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Abstract: Adaptive beamforming and deconvolution techniques have shown effectiveness for reduc‑
ing noise and reverberation. The minimum variance distortionless response (MVDR) beamformer is
the most widely used for adaptive beamforming, whereas multichannel linear prediction (MCLP) is
an excellent approach for the deconvolution. How to solve the problem where the noise and rever‑
beration occur together is a challenging task. In this paper, the MVDR beamformer and MCLP are
effectively combined for noise reduction and dereverberation. Especially, the MCLP coefficients are
estimated by the Kalman filter and the MVDR filter based on the complex Gaussian mixture model
(CGMM) is used to enhance the speech corrupted by the reverberationwith the noise and to estimate
the power spectral density (PSD) of the target speech required by the Kalman filter, respectively. The
final enhanced speech is obtained by the Kalman filter. Furthermore, a complexity reductionmethod
with respect to the Kalman filter is also proposed based on the Kronecker product. Compared to two
advanced algorithms, the integrated sidelobe cancellation and linear prediction (ISCLP) method and
the weighted prediction error (WPE) method, which are very effective for removing reverberation,
the proposed algorithm shows better performance and lower complexity.

Keywords: speech enhancement; microphone array; dereverberation; noise reduction; linear
prediction

1. Introduction
In real applications, reverberation and noise often cause the performance of speech

communication or human–computer interaction to be degraded. Especially, due to the
presence of reverberation, the speech signal [1] is often distorted, which seriously affects
the localization of the sound sources. With the rapid development of artificial intelligence,
human–computer interaction becomes increasingly more important [2,3]. If the reverber‑
ation and noise are not well cancelled in front of the intelligent devices, then speech com‑
munication will be greatly impaired.

In recent years, microphone array‑based methods using spatial information have re‑
ceived extensive attention. The microphone array‑based methods, such as the MVDR‑
based beamformer [4], the linear‑constrainedminimumvariance (LCMV) beamformer [5,6],
and the generalized sidelobe canceller (GSC) [7], are often used for speech enhancement.
The microphone array‑based beamforming methods can be used to receive signals from
the direction of the target speaker and suppress the interference, such as reverberation
and noise [8–10]. In [8], the GSC and a post‑filter implemented with the Wiener filter were
introduced to eliminate the reverberation and noise. In [9], the LCMV was used for the
dereverberation in the case of multiple speech sources, in which the obtained sparse ma‑
trix was used to obtain a preliminary estimation of the desired signal and the LCMV was
used to obtain the final estimation of the desired signal. In [10], a beamforming estimator
based on minimum mean square error (MMSE) was proposed to obtain the early com‑
ponents of the reverberation signal. In MVDR beamforming, a relatively early transfer
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function (RETF) was used. The beamforming and post‑filter were used to manage the late
reverberation and noise. The methods that only use beamforming to reduce reverberation
have limited performance and cannot suppress the reverberation very well.

Currently, the most effective dereverberation method is based on multichannel lin‑
ear prediction (MCLP) deconvolution [11–16], which is also known as the direct inverse
filtering algorithm. The MCLP‑based methods model the reverberation components as a
delay of the speech signal in the time domain, namely the linear prediction components. In
these methods, the estimation of the room impulse response (RIR) is not required, and the
reverberation is subtracted from the speech signal itself. Thus, this method can be applied
to the situation where the RIR cannot be reliably estimated. In [13], a statistical model‑
based dereverberation method was proposed. It assumes that the speech source follows
the time‑varying Gaussian model. The reverberation is modeled as the delayed compo‑
nents after linear prediction, where linear prediction coefficients are approximated by es‑
timating model parameters to obtain the late reverberation components. This modeling
method is defined as the weighted prediction error (WPE). In [11], by combiningWPE and
MVDR, the noise and reverberation were well suppressed simultaneously. The methods
of using Kalman filter to estimate linear prediction coefficients for obtaining reverberation
components were also proposed [12,14,15]. In [14], the MVDR and the MCLP were used
for simultaneous noise reduction and dereverberation, and the Kalman filter was used to
estimate the beamforming coefficients and linear prediction coefficients simultaneously.
This kind of dereverberation framework that combines beamforming and the MCLP has
attracted increasingly more attention. In [15], two interacting Kalman filters were used to
alternately estimate the MCLP coefficients and reverberation signal. In [16], a two‑stage
algorithmwas proposed. In the first stage, theWPEwas used to reduce reverberation, and
in the second stage, the MVDR was utilized to remove the residual reverberation. This
method treats the reverberation as a diffuse noise. The Kalman filter‑based dereverbera‑
tion algorithm that combines the MCLP and the GSC, known as the integrated sidelobe
cancellation and linear prediction (ISCLP), has also shown good performance [12]. This
method not only reduces the complexity of simply cascading theMCLP and beamforming,
but also improves the performance. However, in the ISCLP, estimating linear prediction
coefficients with the Kalman filter needs to consider the initialization of the Kalman filter
parameters [17–19]. These parameters, such as the power spectral density (PSD) of the tar‑
get signal, are critical to the performance of the algorithm. Some related dereverberation
methods [20–23] also heavily rely on the PSD estimation of the speech signal.

This paper proposes a dereverberation algorithmby combining the complexGaussian
mixture model (CGMM)‑based MVDR (CGMM‑MVDR) beamforming [24] and the linear
prediction Kalman filter. In this algorithm, the spectral model based on the CGMM is used
to estimate the time–frequency masks of the covariance matrix of the target speech and
the steering vector. The covariance matrices of the target speech and noise are estimated
through the time–frequencymaskswhile considering the noise only, where the eigenvector
corresponding to the maximum eigenvalue of the covariance matrix of the target speech
is an estimation of the steering vector of the MVDR beamforming. At the same time, the
main diagonal elements of the covariance matrix of the target speech are considered as the
estimated PSD of the target speech, which are also required by the Kalman filter. Since
this method can obtain a more reasonable estimation for the parameters, the performance
of dereverberation is better than the ISCLP. In addition, the low‑complexity version of
the proposed method is proposed as well, in which the multichannel linear prediction
coefficients are expressed in terms of the spatial filter and the interframe filter by using the
Kronecker product. By determining the spatial filter, the Kalman filter is used to estimate
the interframe filter. Since the dimension of the interframe filter is lower than that of the
original multichannel linear prediction filter, the size of matrices in the Kalman filter also
decreases so that the amount of calculation is greatly reduced. Experiments show that
this method can effectively reduce computational complexity and obtain relatively good
results.
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In the following parts, we arrange the paper as follows. In the Section 2, we briefly
introduce the signal model of the CGMM‑based MVDR beamformer and the related lin‑
ear prediction model. In the Section 3, we present the proposed method by combining
the CGMM‑based MVDR beamformer and Kalman filter. In the Section 4, we show and
analyze the experimental results. Finally, we conclude our method.

