in Figure 4.

Figure 3. The effect of image enhancement.

4. Imitation Learning
4.1. Conditional Imitation Learning

In this work, the structure of the model, the velocity module, and other settings are
consistent with CIL [3]. The biggest difference is the use of the output of Mask-RCNN.

Two fully connected layers connect all backbone speed modules. Each contains
512 units in the image module and 128 units in the speed module.

A fully connected layer connects the backbone with 512 units, and velocity modules
are composed of a fully connected layer with 512 units. Each branch is trained separately
using a high-level multi-branching-based mechanism command. Online enhancement and
method enhancement during training of the data network is performed as in CIL [3].

The image size is 200 * 88 * M, with M = 3 representing the input RGB image; with
M = 1, the input is a semantically segmented image.

The input is normalized, speeding up the gradient descent to find the optimal solution
and accelerating the convergence to transform the pixel values between [0, 1]. Depending
on the backbone, the input M is adjusted to achieve different inputs to the model. As shown
in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

Figure 4. Conditional imitation learning network structure.

In the training phase, the position of each step is defined as the planning path, with
one point per 0.4 m scattered path. In the test phase, the paths are planned by the planner
in CARLA.

The dataset can then be interpreted as:

{ } , , , ,D o s c p ai i i i i= (1)

where: 𝑜௜ is the sensor data observation, which is referenced to RGB image information
or semantic segmentation images in this paper; 𝑠௜ is the vehicle speed; 𝑐௜ is the ad-
vanced command; 𝑝௜ is the steering result; 𝑎௜ is the vehicle ground truth action, includ-
ing steering angle, acceleration, and braking for each step.

The action predicted by the network is defined as follows

(), , ,′a o s c pi i i i iπ= (2)

Using the L2 loss function:

() | 2 2 2| | |, || || | || |′ ′= −′− + − + s s a a b ba a a a ai i i i i i i i
′ a a a (3)

where: 𝑎௜௦ is the steering angle; 𝑎௜௔is the acceleration; 𝑎௜௕ is the braking action;
The network is trained to minimize the gap between the predicted steering com-

mands and the underlying facts. In practice, the best parameters 𝜃ᇱ are obtained by min-
imizing the loss of;

() | 2 2 2| | |, || || | || |′ ′= −′− + − + s s a a b ba a a a ai i i i i i i i
′ a a a (4)

4.2. Training and Validation
The inputs include the original RGB image and the semantically segmented image,

as well as control information (i.e., measurements). The image is subjected to information
feature extraction by a convolutional neural network, which outputs a predicted velocity
value.

The predicted velocity values are fused with the control information extracted from
the fully connected network, and the model outputs the predicted action values combined
with the high-level control commands, which give more accurate results for each branch
of the prediction.

As can be seen in Figure 5 below, the loss profile of the model tends to decrease as
the number of iteration steps increases. Although there is some jitter in all the intermediate
training losses, they eventually level off. The loss profile no longer decreases, indicating
that the network has converged. At this point, the model has reached the optimal result,
and the validation loss is slightly lower than the training loss in the early stage, indicating

Figure 4. Conditional imitation learning network structure.

In the training phase, the position of each step is defined as the planning path, with
one point per 0.4 m scattered path. In the test phase, the paths are planned by the planner
in CARLA.

The dataset can then be interpreted as:

D = {〈oi, si, ci, pi, ai〉} (1)

where: oi is the sensor data observation, which is referenced to RGB image information
or semantic segmentation images in this paper; si is the vehicle speed; ci is the advanced

Appl. Sci. 2022, 12, 11821 9 of 19

command; pi is the steering result; ai is the vehicle ground truth action, including steering
angle, acceleration, and braking for each step.

The action predicted by the network is defined as follows

a′i = π(oi, si, ci, pi) (2)

Using the L2 loss function:

L
(
a′i, ai

)
=
∣∣∣∣∣∣a′si − as

i

∣∣∣∣∣∣2+∣∣∣∣∣∣a′ai − aa
i

∣∣∣∣∣∣2+∣∣∣∣∣∣a′bi − ab
i

∣∣∣∣∣∣2 (3)

where: as
i is the steering angle; aa

i is the acceleration; ab
i is the braking action;

The network is trained to minimize the gap between the predicted steering commands
and the underlying facts. In practice, the best parameters θ′ are obtained by minimizing
the loss of;

L
(
a′i, ai

)
=
∣∣∣∣∣∣a′si − as

i

∣∣∣∣∣∣2+∣∣∣∣∣∣a′ai − aa
i

∣∣∣∣∣∣2+∣∣∣∣∣∣a′bi − ab
i

∣∣∣∣∣∣2 (4)

4.2. Training and Validation

The inputs include the original RGB image and the semantically segmented image,
as well as control information (i.e., measurements). The image is subjected to information
feature extraction by a convolutional neural network, which outputs a predicted velocity
value.

The predicted velocity values are fused with the control information extracted from
the fully connected network, and the model outputs the predicted action values combined
with the high-level control commands, which give more accurate results for each branch of
the prediction.

As can be seen in Figure 5 below, the loss profile of the model tends to decrease as the
number of iteration steps increases. Although there is some jitter in all the intermediate
training losses, they eventually level off. The loss profile no longer decreases, indicating
that the network has converged. At this point, the model has reached the optimal result,
and the validation loss is slightly lower than the training loss in the early stage, indicating
that the model does not appear to be overfitted during the training process, and the training
result is good.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20

that the model does not appear to be overfitted during the training process, and the train-
ing result is good.