2. Signal Model
In this paper, one sound source is considered, andMmicrophones are used to collect

the observation signal containing the reverberant and noisy speech signal. By performing
a short‑time Fourier transform (STFT), the received signal of the mth microphone can be
expressed as ym (k,l) in the frequency domain, where k and l are the indices of the frequency
bins and frames, respectively. The entire stacked microphone signals vector is denoted as
follows:

y(k, l) = [y1(k, l), · · · , ym(k, l), · · · , yM(k, l)]T (1)

where superscript “T” indicates the transpose of the matrix. Thus, the multimicrophone
signals corrupted by reverberation and noise can be written as follows:

y(k, l) = x(k, l) + v(k, l) (2)

where the vectors x(k,l) and v(k,l) are the STFT results of the speech signal containing re‑
verberation and the noise signal, respectively. Here, the speech and noise are assumed to
bemutually independent. Since the algorithm is finished independently in each frequency
bin, the index k is omitted for the simple expression in the subsequent parts.

2.1. Complex Gaussian Mixture Model
Reviewing MVDR beamforming based on the CGMM [24], the enhanced speech sig‑

nal by the beamforming can be expressed as follows:

xb(l) = wH
b y(l) (3)

where superscript “H” denotes the conjugate transpose,wb is the vector of the filter coeffi‑
cients for minimizing the output power of the beamforming under the constraintwb

Hg = 1.
Here, g is the steering vector of the desired speech signal and the subscript “b” indicates
the beamforming. Considering the sparsity of the speech signal in the time–frequency
domain [25,26], the observed signal can be classified into three cases, i.e., the mixture of
speech, noise, and reverberation; the mixture of speech and reverberation; and noise‑only.
Thus, the observation signals of the microphones can be written as follows [24]:

y(l) = g(d)x(d)b (l) (4)

where the superscript “d” denotes the scenarios of the interference such as reverberation
with noise (in this case, d is denoted as x + r + n), reverberation‑only (in this case, d is
denoted as x + r), and noise‑only (in this case, d is denoted as n).

The complex Gaussian distribution of the random variable x with the mean µ and
variance σ2 is generally expressed as follows [24]:

N(x; µ, σ2) =
1

πσ2 e
− |x−µ|2

σ2 (5)

Assuming that x(d)b (l) follows a complexGaussiandistribution x(d)b (l) ∼ N(0, ϕ(l)(d)),
namely, its mean and variance are zero and ϕ(l)(d), respectively. Here, ϕ(l)(d) also indicates
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the power spectral density of x(d)b (l). Thus, at each time–frequency bin, the multichannel
microphone signals obey the following complex Gaussian mixture distribution [24]:

y(l) |d ∼ N
(

0, ϕ(l)(d)R(d)
)

(6)

where R(d) = g(d) (g(d))H. Thus, the multichannel microphone signals can be described by
the CGMM in the case of reverberation with noise or noise‑only, in which the maximum
likelihood estimation of the CGMM can be obtained by the expectationmaximization (EM)
algorithm [24].

The Q function in the EM algorithm is defined as follows [24]:

Q(Θ) = ∑
l

∑
d

λ(l)(d) logN
(
y(l); 0, ϕ(l)(d)R(d)

)
(7)

where λ(l)(d) denotes the mask or probability of the different scenarios, which can be ob‑
tained as follows:

λ(l)(d) = N
(
y(l); 0, ϕ(l)(d)R(d)

)
/∑

d
N
(
y(l); 0, ϕ(l)(d)R(d)

)
(8)

In order to achieve the online MVDR beamforming, the speech signal is divided into
a sequence of batches. Each batch contains a limited number of the speech frames. The
number of the frames can be changed. Let c ∈ {1, 2, . . . , C} denote the batch index and let
lc denote the time index within the cth batch, where C is the number of the batches. For
each batch, the parameters of the CGMM are updated by the following formulation [24]:

ϕ(l)(d) =
1
M
tr
{
y(l)y(l)H

[
R(d)

c

]−1
}

(9)

R(d)
c =

A(d)
c−1

A(d)
c−1 + ∑

l∈lc
λ(l)(d)

R(d)
c−1 +

1

A(d)
c−1 + ∑

l∈lc
λ(l)(d)

∑
l∈lc

λ(l)(d)
1

ϕ(l)(d)
y(l)y(l)H (10)

whereA(d)
c−1 denote the sumof themasks over all the previous frames, and it can be updated

as follows:
A(d)

c = A(d)
c−1 + ∑

l∈lc

λ(l)(d) (11)

It is worth noting that R(d)
c is usually irreversible. In practical calculation, the inverse

of R(d)
c is usually replaced by a pseudo inverse.
For every batch, the EM algorithm can be used to obtain the most optimal mask value

for the current time–frequency bin only containing noise, and the covariance matrix in the
case of the reverberation with noise or noise‑only at each frequency bin can be estimated
as follows [24]:

M(d)
c =

A(d)
c−1

A(d)
c−1 + ∑

l∈lc
λ(l)(d)

M(d)
c−1 +

1

A(d)
c−1 + ∑

l∈lc
λ(l)(d)

∑
l∈lc

λ(l)(d)y(l)y(l)H (12)

So, the covariance matrix in the case of reverberation can be given as follows:

M(x+r)
c = M(x+r+n)

c −M(n)
c (13)

Performing the following eigenvalue decomposition

M(x+r)
c = PΛP−1 (14)
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where P is the matrix composed of the eigenvectors of the matrix Mc
(x + r), and Λ is the

diagonal matrix containing the eigenvalues, the eigenvector associated with the largest
eigenvalue is extracted as the steering vector required for the MVDR beamforming. The
coefficient vectorwb of the MVDR filter can be expressed as follows [24]:

wb =
[
M(n)

c

]−1
g/

{
gH

[
M(n)

c

]−1
g
}

(15)

In fact, the CGMM‑MVDR is a beamforming‑based method with blind estimation of
the steering vector. The late reverberation leads to an inaccurate estimation of the steering
vector. Since the blind estimation of the accurate steering vector from the reverberated
speech with noise is a very difficult task, what we obtain here is the approximation of the
steering vector. This does not mean that such approximations lead to false results, because
the reverberation has been mostly removed by Kalman filtering rather than beamforming.

2.2. Multichannel Linear Prediction Reverberation Model
By modeling reverberation components using the MCLP and predicting reverbera‑

tion components of the current frame using the signals coming from the previous (L − D)
frames, where D and L are the frame numbers prior to the current frame, respectively, the
speech signal with reverberation can be expressed as follows [12]:

x(l) =
L

∑
n=D

Br,n(l)x(l − n)

r(l)

+ xe(l) (16)

where Br,n (l) denotes the multichannel linear prediction coefficients, and L > D ≥ 1. The
reverberation is divided into two parts: the early reverberation and the late reverbera‑
tion. The result r (l) represents the late reverberation components. Here, the desired sig‑
nal xe (l), which is the direct signal with early reverberation components, is also called
the prediction error in the linear prediction model. The prediction error is expressed as
xe(l) = [x1

e(l), x2
e(l), · · · , xM

e (l)]T , which contains the desired signal of each microphone.
Note that τ = (L − D) is the number of the delayed frames that are used to predict the late
reverberation components. The selection of τ shouldmake the correlation between the late
reverberation and the expected signal approach zero.

3. Proposed Dereverberation Method
The block diagram of the proposed dereverberation method is shown in Figure 1. In

the upper path, the CGMM‑based MVDR beamformer is used to enhance the input signal
y (l) collected by the microphones so that we can obtain the enhanced signal xb (l). The
PSD of the desired signal used for the Kalman filter is approximately equal to the power
spectral density ϕxb(l) of the xb (l). In the lower path, according to the delayed signals t (l)
of the input signal y (l), the MCLP is performed based on the Kalman filter to estimate the
reverberation signal z (l) by linear prediction. The input to the Kalman filter‑based linear
predictor is t (l), and the corresponding output is the estimated reverberation signal z (l).
By subtracting z (l) from xb (l), we can finally obtain the enhanced signal s (l). Different
from ISCLP [12], this paper uses the MVDR beamforming to replace the GSC, because
the GSC has the shortage of speech distortion, that is, if the steering vector of the desired
speech used in the GSC is not accurate, the desired speech will be inevitably destroyed by
its block matrix. In particular, in the ISCLP, the PSD of the target signal is estimated by
a complex algorithm, which contains some prior information [12], whereas the proposed
method uses a simpler approach without any prior information to estimate the PSD of the
target signal.
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3.1. Algorithm Architecture
In the upper path of Figure 1, by using Equations (2), (3) and (15), the output xb (l) of

beamforming is obtained as follows:

xb(l) = wH
b y(l) = xe(l) +wH

b [r(l) + v(l)] (17)

Although most of the noise can be suppressed by the MVDR beamformer, the effect
of dereverberation is very limited [27]. The scalar xe (l) denotes the inner product wb

Hxe
(l).

In the lower path of Figure 1, the past (L − D) frames are used as the input signal of
the linear predictor. By combining the vectors from y (l − D) to y (l − L + 1), the input
matrix of the linear predictor at the lth frame is given as follows:

t(l) =
[
yT(l − D), · · · ,yT(l − L + 1)

]T
(18)

and the prediction signal z(l) can be expressed as follows:

z(l) = wH
r (l)t(l) (19)

where wr(l) is the linear prediction filter. An appropriate D should be selected accord‑
ing to the frame shift in the STFT operation in order to make the correlation between the
prediction error xe(l) and the prediction signal z(l) zero, i.e.,

⟨z, xe⟩ = ∑
l

z(l)xe(l) = 0 (20)

The choice of D determines the amount of early reverberation preserved in the desired
signal, which affects the performance of the algorithm [15].

According to the architecture of the proposed method, the final enhanced speech s(l)
is obtained as follows:

s(l) = xb(l)−wH
r (l)t(l) (21)

where the output s (l) is regarded as an estimation of xe (l). If wr (l) is available, we can
estimate the final enhanced signal s (l) from Equation (21). In the ISCLP method [12], the
Kalman filter was used to jointly estimate the parameters of the sidelobe canceller (SC) and
the linear predictor. Since the linear predictor needs information from the past frames,
the canceller and predictor cannot work on the same frame simultaneously. It does not
mean they aremutually independent due to the common inclusion of the late reverberation
components. This implies that changes in the canceller parameters cause changes in the
predictor parameters, and vice versa. To avoid this problem, in this paper, the coefficients
of the beamformer and the coefficients of the linear predictor are estimated separately.
Thus, the result of the beamforming will improve the result of the linear prediction as
well.
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3.2. Application of Kalman Filter
The linear prediction coefficients can be estimated effectively by the Kalman

filter [28–30]. In the ISCLP [12], the Kalman filter used for estimating the linear prediction
coefficients has shown good results for dereverberation. Here, we define the observation
equation of the Kalman filter [12] as follows:

x∗b(l) = tH(l)wr(l) + x∗e (l) (22)

where the superscript “*” indicates the conjugation operation. The vectorwr (l) is the state
vector with zero mean, and its related covariance matrix is expressed as follows:

Φw(l) = E
[
wr(l)wr

H(l)
]

(23)

and xe* (l) in Equation (22) is the desired signal; it is also known as the measurement error.
Similarly, the measurement error can also be regarded as a Gaussian process with zero
mean, as defined by Equation (6), and its power spectral density is ϕxe(l) = E[xe(l)x∗e (l)].

The change in wr (l) means the change in the RIR or the change in the microphone
positions, so wr (l) needs to be adjusted by the state equation. Considering the first‑order
Markov process, the state equation can be defined as follows [14]:

wr(l) = AH(l)wr(l − 1) + vw(l) (24)

whereA (l) is the state transitionmatrix; it indicates the prediction result of the state vectors
from the previous frames to the current frame. The zero‑mean Gaussian model with the
following covariance matrix can be used to model the process noise vw (l):

Φv(l) = E
[
vw(l)vH

w(l)
]

(25)

According to Equations (22) and (24), the purpose of the Kalman filter is to find the op‑
timal solution for the linear prediction coefficients based on the minimummean square er‑
ror (MMSE). Usually,A (l) and vw (l) will be adjusted at the beginning of the algorithm [31].

In the Kalman filtering process, the essence of the algorithm is to determine the re‑
quired parameters step by step through two stages. In the first stage, the state vector wr
(l) of the next moment is predicted through the state equation. This prediction is called
a priori time update. In the second stage, the prediction result of the state vector in the
first stage is weighted with the so‑called Kalman gain that is calculated by the observation
equation combined with the state vector predicted in the first stage. The expected optimal
state vector wr (l) can be obtained by the iterations of these two stages.

Let ŵr (l) be the estimated result given by the state Equation (24) and ŵr
+ (l) be the

modified result from the observation Equation (22); their corresponding errors are ob‑
tained as follows:

e(l) = wr(l)− ŵr(l) (26)

e+(l) = wr(l)− ŵ+
r (l) (27)

the covariance matrices of e(l) and e+(l) are given as follows:

Φe(l) = E
[
e(l)eH(l)

]
(28)

Φ+
e (l) = E

[
e+(l)e+

H
(l)

]
(29)
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It is worth noting that these two covariance matrices of the errors can be regarded as
the evolution in the same frame, that is, Φ+

e (l) is a further estimation of Φe(l). According
to the following cost function:

J
{
wr(l), ŵ+

r (l)
}
= tr

{
E
[
e+(l)e+(l)H

]}
(30)

the update process and the estimation of gain k(l) of the Kalman filter are expressed as
follows [12]:

ŵr(l) = A(l)ŵ+
r (l − 1) (31)

Φe(l) = AH(l)Φ+
e (l − 1)A(l) + Φv(l) (32)

s∗(l) = x∗b(l)− tH(l)ŵr(l) (33)

ϕs(l) = tH(l)Φe(l)t(l) + ϕxe(l) (34)

k(l) = Φe(l)t(l)ϕs−1(l) (35)

ŵ+
r (l) = ŵr(l) + k(l)s∗(l) (36)

Φ+
e (l) = Φe(l)− k(l)tH(l)Φe(l) (37)

where Equations (31) and (32) are used to update the predictive coefficients and the co‑
variance matrix of the errors in the current frame based on the information from the pre‑
vious frame. In the following, the complex conjugate error signal s* (l) (i.e., the final en‑
hanced signal) and its power spectral density ϕs (l) are calculated using Equations (33) and
(34) by combining the observation Equation (22) for calculating the Kalman gain k (l) in
Equation (35). The final predictive coefficients and covariance matrix of the errors in the
current frame are finally obtained by Equations (36) and (37) with the Kalman gain k (l).
The final results are also used to calculate the information needed for the next frame. In
the calculation of the next frame, however, the error signal s (l) and the Kalman gain are
reset, which means that they only represent the current frame and do not iterate through
the frames. The complex conjugate error signal s* (l) is the signal we need, which is given
by the Kalman filter. The initialization of the Kalman filter is introduced in the following
content.