Figure 5. Comparison graph of training loss and validation loss.

5. Reinforcement Learning
5.1. Markov Decision Process (MDP)

By interacting with the car simulator, the agent can optimize according to the reward
signals provided by the environment without human intervention, which can be defined
as a Markov Decision Process (MDP).

In an autonomous driving scenario, the MDP is defined by a tuple <I,C,S,A,R,P,λ>.
In an autonomous driving scenario, the MDP is defined by a tuple that consists of a set of
states 𝑂, defined by observed frames𝐼, velocities 𝑆, control commands 𝐶; a set of actions,
a reward function, a transition function 𝑅(𝑠௧, 𝑎௧), 𝑃(𝑜ᇱ|𝑜, 𝒂) and a discount factor 𝛾.

After performing the action and interacting with the environment, the agent receives
a reward and arrives at a new state according to a probability distribution.

In each state, the client subject performs an action 𝒂 ∈ 𝐴. After taking that action and
interacting with the environment, the agent receives a reward and arrives at a new state
according to a probability distribution. To make driving strategies more realistic, the ve-
hicle must follow the path generated by the topology planner to reach the intended goal.
New observations o′ are updated by simulator observations and a series of commands
towards the goal. The event terminates when the vehicle reaches the target, collides with
an obstacle, or when the time budget is exhausted.

Deterministic and static policies π specify the actions that the agent will take in
each state given. The goal of the driving agent is to find policies π that map states to
actions that maximize the total expected discounted payoff. Thus, this can be learned by
using an action-value function: 𝑄గ(𝑜, 𝒂) = 𝐸గሾ∑ 𝛾௧𝑅(𝑜௧, 𝑎௧)ାஶ௧ୀ଴ ሿ where is the expectation 𝑬గ of the distribution of allowable trajectories (𝑜଴, 𝒂଴, … , 𝑜௧, 𝑎௧) by executing the poli-
cies𝜋sequentially over some time.

As the autonomous driving system needs to predict continuous movements (steering
angle, braking, and acceleration), we use an actor-critic network for the continuous control
problem, where both actor and critic are parameterized by a deep network.

In this work, we used the deep deterministic policy gradient DDPG, a model-free
algorithm based on actor critique that can operate on a continuous action space. The
DDPG algorithm consists of an actor function and 𝜇(𝑠௧|𝜃ఓ) a critic function𝑄(𝑠௧, 𝑎௧|𝜃ொ).

0 100,000 200,000 300,000 400,000 500,000

0.00

0.05

0.10

0.15

0.20

Lo
ss

Step

 val_loss
 train_loss

Figure 5. Comparison graph of training loss and validation loss.

Appl. Sci. 2022, 12, 11821 10 of 19

5. Reinforcement Learning
5.1. Markov Decision Process (MDP)

By interacting with the car simulator, the agent can optimize according to the reward
signals provided by the environment without human intervention, which can be defined as
a Markov Decision Process (MDP).

In an autonomous driving scenario, the MDP is defined by a tuple <I,C,S,A,R,P,λ>. In
an autonomous driving scenario, the MDP is defined by a tuple that consists of a set of
states O, defined by observed frames I, velocities S, control commands C; a set of actions, a
reward function, a transition function R(st, at), P(o′|o, a) and a discount factor γ.

After performing the action and interacting with the environment, the agent receives
a reward and arrives at a new state according to a probability distribution.

In each state, the client subject performs an action a ∈ A. After taking that action
and interacting with the environment, the agent receives a reward and arrives at a new
state according to a probability distribution. To make driving strategies more realistic, the
vehicle must follow the path generated by the topology planner to reach the intended goal.
New observations o′ are updated by simulator observations and a series of commands
towards the goal. The event terminates when the vehicle reaches the target, collides with
an obstacle, or when the time budget is exhausted.

Deterministic and static policies π specify the actions that the agent will take in
each state given. The goal of the driving agent is to find policies π that map states to
actions that maximize the total expected discounted payoff. Thus, this can be learned by

using an action-value function: Qπ(o, a) = Eπ

[
+∞
∑

t=0
γtR(ot, at)

]
where is the expectation Eπ

of the distribution of allowable trajectories (o0, a0, . . . , ot, at) by executing the policies π
sequentially over some time.

As the autonomous driving system needs to predict continuous movements (steering
angle, braking, and acceleration), we use an actor-critic network for the continuous control
problem, where both actor and critic are parameterized by a deep network.

In this work, we used the deep deterministic policy gradient DDPG, a model-free
algorithm based on actor critique that can operate on a continuous action space. The DDPG
algorithm consists of an actor function and µ(st|θµ) a critic function Q(st, at

∣∣θQ) . Due to
its good performance on continuous control problems, it uses the gradient of the Q function
relative to the action directly for policy training.

ai = µ(si | θµ) +N (5)

The behavior policy µ is a random process generated from the current online policy
and random noise OU.OU represents the value obtained by the Ornstein-Uhlenbeck from
which the random process is sampled. N ∼ OU

(
µ, σ2) is a stochastic process that allows

action exploration. This further noise exploration ensures that the agent behavior does
not converge prematurely to a local optimum. The key advantage of our DDPG is that
the exploration starting point can be better initialized by learning human expectations,
which helps to significantly reduce the thorough exploration that can take days in the early
stages of the DDPG. Starting from a better state, stochastic action exploration allows RL to
further refine actions based on simulator feedback and produce more general and robust
driving strategies.