3.3. Low‑Complexity Algorithm Based on the Kronecker Product
The Kalman filter has the disadvantage of high computational complexity. By observ‑

ing update Equations (31)~(37) of the Kalman filter, it can be found that the calculation of
the Kalman filter involves the multiplication and summation of many matrices with high
dimension data, so the dimension reduction in the matrix is the key for reducing the cal‑
culation complexity. In the observation Equation (22), the stacked microphone signal t (l)
is a vector with M (L − D) elements, wr (l) is a vector including M (L − D) linear predic‑
tion coefficients. According to the method proposed in [32],wr (l) can be expressed as the
form of the Kronecker product of two subfilters, where two low‑dimension subfilters can
be estimated separately. Considering a signal model such as Equation (21), we have

xe(l) = wH
2 (l)y(l)− [w1(l)⊗w2(l)]

Ht(l) (38)

where xe (l) is the desired signal, symbol “⊗” represents the Kronecker product, x̂(l) =
wH

2 (l)y(l), wr(l) = w1(l) ⊗w2(l), w1 (l), and w2 (l) can be regarded as a (L − D)‑order
interframe filter and a M‑order spatial filter, respectively. In fact, w1 (l) represents the
filter for processing the consecutive frames, and the main purpose of w1 (l) is to predict
the reverberation components from the past L − D frames. w2 (l) represents the filter that
processes signal from all channels. Thus, w2 (l) can be regarded as the coefficients of the
spatial filter. By using the Kronecker product, the original optimization problem becomes
two optimal problems of the subfilters.
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According to the characteristic of the Kronecker product [32], we can obtain

w1(l)⊗w2(l) = [I⊗w2(l)]w1(l) = W2(l)w1(l) (39)

where I is a (L − D) × (L − D) identity matrix andW2 (l) = I ⊗ w2 (l) is aM (L − D) × (L
− D) matrix. Substituting (39) into (38), we have

xe(l) = wH
2 (l)y(l)−wH

1 (l)WH
2 (l)t(l) = x̂(l)−wH

1 (l)tW2(l) (40)

where tW2(l) = WH
2 (l)t(l).

Sincew2(l) is a spatial filter,w2(l) in (40) can be replaced by the CGMM‑MVDR filter,
i.e.,

xe(l) = wH
b y(l)−wH

1 (l)WHt(l) = xb(l)−wH
1 (l)tW(l) (41)

where wb = w2 (l),W = (I ⊗ wb), tw (l) =WH (l) t (l). It is worth noting that wb is different
at each frequency bin of all the frames. tw (l) can be regarded as the speech signal that was
processed by the spatial filter in advance. After such replacement, two optimal problems of
the subfilters become a single optimal problem of the interframe filter that can be estimated
by the Kalman filter. Moreover, the state equation and the observation equation of the
improved low‑complexity Kalman filter are given as follows:

w1(l) = AH(l)w1(l − 1) +w∆(l) (42)

and
x∗b(l) = tHw(l)w1(l) + x∗e (l) (43)

where the process noise w∆ (l) can be modeled by the zero‑mean Gaussian process with
the covariance matrix Φw∆(l) = E[w∆(l)wH

∆ (l)].
Let ŵ1 (l) be the estimated result by the state Equation (42) and ŵ+

1 (l) be the modi‑
fied result with the observation Equation (43); their corresponding errors are obtained as
follows:

e1(l) = w1(l)− ŵ1(l) (44)

e+1 (l) = w1(l)− ŵ+
1 (l) (45)

the covariance matrices of e1(l) and e+1 (l) are given as follows:

Φe1(l) = E
[
e1(l)eH

1 (l)
]

(46)

Φ+
e1
(l) = E

[
e+1 (l)e

+
1 (l)

H
]

(47)

According to the state Equation (42), the observation Equation (43), and following cost
function:

J
{
w1(l), ŵ+

1 (l)
}
= tr

{
E
[
e+1 (l)e

+
1 (l)

H
]}

(48)

we can obtain update equations for Kalman filtering with low complexity similar to
Equations (31)~(37) as follows:

ŵ1(l) = A(l)ŵ+
1 (l − 1) (49)

Φe1(l) = AH(l)Φ+
e1
(l − 1)A(l) + Φw∆(l) (50)

s∗1(l) = x∗b(l)− tHW(l)ŵ1(l) (51)

ϕs1(l) = tHW(l)Φe1(l)tW(l) + ϕxe(l) (52)

k1(l) = Φe1(l)tW(l)ϕ−1
s1

(l) (53)

ŵ+
1 (l) = ŵ1(l) + k1(l)s∗1(l) (54)
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Φ+
e1
(l) = Φe1(l)− k1(l)tHW(l)Φe1(l) (55)

where s1* (l) is the final enhanced signal by the low‑complexity algorithmwith power spec‑
tral density ϕs1(l) and k1 is the Kalman filter gain of the low‑complexity algorithm. Thus,
the coefficients of the interframe filter w1 (l) can be estimated. Through Equations from
(38) to (55), the dimension of the filter coefficientswr (l) is significantly reduced so that the
computational complexity is reduced effectively. The effectiveness of the low‑complexity
algorithm is discussed in the experiments.

3.4. Initialization of Kalman Filtering
Some parameters need to be initialized at the start of the Kalman filtering. In update

Equations (31)~(37) and (49)~(55), these parameters include the state transition matrix A
(l), covariance matrix Φv (l) of the process noise vw (l), covariance matrix Φw∆(l) of the
process noisew∆ (l), power spectral density ϕxe(l) of the desired signal, and the covariance
matrices Φe (l) and Φe1(l) of the errors e (l) and e1 (l).

The state transition matrix A(l) is regarded as a time‑invariant function similar to the
forgetting factor in the update equation [31]. The covariance matrices Φe (l) and Φe1(l)
gradually become convergent during the Kalman filtering. The covariance matrix Φe (l)
can be initialized as a diagonal matrix, i.e., Diag [Φe(l)] = φe, where vector φe includesM
(L − D) elements that rise exponentially with everyM elements [12], i.e.,

φe =
[

φ1
e1T , φ2

e1T , · · · , φ
(L−D)
e 1T

]T

M(L−D)×1
(56)

where 1 = [1, 1, · · · , 1]TM×1, φ1
e, φ2

e, . . . , φ
(L−D)
e are L − D scalars that rise exponentially.