Unlike the traditional random initialization θµ of the DDPG, our DDPG is proposed
to be initialized by simulating pre-trained θ I loading as parameters θµ. In this paper, we
define st= {ot, ft} for each step, o, f is observed from a camera in the simulator, and F is
additional obstacle perception information, i.e., the imitation learning phasedefined above.

When the number of samples in the replay buffer exceeds the batch size, it starts training
the actor and critic network and optimizes them at each step based on Equations (7) and (9).
Definition of loss for Q-networks: a similar approach to supervised learning, define the loss
as MSE: mean squared error.

Appl. Sci. 2022, 12, 11821 11 of 19

L =
1
N ∑

i
(yi −Q(si, ai|θρ))2 (6)

yi = ri + γQ′
(

si+1, µ′
(

si+1 | θµ′
)
| θQ′

)
(7)

yi is calculated using the target strategy network µ′ and the target Q network Q′.
This makes the learning of Q-network parameters more stable and converge. This label
relies on the target network we are learning from, which is what distinguishes it from
supervised learning.

Using the running average, the parameters of the online network are soft updated to
the parameters of the target network.

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′ (8)

On the other hand, the actor-network is further updated by a gradient descent step.

∇θµ Jβ(µ) ≈
1
N ∑

i

(
∇aQ

(
s, a | θQ

)∣∣∣
s=si ,a=µ(si)

· ∇θµµ(s | θµ)

∣∣∣∣
s=si

)
(9)

Firstly, the simulation environment is initialized, the network parameters are set, and
the network hyperparameters are passed to the Actor target network via the Actor-network,
which is shown in Figure 6. The target network is mainly used to solve the target action,
and the action is passed to the Critic target network, and the output is passed to the Critic
network. As shown in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

network is then updated to pass the information to the Actor-network, generating an ini-
tial policy, which is explored and given the appropriate reward. When the reward is max-
imized, an optimal policy (action) is obtained, and this action is applied to the controller
to drive the vehicle.

Command
Control

512

256 256

256 256

256 256

256 256

3

3

3

3

Speed

Actor Network

45 162022
98

98
200

88

5

42

32

3

47

19

64

3

40

32

3

17

64

3
8

128

3

45

6

128

3 45

128

2
6

128

3

6 4

18

Backbone Network
512 512

128 128

M

Figure 6. Actor Network.

Action(3)

Command
Control

512

256 256

256 256

256 256

256 256

3

3

3

3

Speed

Critic Network

45 162022
98

98
200

88

5

42

32

3

47

19

64

3

40

32

3

17

64

3
8

128

3

45

6

128

3 45

128

2
6

128

3

6 4

18

Backbone Network
512 512

128 128

128 128

M

Figure 7. Critic network.

5.2. Reward Function of DDPG
The simulation environment is first initialized, and the parameters are set. The pa-

rameters are passed through the Actor network to the Actor target network, mainly used
to solve the target actions, passing the actions to the Critic target network and the output
return values to the Critic network.

At the same time, the input data information is sampled for evaluation and passed
to the Actor target network, the Critic target network, and the Critic network, respectively.
The Critic network is then updated to pass the information to the Actor-network, produc-
ing an initial policy.

The strategy is explored, and a reward is given. When the reward is maximum, an
optimal strategy (action) is obtained, and the vehicle is driven by applying this action to
the controller. The design is based on the following parameters: efficiency, safety, and
comfort. For the DDPG algorithm, the design of the reward value function is important in
influencing the network, guiding the direction of the gradient of parameter updates

Figure 6. Actor Network.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

network is then updated to pass the information to the Actor-network, generating an ini-
tial policy, which is explored and given the appropriate reward. When the reward is max-
imized, an optimal policy (action) is obtained, and this action is applied to the controller
to drive the vehicle.

Command
Control

512

256 256

256 256

256 256

256 256

3

3

3

3

Speed

Actor Network

45 162022
98

98
200

88

5

42

32

3

47

19

64

3

40

32

3

17

64

3
8

128

3

45

6

128

3 45

128

2
6

128

3

6 4

18

Backbone Network
512 512

128 128

M

Figure 6. Actor Network.

Action(3)

Command
Control

512

256 256

256 256

256 256

256 256

3

3

3

3

Speed

Critic Network

45 162022
98

98
200

88

5

42

32

3

47

19

64

3

40

32

3

17

64

3
8

128

3

45

6

128

3 45

128

2
6

128

3

6 4

18

Backbone Network
512 512

128 128

128 128

M

Figure 7. Critic network.

5.2. Reward Function of DDPG
The simulation environment is first initialized, and the parameters are set. The pa-

rameters are passed through the Actor network to the Actor target network, mainly used
to solve the target actions, passing the actions to the Critic target network and the output
return values to the Critic network.

At the same time, the input data information is sampled for evaluation and passed
to the Actor target network, the Critic target network, and the Critic network, respectively.
The Critic network is then updated to pass the information to the Actor-network, produc-
ing an initial policy.

The strategy is explored, and a reward is given. When the reward is maximum, an
optimal strategy (action) is obtained, and the vehicle is driven by applying this action to
the controller. The design is based on the following parameters: efficiency, safety, and
comfort. For the DDPG algorithm, the design of the reward value function is important in
influencing the network, guiding the direction of the gradient of parameter updates

Figure 7. Critic network.

Appl. Sci. 2022, 12, 11821 12 of 19

The input data information is also sampled for evaluation and passed to the Actor
target network, the Critic target network, and the Critic network, respectively. The Critic
network is then updated to pass the information to the Actor-network, generating an initial
policy, which is explored and given the appropriate reward. When the reward is maximized,
an optimal policy (action) is obtained, and this action is applied to the controller to drive
the vehicle.

5.2. Reward Function of DDPG

The simulation environment is first initialized, and the parameters are set. The pa-
rameters are passed through the Actor network to the Actor target network, mainly used
to solve the target actions, passing the actions to the Critic target network and the output
return values to the Critic network.

At the same time, the input data information is sampled for evaluation and passed to
the Actor target network, the Critic target network, and the Critic network, respectively.
The Critic network is then updated to pass the information to the Actor-network, producing
an initial policy.

The strategy is explored, and a reward is given. When the reward is maximum, an
optimal strategy (action) is obtained, and the vehicle is driven by applying this action to
the controller. The design is based on the following parameters: efficiency, safety, and
comfort. For the DDPG algorithm, the design of the reward value function is important
in influencing the network, guiding the direction of the gradient of parameter updates
throughout the network. In the framework of reinforcement learning, the process by which
an intelligence learns to adapt to its environment is guided by the reward function. A
suitable reward function not only makes the strategies learned by the intelligence more
reasonable but also allows the intelligence to learn faster and better the convergence of
the network.

rv(c) =


min(25, v) if c for Follow
min(35, v) if c for Straight
v if v < 20 c for TurnLeft and TurnRight
40− v if v > 20 c for TurnLeft and TurnRight

(10)

rs(c) =
{

10−|δ|×20 if c is straight
−ks ×max((|δ|−0.2), 0) if c is left or right

(11)

In Equation (10), the reward parameter is a negative reward penalty for the vehicle
speed dropping below the reference speed Vref, where the relationship between the negative
reward and the vehicle speed is a one-time positive proportional relationship. When the
vehicle speed reaches the reference speed, then it is rewarded positively. The advantage of
this is that it increases the damping of speed changes and prevents the excessive pursuit of
rewards from causing speed changes and uneven driving.

In Equation (11), we want the steering angle to be 0 when the vehicle is going straight,
and we give a larger penalty when this value is larger. When turning left or right, it is
desired that the vehicle’s steering angle can be smoother when the intelligent body acts on
corner crossing, obstacle avoidance, etc. Therefore, the magnitude of the steering wheel
turning angle δ is considered. where ks is the penalty factor for vehicle directional cornering
and the output range for steering wheel cornering is [−1, 1].

Finally, both are set to −100, overlapping with the pavement and opposite lane.
Collision damage is −100 for collisions with other vehicles and pedestrians and rd −50 for
other objects (e.g., trees and utility poles).

The magnitude of the steering wheel corner of the vehicle: This reward parameter
is a penalty for the vehicle to make a large hitting corner. It is hoped that the vehicle’s
cornering can be smoother when the intelligent body acts by crossing curves and avoiding
obstacles, so the magnitude of the steering wheel corner δ is considered.

Appl. Sci. 2022, 12, 11821 13 of 19

Where is the penalty factor for the vehicle directional turn, the output range for
steering wheel turn is [−1, 1] and Rs is the vehicle directional turn reward term. The final
reward r conditions for different command controls are calculated as follows.

In summary, the final reward function can be obtained as follows:

r = R(o, a) = rs(c) + rv(c) + rr + ro + rd (12)

6. Simulation Experiments
6.1. Experimental Settings

This paper uses the CARLA simulator [20], which simulates the urban environment
with high fidelity CARLA environment contains dynamic obstacles such as self-cars, pedes-
trians crossing the road randomly, etc. The CARLA simulator provides 14 weather con-
ditions, GPS, sensory measurements, and a rough plan consisting of coarse waypoint
coordinates in a map without any fine-grained trajectory reference.

We pre-trained the actor network using the same experimental setup as in [27] to
demonstrate the effectiveness of our imitative reinforcement learning. Fourteen hours of
driving data collected from CARLA were used for training, and the network was trained
using the Adam optimizer. In the imitative learning section, the setup details were the
same as mentioned above. In the reinforcement learning section, the environment was
dynamic by setting the number.

The maximum number of vehicles ranges from 20 to 40, and the number of pedestrians
ranges from 50 to 100. Setting the maximum set to 1000 results in a maximum number of
steps per turn of 3000. The remaining parameters used for model training are listed in the
Table 3 below:

Table 3. Training assessment parameters.

Parameters Value

Buffer size 100,000
Batch size 32

Discount factor 0.99
Learning rate of actor 0.0001
Learning rate of critic 0.001
Max steps per episode 3000
Total training episodes 8000

Optimizer Adam
Train_PLAY_MODE = 0 Train = 1 Test = 0

τ 0.001

TRAIN_PLAY_MODE is the DDPG operating mode, when this parameter is set to 1 it
enters training mode and when this parameter is set to 0 it enters test mode.