Similarly, the covariance matrix Φe1 (l) is also initialized as a diagonal matrix, i.e., Diag
[Φe1 (l)] = φe1, where vector φe1 only includes L − D elements that drop exponentially,
i.e.,

φe1 =
[

φ1
e1, φ2

e1, · · · , φ
(L−D)
e1

]T
(57)

The process noises vw (l) and w∆ (l) are modeled by the zero‑mean Gaussian model,
and their covariance matrixes Φv (l) and Φw∆ (l) are usually assumed to be time‑invariant
and initialized as follows [12]:

Φv(l) = (1 − β)Φe(l) (58)

Φw∆(l) = (1 − β)Φe1(l) (59)

where β ∈ (0,1) is the forgetting factor.
The weighted prediction error (WPE) algorithm also needs to initialize the PSD of the

desired signal. In theWPE, the PSD of unprocessed signal is regarded as one of the desired
signals to estimate the linear prediction coefficients used for obtaining the enhanced signal.
Then, the PSD of the enhanced signal is used to estimate the new linear prediction coeffi‑
cients. The above steps are iterated until the algorithm converges. When the WPE is used
for a short‑time speech signal, the frame number of the speech signal has to be reduced. In
this case, the estimated PSD of the desired signal greatly degrades the performance of the
algorithm because of using few frames. Therefore, amethod of directly estimating the PSD
of the desired signal from the reverberated speech by using the DNN was proposed [33].
In [14,15], the PSD of the desired signal is determined by a decision‑oriented method, that
is, the current PSD of the desired signal is composed of the PSD of the previous frame and
the PSD of the current frame; the later one is obtained by the linear prediction coefficients
of the previous frame. These two PSDs are weighted by a weight factor. This method re‑
lies on the setting of the weight factor, and how to choose an appropriate weight factor is
crucial.
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In this paper, the speech signal processed by the beamformer is utilized to initialize
the PSD of the desired signal. We can redefine the covariance matrices presented in (11)
and (12) at each time–frequency bin as follows:

C(x+r+n)(l) = y(l)y(l)H (60)

C(n)(l) = λ(l)(n)y(l)y(l)H (61)

where λ (l)(n) denotes themask or probability of the scenarios that only contain noise. Thus,
the covariance matrix of the noiseless speech at each time–frequency bin can be given as
follows:

C(x+r)(l) = C(x+r+n)(l)−C(n)(l) (62)

Obviously, the diagonal elements of the covariance matrix C(x+r)(l) represent the PSD
of the speech signal. We use vector θ(l) to express its diagonal elements as follows:

θ(l) = Diag
[
C(x+r)(l)

]
=

[
ϕxb1(l), ϕxb2(l), · · · , ϕxbm(l), · · · , ϕxbM (l)

]T (63)

where ϕxbm(l) represents the power spectral density of the mth microphone signal that is
processed by the beamformer. The diagonal elements are summed and averaged as the
approximation of the PSD of the desired signal required in the Kalman filtering process,
i.e.,

ϕxb(l) =
1
M

M

∑
m=1

ϕxbm(l) (64)

where ϕxb(l) is an approximation of the power spectral density ϕxe(l) of the desired sig‑
nal, and the low‑complexity version also utilize ϕxb(l) as the initialization of ϕxe(l). Under
ideal circumstances, the closer the initialized PSD is to the PSD of the desired speech, the
better the algorithm will achieve, but this is obviously impractical. Blind estimation of
the PSD of the desired signal is very difficult only from the signal received by the micro‑
phones. Compared with the PSD estimation method in ISCLP [12], the proposed method
does not need the incident angle of the desired speech and other prior information. Apply‑
ing such crude approximation does not mean a wrong result, because the linear prediction
coefficients are used instead of the desired signal itself in the Kalman filtering, the effect
of the approximation error can be mitigated during the Kalman filtering. Meanwhile, the
computational complexity of this kind of PSD estimation is lower than that used in ISCLP.
Therefore, it is feasible to adopt this approximation of the PSD, which is also confirmed by
the following experiments.

4. Experiments and Evaluation
In this section, we give the experimental results. The proposeddereverberationmethod

is compared with the reference methods including ISCLP and WPE, which have excellent
performance at present. Firstly, we introduce the experimental settings used for the evalu‑
ation. Then, the referencemethods are introduced briefly. Finally, the experimental results
are evaluated and discussed.

4.1. Acoustic Scenario and Experimental Setup
The observation signals are generated the same as described in [34], and the TIMIT

corpus [35] is used for the simulation. As shown in Figure 2, the length, width, and height
of the room are 4, 3, and 3 m, respectively. A uniform linear microphone array with eight
microphones is placed on a table for receiving speech signals from all angles in the room,
the microphone spacing is 0.04 m, and the linear microphone array has a height of 0.75 m
with the table. Meanwhile, there are 20 speech source positions in the room. Eight source
positions, namely Tar.1, Tar.2, Tar.3, Tar.6, Tar.7, Tar.8, Tar.10, and Tar. 20, are chosen for
the test (Figure 2), and 100 utterances are selected for each position. The selection of the
source positions is based on their symmetry in Figure 2, that is, Tar.1 and Tar.2 are similar
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to Tar.5 and Tar.4, Tar.15 and Tar.16, Tar.19 and Tar.18, respectively. Tar.3 is similar to
Tar.17. Tar.6 is similar to Tar.11. Tar.7 is similar to Tar.9, Tar.12 and Tar.14. Tar.8 is similar
to Tar.13. These eight source positions are represented in Figure 2. Babble noise is used to
obtain the reverberate speech with noise, the input signal‑to‑noise ratio (SNR) is set to −5,
0, 5, and 10 dB, and the reverberation time T60 is set to 100, 400, 500, 600, 700, and 800 ms.
When investigating the dependence of the algorithm on the order L of the linear prediction
filter and the effect of the different initializations of the PSD on the proposed method, we
selected the speech signal from the first position as the evaluation object. When comparing
with the reference methods, all 800 utterances of the eight aforementioned locations in
Figure 2 were utilized.
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The speech signal is sampled at 16 kHz, a Hanning window with a length of 512 sam‑
ples has 50% overlap for analyzing the speech signal, and a 512‑point STFT is used for the
windowed speech signal. The frame number for each batch in the MVDR beamforming is
set to 70. The delay D that preserves the early reflections is set to 1, and the order L of the
linear prediction filter is set to 10. The state transition matrix A (l) = αI, where α = 0.998.
Similar to the default setting in [12], we let 10 log10(φe) = −4 dB and 10 log10(φe1) = −4 dB
in (56) and (57), whereas 10 log10 (1 − β) = −25 dB in (58) and (59).

To evaluate the proposed algorithm, we choose the perceptual evaluation of speech
quality (PESQ) [36], the short‑time objective intelligibility (STOI) [37], the cepstral distance
(CD) [38], the frequency‑weighted segmental SNR (fwSegSNR) [39], and the signal‑to‑
interference ratio (SIR) [39] as the measures, where the reverberation and noise are consid‑
ered as the interference. These measures have a reasonable evaluation of the perception of
reverberation and the overall quality of speech [40]. The CD focuses on reflecting the dis‑
tortion of the speech spectrum: the lower the CD, the less overall speech distortion. The
PESQ, STOI, fwSegSNR, and SIR can better demonstrate the reduction in reverberation
and noise.