Where tau is the hyperparameter of the target network, lra is the learning rate of the
actor-network or is the learning rate of the actor-network, buffer_size is the maximum
capacity for storing experience samples, batch_size is the size of each BATCH acquisition,
gamma = 0.99 the reward discount factor of the agent, the larger the discount factor,
the more “long-term” the agent is thinking, the smaller the agent is more “immediate.”
“episodes_num is the number of training rounds the agent performs, max_steps is the
maximum number of steps the agent can perform per round, and ACTION_NOISE is the
number of exploration rounds the agent performs. NOISE is the coefficient by which the
agent explores.

Several goal-directed tasks were evaluated using the CARLA benchmark [8], including
“straight line,” “one lap,” “navigation,” and “dynamic navigation.”

The experiment is divided into three phases, each with a different level of difficulty,
with an overall gradual increase in difficulty, and each phase of the task has two different
weather environments, sunny and rainy. Each stage involved driving the vehicle with
a destination as the goal, and the task focused on how well the vehicle performed in

Appl. Sci. 2022, 12, 11821 14 of 19

straight-line driving, turning, and decision planning tasks in dynamic traffic, so the effects
of signals and yellow lanes were not taken into account during the training test. The test
map is Town04 in CARLA, a CARLA map of a city with eight lanes in a circle, with elevated,
circular, uphill, and downhill scenarios, three-way intersections, etc.

In order to more fully consider the influence of weather on decision planning, this
paper divides the weather into two groups, Weather1, and Weather2, referring to the work
of Xiaodan Liang et al. [27]. Weather1 includes sunny days, sunny sunsets, rainy days, and
days after rain. weather2 includes cloudy days and rainy days at sunset. The details are
shown in Figure 8 below.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

sunny days sunny sunset rainy days

days after rain rainy days at sunset cloudy days

Figure 8. Weather conditions in different environments.

6.2. Results
In this experiment, we compare our method with the original MP from [3] and two

state-of-the-art approaches: CIL [25] and CIRL. CIRL combines imitation learning with
reinforcement learning. To evaluate the generalization performance in unknown weather
conditions and environments, we take all four tasks for all methods in four driving con-
ditions denoted as “Training condition,” “New town”, “New weather”, and “New
weather&town”.

As shown in Figure 9, our model greatly outperforms the MP and CIL baseline tasks
in almost all respects. It can be observed that the model achieves better performance than
the others to some extent. Although the success rate of the model in this paper is, in some
cases, inferior to that of CILR, this may be because the demonstration dataset used for
training is smaller.

(a) (b)

Straight One turn Navigation Nav.dynamic
75

80

85

90

95

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

Training Conditions

Straight One turn Navigation Nav.dynamic

75

80

85

90

95

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Weather

Figure 8. Weather conditions in different environments.

6.2. Results

In this experiment, we compare our method with the original MP from [3] and two
state-of-the-art approaches: CIL [25] and CIRL. CIRL combines imitation learning with rein-
forcement learning. To evaluate the generalization performance in unknown weather con-
ditions and environments, we take all four tasks for all methods in four driving conditions
denoted as “Training condition,” “New town”, “New weather”, and “New weather&town”.

As shown in Figure 9, our model greatly outperforms the MP and CIL baseline tasks
in almost all respects. It can be observed that the model achieves better performance than
the others to some extent. Although the success rate of the model in this paper is, in some
cases, inferior to that of CILR, this may be because the demonstration dataset used for
training is smaller.

In addition, the model achieves better performance. Robustness and generalization in
unknown environments while it takes less time to train. Our actor commentary network
was trained using only 200,000 simulation steps driving non-stop at ten frames per second
for about 8 h. This compares to about 12 h in CIRL, where it took 300,000. The results in
“New weather&town” show that our model improves generalization performance, just
like using large-scale demonstration data. Our model can obtain a high percentage of
completed episodes after a few hours with good sampling efficiency, thanks to a good
start of exploration driven by a controlled imitation phase. The proposed approach is
implemented on the TensorFlow framework.

Appl. Sci. 2022, 12, 11821 15 of 19

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

sunny days sunny sunset rainy days

days after rain rainy days at sunset cloudy days

Figure 8. Weather conditions in different environments.

6.2. Results
In this experiment, we compare our method with the original MP from [3] and two

state-of-the-art approaches: CIL [25] and CIRL. CIRL combines imitation learning with
reinforcement learning. To evaluate the generalization performance in unknown weather
conditions and environments, we take all four tasks for all methods in four driving con-
ditions denoted as “Training condition,” “New town”, “New weather”, and “New
weather&town”.

As shown in Figure 9, our model greatly outperforms the MP and CIL baseline tasks
in almost all respects. It can be observed that the model achieves better performance than
the others to some extent. Although the success rate of the model in this paper is, in some
cases, inferior to that of CILR, this may be because the demonstration dataset used for
training is smaller.

(a) (b)

Straight One turn Navigation Nav.dynamic
75

80

85

90

95

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

Training Conditions

Straight One turn Navigation Nav.dynamic

75

80

85

90

95

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Weather

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

(c) (d)

Figure 9. Comparison of the completion of the algorithm in this paper with the benchmark algo-
rithm ((a) is in a training environment; (b) is in a new weather environment; (c) is in a new town
environment; (d) is in a new weather and town environment).

In addition, the model achieves better performance. Robustness and generalization
in unknown environments while it takes less time to train. Our actor commentary network
was trained using only 200,000 simulation steps driving non-stop at ten frames per second
for about 8 h. This compares to about 12 h in CIRL, where it took 300,000. The results in
“New weather&town” show that our model improves generalization performance, just
like using large-scale demonstration data. Our model can obtain a high percentage of com-
pleted episodes after a few hours with good sampling efficiency, thanks to a good start of
exploration driven by a controlled imitation phase. The proposed approach is imple-
mented on the TensorFlow framework.

As can be seen from Figure 10, the average score obtained by our algorithm is about
400. The higher the score, the better the driving condition of the algorithm in the experi-
ment and the smaller the collision and violation ratio, which proves the effectiveness of
the algorithm. The reward function 400 indicates that convergence has been achieved in
the training results, i.e., that one can design a reward function according to their design
and thus achieve the requirements of their design; 600 is the maximum value of the re-
ward one can possibly achieve and is the reward reported for certain special driving situ-
ations.

Figure 10. Average award (Value of reward function with step size).

Straight One turn Navigation Nav.dynamic

20

30

40

50

60

70

80

90

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Town

Straight One turn Navigation Nav.dynamic
40

50

60

70

80

90

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Town & Weather

10,000 20,000 30,000 40,000

-200

0

200

400

600

800

R
ew

ar
d

Step

 Reward

Figure 9. Comparison of the completion of the algorithm in this paper with the benchmark algo-
rithm ((a) is in a training environment; (b) is in a new weather environment; (c) is in a new town
environment; (d) is in a new weather and town environment).

As can be seen from Figure 10, the average score obtained by our algorithm is about 400.
The higher the score, the better the driving condition of the algorithm in the experiment
and the smaller the collision and violation ratio, which proves the effectiveness of the
algorithm. The reward function 400 indicates that convergence has been achieved in the
training results, i.e., that one can design a reward function according to their design and
thus achieve the requirements of their design; 600 is the maximum value of the reward one
can possibly achieve and is the reward reported for certain special driving situations.

This paper analyses the test results for straight ahead, cornering, and mixed conditions
during vehicle driving, with a benchmark assessment test mainly for the mixed conditions.

From the results of the Tables 4 and 5, we can see that in the same urban environment,
using the same weather conditions as in the training, the car did not have lane deviation
and only just had the event of driving in other lanes, the average number of occurrences
was 1.33; in the same urban environment and different weather conditions, the car also had
better task completion, only had lane deviation and driving in other lanes violations, but
Under the same weather conditions and different urban environments, the robustness of
the model is also good, with a higher average task completion, a larger average distance
travelled by the car before the violation occurred, and a lower number of violations;
however, under different urban environments and weather conditions, the adaptability of
the model decreases, and the probability of violation also relatively. Although the average

Appl. Sci. 2022, 12, 11821 16 of 19

task completion is high, this is because the straight ahead working condition is relatively
simple and the distance between the beginning and end of the task point is not very long,
so the model is able to complete more of the tasks. In this condition, there are no dynamic
objects, and the task distance is short, so there are no collisions, collisions with people or
static collisions, etc. From the results of several other benchmark evaluations, the model in
this paper can complete the task well in the straight-ahead condition.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

(c) (d)

Figure 9. Comparison of the completion of the algorithm in this paper with the benchmark algo-
rithm ((a) is in a training environment; (b) is in a new weather environment; (c) is in a new town
environment; (d) is in a new weather and town environment).

In addition, the model achieves better performance. Robustness and generalization
in unknown environments while it takes less time to train. Our actor commentary network
was trained using only 200,000 simulation steps driving non-stop at ten frames per second
for about 8 h. This compares to about 12 h in CIRL, where it took 300,000. The results in
“New weather&town” show that our model improves generalization performance, just
like using large-scale demonstration data. Our model can obtain a high percentage of com-
pleted episodes after a few hours with good sampling efficiency, thanks to a good start of
exploration driven by a controlled imitation phase. The proposed approach is imple-
mented on the TensorFlow framework.

As can be seen from Figure 10, the average score obtained by our algorithm is about
400. The higher the score, the better the driving condition of the algorithm in the experi-
ment and the smaller the collision and violation ratio, which proves the effectiveness of
the algorithm. The reward function 400 indicates that convergence has been achieved in
the training results, i.e., that one can design a reward function according to their design
and thus achieve the requirements of their design; 600 is the maximum value of the re-
ward one can possibly achieve and is the reward reported for certain special driving situ-
ations.

Figure 10. Average award (Value of reward function with step size).

Straight One turn Navigation Nav.dynamic

20

30

40

50

60

70

80

90

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Town

Straight One turn Navigation Nav.dynamic
40

50

60

70

80

90

100

Av
er

ag
e

ta
sk

 c
om

pl
et

io
n

ra
te

 MP
 CIL
 CIRL
 OURS

New Town & Weather

10,000 20,000 30,000 40,000

-200

0

200

400

600

800

R
ew

ar
d

Step

 Reward

Figure 10. Average award (Value of reward function with step size).