4.2. Reference Methods
To demonstrate the effectiveness of the proposed method, the ISCLP and WPE meth‑

ods that have excellent performance at present are chosen for the comparison.
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ISCLP realized in [41] is a type of method for noise reduction and dereverberation by
combining the MCLP and GSC. In the ISCLP, the filter coefficients of the MCLP and GSC
are simultaneously estimated by the Kalman filter. In the case of an interfering speaker,
the ISCLP can effectively eliminate the interfering speaker, but at the same time it also
introduces distortion to the target speaker.

WPE realized in [42] is a type of dereverberation method based on linear prediction
and is the most widely used dereverberation algorithm as well. It assumes that the speech
signal follows the complex Gaussian distribution with time variance. Its model parame‑
ters and linear prediction filter coefficients can be obtained iteratively through maximum
likelihood estimation. This algorithm has good suppression effect on reverberation, but it
is easily interfered by the noise.

4.3. Analysis and Comparison of the Test Results
4.3.1. Effect of Filter Order

The effect of the filter order L on the algorithm performance is investigated in an ex‑
emplary simulation condition, namely, SNR = 10 dB and T60 = 800 ms. Here, the proposed
method and ISCLP are evaluated based on the variation in L. Figure 3 shows the incremen‑
tal results of the PESQ, STOI, CD, and SIR for different filter orders. The ISCLP shows
better performance with respect to the PESQ, STOI, and CD in the case of shorter filter
order, while for SIR, the ISCLP shows the dependence on the filter order. The proposed
method shows the dependence on the filter order in the PESQ, STOI, and SIR results, and
its performance is the best at eight options of the filter order and tends to be convergent
at some fixed order L for different tests. In the evaluation results of the PESQ, STOI, and
CD, the proposed method is better than ISCLP at all filter orders. In the evaluation result
of the SIR, the proposed method is slightly worse than ISCLP. It can be seen from Figure 3
that the CD results of the proposed method and ISCLP have positive increments, which
indicates that the speech distortion is increased. This may be caused by the inaccurate es‑
timation of some key parameters in the Kalman filtering, but the distortion caused by the
ISCLP is significantly larger than the proposed method.
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4.3.2. Effect of the PSD Initialization
Wemeasured the effect of different initialization methods of the PSD on the proposed

methodwhen the input SNR = 10 dB andT60 = {400, 500, 600, 700, 800}ms at the same source
positions as given in Section 4.3.1. Four initialization methods of the PSD of the desired
signal, i.e., the method given in ISCLP, the proposed initialization method, the method
given in [33], and the method given in [14,15], are employed in the proposed dereverber‑
ation algorithm. The effects of these methods on the performance of the algorithms are
compared. In addition, the initialization of the PSD using real PSD of the desired signal is
also compared. Figure 4 shows the result comparison.
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As expected, the result of using real PSD of the desired signal greatly improved the
performance, which is the best among four evaluation indicators. The effect of the initial‑
ization of the ISCLP and the proposed method are far better than the initialization given
in [33] and [14,15]. In terms of SIR, the effects of these four initialization methods (exclud‑
ing the real PSD) are very similar.

The effect of the initialization of the ISCLP is slightly better than the proposedmethod
in the results of the PESQ, STOI, and SIR, but the ISCLP needs prior information such as
the incident angle of the desired signal and the position of the microphones in advance.
In the ISCLP, the inaccurate incident angle of the desired signal makes the block matrix
in the GSC filter miss useful signal, which causes the distortion of the desired signal in
the subsequent processing. The proposed method only uses the signals received by the
microphones to obtain the estimation of the PSD of the desired signal, which is an adap‑
tive approach. At the same time, the computational complexity of the initialization of the
PSD in the proposed method is far lower than that of the ISCLP. From the experimental
results, we can find that obtaining the PSD close to the real PSD of the desired signal is an
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important way for effectively improving the performance of the algorithm. How to obtain
the accurate PSD of the desired signal is a key issue for the dereverberation.

4.3.3. Performance Comparison with Reference Methods
Two proposed dereverberation algorithms and two reference methods are evaluated

for different SNR and T60. Six kinds of reverberation time are considered at four SNR con‑
ditions. Tables 1–4 show the results of performance evaluation for the unprocessed speech.
It is worth noting that the PESQ value of the unprocessed signal increases with the increase
in the reverberation time. This is because in the case of lower input SNR, compared with
low reverberation, the high reverberation can resist more noise, so that the speech is not
submerged into the annoying noise. Under the condition of high SNR, the performance
of the proposed method is not very good compared with the reference methods, and espe‑
cially worse than the WPE. The reason is that under the condition of high SNR, the speech
distortion caused by the noise is far less than that caused by the reverberation. Meanwhile,
WPE can remove reverberation well and improve the speech quality greatly. Under the
condition of low reverberation, the ISCLP shows better results and the WPE shows worse
results, because WPE has no denoising ability. Under the condition of low SNR, it can
be found that the results of the PESQ, STOI, and fwSegSNR of the proposed method are
higher than these two reference methods in most cases, and the result of STOI is signifi‑
cantly improved especially in the case of−5 dB, whereas the low‑complexity version of the
proposed method (called proposed‑kron) is similar to the proposed method. As shown in
Tables 1 and 2, the fwSegSNR is also significantly improved in all cases. In the results for
CD, the WPE shows the best performance. As the distortion measurement of the speech,
the results of CD show that both the proposed method and ISCLP introduce the distor‑
tion, and the ISCLP causes more distortion. The distortion is due to the PSD error of the
desired signal in the Kalman filtering. The GSC‑based beamforming used in the ISCLP
causes speech distortion because of the inaccurate RETF. For the SIR, the ISCLP shows the
best effect. The ISCLP reduces much of the interference at the cost of introducing more
speech distortion. The proposed method balances the speech distortion and interference
reduction. Within a certain distortion range, the proposed method eliminates more inter‑
ference signal than theWPE. The proposed‑kronmethod also shows good results with low
complexity. From the discussion above, the proposed method shows better performance
under the condition of low SNR and high reverberation. In future work, the problem of
speech distortion in the proposed method needs to be improved.

Table 1. Comparison of the test results at−5 dB for babble noise. (The bold in the table indicates the
best result).

T60 (ms) 100 400 500 600 700 800

PESQ

unprocessed 1.12 1.51 1.56 1.58 1.61 1.62
ISCLP 1.50 1.58 1.63 1.66 1.69 1.71
WPE 1.12 1.47 1.52 1.53 1.54 1.56

proposed 1.20 1.66 1.72 1.77 1.78 1.79
proposed‑kron 1.19 1.68 1.75 1.77 1.78 1.79

STOI

unprocessed 0.51 0.58 0.58 0.58 0.56 0.56
ISCLP 0.59 0.57 0.57 0.57 0.57 0.57
WPE 0.50 0.57 0.57 0.58 0.59 0.59

proposed 0.54 0.61 0.62 0.62 0.62 0.62
proposed‑kron 0.54 0.61 0.62 0.62 0.62 0.61
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Table 1. Cont.

T60 (ms) 100 400 500 600 700 800

CD (dB)

unprocessed 7.04 5.98 5.92 5.89 5.89 5.90
ISCLP 7.93 7.91 7.87 7.87 7.87 7.88
WPE 7.00 5.98 5.90 5.86 5.82 5.80

proposed 7.60 7.13 7.06 7.01 6.96 6.93
proposed‑kron 7.05 6.32 6.23 6.17 6.13 6.41

SIR (dB)

unprocessed 11.70 −4.37 −5.52 −6.11 −6.89 −7.03
ISCLP 7.02 −1.17 −1.62 −1.13 −1.31 −0.98
WPE 6.34 −1.42 −2.28 −2.97 −3.43 −3.98

proposed −2.00 −2.17 −2.73 −2.74 −2.31 −1.90
proposed‑kron −3.14 −3.12 −3.33 −3.42 −3.11 −2.70

fwSegSNR (dB)

unprocessed 0.65 1.93 2.11 2.22 2.30 2.35
ISCLP 1.41 1.67 1.63 1.57 1.51 1.46
WPE 0.83 2.02 2.17 2.28 2.35 2.41

proposed 3.16 4.03 4.16 4.24 4.30 4.34
proposed‑kron 3.43 4.62 4.79 4.89 4.96 5.01

Table 2. Comparison of the test results at 0 dB for babble noise.

T60 (ms) 100 400 500 600 700 800

PESQ

unprocessed 1.46 1.84 1.87 1.88 1.88 1.87
ISCLP 2.02 1.84 1.88 1.90 1.90 1.90
WPE 1.49 1.79 1.83 1.86 1.88 1.91

proposed 1.51 2.01 2.06 2.10 2.11 2.11
proposed‑kron 1.45 2.06 2.09 2.10 2.09 2.08

STOI

unprocessed 0.62 0.66 0.65 0.64 0.64 0.63
ISCLP 0.71 0.64 0.64 0.64 0.63 0.63
WPE 0.61 0.67 0.67 0.67 0.67 0.67

proposed 0.63 0.69 0.70 0.70 0.69 0.69
proposed‑kron 0.64 0.69 0.69 0.68 0.67 0.67

CD (dB)

unprocessed 6.42 5.27 5.27 5.30 5.35 5.40
ISCLP 7.16 7.46 7.42 7.43 7.55 7.68
WPE 6.30 5.16 5.10 5.06 5.04 5.13

Proposed 6.97 6.28 6.32 6.34 6.35 6.37
proposed‑kron 6.40 5.38 5.47 5.56 5.66 5.75

SIR (dB)

unprocessed 13.41 −3.80 −4.80 −5.59 −6.11 −6.51
ISCLP 8.81 −0.11 −0.15 −0.38 −0.41 −0.58
WPE 6.69 −0.16 −1.51 −2.34 −2.94 −3.51

proposed −2.21 −1.99 −1.15 −1.34 −1.11 −1.18
proposed‑kron −3.34 −2.08 −2.12 −2.26 −2.12 −2.25

fwSegSNR (dB)

unprocessed 1.89 3.33 3.43 3.47 3.47 3.46
ISCLP 3.56 2.80 2.65 2.50 2.40 2.30
WPE 2.15 3.56 3.70 3.79 3.84 3.88

proposed 4.56 5.23 5.31 5.33 5.37 5.37
proposed‑kron 4.91 5.87 5.96 6.00 6.02 6.01
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Table 3. Comparison of the test results at 5 dB for babble noise. (The bold in the table indicates the
best result).

T60 (ms) 100 400 500 600 700 800

PESQ

unprocessed 1.85 2.08 2.06 2.03 2.00 1.97
ISCLP 2.41 2.41 2.38 2.34 2.30 2.26
WPE 1.90 2.17 2.20 2.23 2.24 2.25

proposed 2.15 2.38 2.39 2.37 2.34 2.31
proposed‑kron 2.14 2.37 2.35 2.31 2.28 2.23

STOI

unprocessed 0.73 0.72 0.71 0.69 0.68 0.66
ISCLP 0.79 0.76 0.75 0.75 0.74 0.73
WPE 0.72 0.75 0.75 0.75 0.75 0.75

proposed 0.75 0.76 0.75 0.75 0.74 0.74
proposed‑kron 0.75 0.75 0.74 0.73 0.72 0.71

CD (dB)

unprocessed 5.57 5.22 5.33 5.45 5.57 5.68
ISCLP 6.42 7.07 7.15 7.21 7.28 7.34
WPE 5.39 4.87 4.82 4.80 4.79 4.78

proposed 6.39 6.74 6.68 6.64 6.60 6.59
proposed‑kron 5.59 6.01 6.00 6.00 6.00 6.02

SIR (dB)

unprocessed 14.13 −5.48 −6.53 −7.26 −7.80 −8.21
ISCLP 9.38 −1.02 −1.62 −2.03 −2.29 −2.49
WPE 6.76 −1.85 −2.92 −3.75 −4.44 −5.02

proposed −2.19 −6.82 −6.83 −6.69 −6.57 −6.41
proposed‑kron −3.32 −8.03 −8.06 −7.94 −7.87 −7.71

fwSegSNR (dB)

unprocessed 3.83 4.71 4.68 4.59 4.49 4.39
ISCLP 5.63 3.85 3.34 3.16 3.02 2.88
WPE 4.13 5.14 5.24 5.29 5.31 5.32

proposed 4.12 4.25 4.24 4.23 4.20 4.14
proposed‑kron 4.63 4.94 4.94 4.90 4.84 4.76

Table 4. Comparison of the test results at 10 dB for babble noise. (The bold in the table indicates the
best result).

T60 (ms) 100 400 500 600 700 800

PESQ

unprocessed 2.24 2.32 2.24 2.18 2.12 1.97
ISCLP 2.73 2.59 2.53 2.47 2.42 2.36
WPE 2.30 2.51 2.54 2.55 2.56 2.55

proposed 2.54 2.61 2.58 2.53 2.48 2.45
proposed‑kron 2.51 2.58 2.52 2.45 2.39 2.34

STOI

unprocessed 0.82 0.76 0.74 0.72 0.70 0.69
ISCLP 0.85 0.79 0.78 0.77 0.76 0.75
WPE 0.81 0.80 0.80 0.80 0.80 0.80

proposed 0.81 0.79 0.79 0.78 0.77 0.77
proposed‑kron 0.81 0.78 0.77 0.76 0.74 0.73
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Table 4. Cont.