Table 4. Straight: Average distance traveled.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Hitting

Someone

Town
1

1 16.74 14.13 16.74 16.74
2 11.58 12.05 13.26 13.26

Town
2

1 9.41 9.54 11.95 11.95
2 13.37 12.79 15.46 15.46

Table 5. Straight: The average number of violations.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Hitting

Someone

Town
1

1 0 1.33 0 0
2 2.54 1.68 0 0

Town
2

1 3.01 2.86 0 0
2 3.47 4.20 0 0

From the results of Tables 6 and 7, the car driving environment under turning con-
ditions is relatively simple, and when the training conditions are the same, the model in
this paper is basically able to drive through the whole section of the road, and the number
of collisions is also low; in other weather conditions there is a slight decline, but due to
the existence of advanced control commands, the model in this paper is less sensitive to
the weather when the weather changes, and it can complete the driving task excellently.
Adaptation ability decreases significantly, a part of the task volume will be lost, and the
number of collisions also increases significantly, which is because the change in the urban
environment will cause the structure of the image to change, and the algorithm will not

Appl. Sci. 2022, 12, 11821 17 of 19

extract enough information about the features with greater recognition degree, which
affects the neural network’s judgment of the recognition results.

Table 6. One turn: Average distance traveled.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Static

Collision

Town
1

1 21.09 20.21 22.58 22.58
2 22.26 21.54 26.71 26.71

Town
2

1 16.21 17.26 21.39 21.39
2 16.45 14.36 24.83 24.83

Table 7. One turn: The average number of violations.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Static

Collision

Town
1

1 1.14 2.02 0 0
2 2.47 3.63 0 0

Town
2

1 4.33 4.67 0 0
2 6.68 6.97 0 0

From the results of Tables 8 and 9, although the overall performance of the model
in this paper is not as good as that of the individual working conditions, the vehicle can
complete the driving task well under the same conditions as the training, which is already a
good result in the long-distance driving task. The model is robust and generalizable. In the
same urban environment and under different weather conditions, the generalization ability
of the model in this paper decreases, but it can still perform the driving task well. The
average driving distance before a violation is less than that in Weather ID = 1, the number
of violations increases, and the probability of collision increases, but the test results are
relatively good, which shows that the algorithm is not particularly sensitive to changes
in weather. The algorithm is not particularly sensitive to changes in weather, and under
the same test environment, the model can still have good stability and prediction ability.
However, when the algorithm was transferred to an unfamiliar urban environment, the
model was unable to complete the test task properly in Town02 due to the longer coordinate
distances of the task points and the increased dynamic factors in the environment, which
resulted in more violations and more frequent collisions when the vehicles were driving,
shorter normal driving distances and a significant decrease in driving effectiveness. This
may be due to the dynamic and unstructured nature of the new urban environment
and the limited feature information extracted by the network, resulting in an inability to
optimize the representational capability of the network and a reduction in the adaptability
of the model.

Table 8. Navigation in dynamic: Average distance traveled.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Hitting

Someone

Town
1

1 22.91 20.27 23.69 21.54
2 19.95 17.71 19.81 20.23

Town
2

1 8.67 10.26 12.94 10.37
2 5.26 7.68 8.34 10.26

Appl. Sci. 2022, 12, 11821 18 of 19

Table 9. Navigation in dynamic: The average number of violations.

Town Weather ID Lane
Departure

Driving in
other Lanes Crash Hitting

Someone

Town
1

1 2.82 3.58 3.12 3.33
2 3.85 5.33 4.62 3.14

Town
2

1 11.0 9.34 7.67 6.41
2 12.18 13.68 10.73 9.13

7. Conclusions

In this paper, a two-stage framework is proposed to address the challenges of au-
tonomous urban driving in complex environments and adverse weather conditions. This
paper combines reinforcement learning with imitation learning. Extensive experiments
conducted on the CARLA simulator show that the present model significantly improves
robustness and generalization performance under a variety of driving conditions.

While the results are admirable, there is also significant scope for improvement under
more challenging driving conditions. While the driving agent trained by the CIL-DDPG
method learns reasonably good driving strategies for navigation tasks in dynamic envi-
ronments, such as slowing down to avoid car collisions, there are more robust driving
strategies that the agent needs to learn, such as obeying traffic rules and avoiding collisions
with pedestrians.

With the continuous development of artificial intelligence applications and autonomous
driving technology, urban autonomous driving technology has an extremely important
role to play in the safety of vehicles and the efficiency of traffic travel. In this paper, an
end-to-end approach based on conditional imitation learning is proposed using the idea of
multi-input neural networks and validated by simulation with the CARLA simulator to
demonstrate the effectiveness of the algorithm and provide a feasible solution for the study
of autonomous driving technology.

Author Contributions: Methodology, L.H. and G.D.; software, L.H.; resources, J.O.; writing—original
draft preparation, L.H. and M.B.; writing—review and editing, E.Y.; project administration, J.O.;
funding acquisition, J.O. All authors have read and agreed to the published version of the manuscript.

Funding: Thanks to the sponsorship provided by Special key project of technological innovation
and application development of Chongqing (cstc2020jscx-dxwtBX0048) and Science and Technology
Research Project of Chongqing Municipal Education Commission (KJQN201901146).

Institutional Review Board Statement: This study waived ethical review and approval, because it
does not involve humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: As the project involves confidentiality, research data is not provided. If
readers need research data, please contact the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. Deepdriving: Learning affordance for direct perception in autonomous driving. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2722–2730.
2. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Ali Eslami, S.M.; et al. Emergence of

locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.
3. Tian, Y.; Pei, K.; Jana, S.; Ray, B. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of

the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 303–314.
4. Tariq, A.; Osama, S.M.; Gillani, A. Development of a low cost and light weight uav for photogrammetry and precision land

mapping using aerial imagery. In Proceedings of the 2016 International Conference on Frontiers of Information Technology (FIT),
Como, Italy, 16–19 May 2016; pp. 360–364.

Appl. Sci. 2022, 12, 11821 19 of 19

5. Von Bernuth, A.; Volk, G.; Bringmann, O. Simulating photo-realistic snow and fog on existing images for enhanced CNN training
and evaluation. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand,
27–30 October 2019; pp. 41–46.

6. Liang, X.; Zhang, J.; Zhuo, L.; Li, Y.; Tian, Q. Small object detection in unmanned aerial vehicle images using feature fusion and
scaling-based single shot detector with spatial context analysis. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1758–1770.
[CrossRef]

7. Faisal, M.M.; Mohammed, M.S.; Abduljabar, A.M.; Abdulhussain, S.H.; Mahmmod, B.M.; Khan, W.; Hussain, A. Object Detection
and Distance Measurement Using AI. In Proceedings of the 2021 14th International Conference on Developments in eSystems
Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; pp. 559–565. [CrossRef]

8. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; PMLR. pp. 1–16.

9. Codevilla, F.; Santana, E.; López, A.M.; Gaidon, A. Exploring the Limitations of Behavior Cloning for Autonomous Driving. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019; pp. 9328–9337.

10. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

11. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971. [CrossRef]

12. Michaelis, C.; Mitzkus, B.; Geirhos, R.; Rusak, E.; Bringmann, O.; Ecker, A.S.; Bethge, M.; Brendel, W. Benchmarking robustness in
object detection: Autonomous driving when winter is coming. arXiv 2019, arXiv:1907.07484. [CrossRef]

13. Tomy, A.; Paigwar, A.; Mann, K.S.; Renzaglia, A.; Laugier, C. Fusing Event-based and RGB camera for Robust Object Detection in
Adverse Conditions. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; pp. 933–939. [CrossRef]

14. Boisclair, J.; Kelouwani, S.; Ayevide, F.K.; Amamou, A.; Alam, M.Z.; Agbossou, K. Attention transfer from human to neural
networks for road object detection in winter. IET Image Process. 2022, 16, 3544–3556. [CrossRef]

15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

18. Zhang, B.; Zhang, J. A traffic surveillance system for obtaining comprehensive information of the passing vehicles based on
instance segmentation. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7040–7055. [CrossRef]

19. Bojarski, M.; del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.
End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316. [CrossRef]

20. Bojarski, M.; Yeres, P.; Choromanska, A.; Choromanski, K.; Firner, B.; Jackel, L.; Muller, U. Explaining how a deep neural network
trained with end-to-end learning steers a car. arXiv 2017, arXiv:1704.07911. [CrossRef]

21. Eraqi, H.M.; Moustafa, M.N.; Honer, J. End-to-end deep learning for steering autonomous vehicles considering temporal
dependencies. arXiv 2017, arXiv:1710.03804. [CrossRef]

22. Codevilla, F.; Müller, M.; López, A.; Koltun, V.; Dosovitskiy, A. End-to-end driving via conditional imitation learning. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 4693–4700.

23. Wang, Q.; Chen, L.; Tian, W. End-to-end driving simulation via angle branched network. arXiv 2018, arXiv:1805.07545. [CrossRef]
24. Bouton, M.; Karlsson, J.; Nakhaei, A.; Fujimura, K.; Kochenderfer, M.J.; Tumova, J. Reinforcement learning with probabilistic

guarantees for autonomous driving. arXiv 2019, arXiv:1904.07189. [CrossRef]
25. Chen, J.; Yuan, B.; Tomizuka, M. Model-free deep reinforcement learning for urban autonomous driving. In Proceedings of the

2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October; pp. 2765–2771.
26. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.-M.; Lam, V.-D.; Bewley, A.; Shah, A. Learning to drive in a day. In

Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
IEEE: Piscataway, NJ, USA; pp. 8248–8254.

27. Peng, M.; Gong, Z.; Sun, C.; Chen, L.; Cao, D. Imitative Reinforcement Learning Fusing Vision and Pure Pursuit for Self-driving.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 3298–3304.

28. Liang, X.; Wang, T.; Yang, L.; Xing, E. Cirl: Controllable imitative reinforcement learning for vision-based self-driving. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 584–599.

http://doi.org/10.1109/TCSVT.2019.2905881
http://doi.org/10.1109/DeSE54285.2021.9719469
http://doi.org/10.48550/arXiv.1509.02971
http://doi.org/10.48550/arXiv.1907.07484
http://doi.org/10.1109/ICRA46639.2022.9812059
http://doi.org/10.1049/ipr2.12562
http://doi.org/10.48550/arXiv.1409.1556
http://doi.org/10.1109/TITS.2020.3001154
http://doi.org/10.48550/arXiv.1604.07316
http://doi.org/10.48550/arXiv.1704.07911
http://doi.org/10.48550/arXiv.1710.03804
http://doi.org/10.48550/arXiv.1805.07545
http://doi.org/10.48550/arXiv.1904.07189

	Introduction
	Related Work
	Mask R-CNN
	Structure of Mask R-CNN
	Dataset Acquisition
	Image Enhancement

	Imitation Learning
	Conditional Imitation Learning
	Training and Validation

	Reinforcement Learning
	Markov Decision Process (MDP)
	Reward Function of DDPG

	Simulation Experiments
	Experimental Settings
	Results

	Conclusions
	References