T60 (ms) 100 400 500 600 700 800

CD (dB)

unprocessed 4.64 4.78 5.00 5.21 5.38 5.53
ISCLP 5.80 6.73 6.84 6.94 7.02 7.10
WPE 4.41 4.20 4.19 4.20 4.21 4.21

proposed 5.64 6.29 6.27 6.26 6.25 6.24
proposed‑kron 5.32 5.71 5.75 5.79 5.82 5.85

SIR (dB)

unprocessed 14.19 −5.53 −6.67 −7.32 −7.81 −8.62
ISCLP 9.55 −0.98 −1.57 −1.96 −2.21 −2.42
WPE 6.78 −1.90 −2.99 −3.84 −4.54 −5.13

proposed −1.91 −6.79 −6.80 −6.67 −6.49 −6.38
proposed‑kron −3.03 −8.05 −8.09 −7.92 −7.82 −7.73

fwSegSNR (dB)

unprocessed 6.39 5.86 5.65 5.43 5.22 5.04
ISCLP 7.33 4.14 3.84 3.63 3.45 3.28
WPE 6.55 6.53 6.56 6.55 6.54 6.51

proposed 5.86 5.24 5.13 5.04 4.94 4.86
proposed‑kron 6.27 5.76 5.64 5.53 5.40 5.27

4.3.4. Comparison of the Spectrogram
Figure 5 shows the spectrogram comparison for the original speech, the enhanced

speech obtained by the ISCLP with filter order L = 6, the enhanced speech obtained by the
WPE, and the enhanced speech obtained by the proposed algorithm. The input SNR is
set to 10 dB and T60 = 800 ms. Compared with the original speech, these three algorithms
effectively reduce the reverberation and exhibit different characteristics at the same time.
As shown in Figure 5b, much of the reverberation and noise are suppressed by the ISCLP,
but the distortion of the desired signal is also serious. Figure 5c shows that in the WPE,
most of the reverberation is suppressed and the desired speech is retained well, whereas
the noise is hardly suppressed. Figure 5d shows that the proposed algorithm can reduce
the noise and reverberation effectively, and can retain the high frequency components of
the desired speech. Comparedwith theWPE algorithm, the proposed algorithm has better
ability for suppressing the noise.
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4.3.5. Comparison of Computational Complexity
In order to compare the computational complexity of the “proposed” method and

the “proposed‑kron” method, Table 5 lists the operations required for the multiplication,
addition, and division of two proposed algorithms. The update Equations (31), (32), (49),
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and (50) of the Kalman filtering are used for the calculation of the first step, whereas up‑
date Equations (33)–(35) and (51)–(53) are utilized for the calculation of the second step.
Furthermore, the update Equations (36), (37), (54), and (55) are employed for the calcu‑
lation of the third step. The complexity reduction factor is defined as the ratio between
the operations required for the “proposed‑kron” and “proposed” methods in each step.
We can see that the “proposed‑kron” algorithm has greatly improved computational effi‑
ciency compared to the “proposed” algorithm. Especially, the multiplication operations
in the first and third steps are reducedmuchmore. The “proposed‑kron” method not only
effectively reduces the computational complexity but also guarantees the speech quality
compared to the “proposed” method.

Table 5. Complexity comparison.

Proposed‑Kron

Step (×) (+) (÷)

1 (2L − 1) (L − 1)2 2(L − 1)3 − (L − 1) ——
2 M (L − 1)2 (M + 1) + 2 (L − 1)2 + 2 (L − 1) (M2 + 2) (L − 1)2 −M (L − 1) L − 1
3 (L − 1) + (L − 1)2 + (L − 1)3 (L − 1)3 + (L − 1) ——

Proposed

Step (×) (+) (÷)

1 2 M3 (L − 1)3 + M2 (L − 1)2 2 M3(L − 1)3 −M(L − 1) ——
2 2 M2 (L − 1)2 + 2 M (L − 1) 2 M2(L − 1)2 M (L − 1)
3 M (L − 1) + M2 (L − 1)2 + M3 (L − 1)3 M (L − 1)3 + (L − 1) ——

Complexity Reduction Factor

Step λ (×) ≈ λ (+) ≈ λ (÷) ≈

1 1/M3 1/M3 ——
2 1/2 + 1/2 M 1/2 + 1/M2 1/M
3 1/M3 1/M ——

5. Conclusions
In this paper, a noise reduction and dereverberation algorithmwas presented by com‑

bining theCGMM‑basedMVDRbeamforming and themultichannel linear predictionwith
Kalmanfiltering. The noise and a part of reverberationwere processed by theMVDRbeam‑
forming, meanwhile the covariance matrix of the target speech estimated by beamforming
was utilized to estimate the PSD of the target signal, which is an important parameter for
Kalman filtering. In addition, a low‑complexity version of the proposed algorithm was
given. The effectiveness of the proposed method in the experiment, the influence of dif‑
ferent PSD initialization methods on the algorithm, and the importance of accurate PSD
estimation to the algorithm were carefully analyzed. The evaluation results proved that
the proposed algorithm is superior to the reference methods and the low‑complexity ver‑
sion keeps similar effectiveness with much less complexity.

Author Contributions: Conceptualization, C.B., F.T. and J.Z.; methodology, C.B. and F.T.; software,
F.T. and J.Z.; validation, C.B., F.T. and J.Z.; formal analysis, C.B. and F.T.; investigation, F.T.; re‑
sources, F.T.; data curation, F.T. and J.Z.; writing—original draft preparation, C.B., F.T. and J.Z.;
writing—review and editing, C.B., F.T. and J.Z.; visualization, F.T.; supervision, C.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Grant No.
61831019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 11819 21 of 22

Data Availability Statement: Exclude this statement.

Acknowledgments: The authors are grateful to all the reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beutelmann, R.; Brand, T. Prediction of speech intelligibility in spatial noise and reverberation for normal‑hearing and hearing‑

impaired listeners. J. Acoust. Soc. Amer. 2006, 120, 331–342. [CrossRef] [PubMed]
2. Nakatani, T.; Kellermann, W.; Naylor, P.; Miyoshi, M.; Juang, B.H. Introduction to the special issue on processing reverberant

speech: Methodologies and applications. IEEE/ACM Trans. Audio Speech Lang. Process. 2010, 18, 1673–1675. [CrossRef]
3. Naylor, P.A.; Gaubitch, N.D. Speech Dereverberation; Springer: London, UK, 2010.
4. van Veen, B.D.; Buckley, K.M. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Mag. 1988, 5, 4–24. [CrossRef]
5. Gannot, S.; Burshtein, D.; Weinstein, E. Signal enhancement using beamforming and nonstationarity with applications to speech.

IEEE Trans. Signal Process. 2001, 49, 1614–1626. [CrossRef]
6. Markovich, S.; Gannot, S.; Cohen, I. Multichannel eigenspace beamforming in a reverberant noisy environment with multiple

interfering speech signals. IEEE Trans. Signal Process. 2009, 17, 1071–1086. [CrossRef]
7. Schwartz, O.; Gannot, S.; Habets, E.A.P. Nested generalized sidelobe canceller for joint dereverberation and noise reduction.

In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), South Brisbane, QL,
Australia, 19–24 April 2015; pp. 106–110.

8. Arote, S.; Deshpande, M. Multichannel speech dereverberation using generalized sidelobe canceller and post filter. In Proceed‑
ings of the IEEE 5th International Conference on Computing, Communication, Control and Automation, Pune, India, 19–21
September 2019; pp. 1–4.

9. Nathwani, K.; Hegde, R.M. Speech dereverberation in multisource environment using LCMV filter. In Proceedings of the IEEE
International Symposium on Signal Processing & Information Technology, Noida, India, 15–17 December 2014; pp. 404–409.

10. Schwartz, O.; Gannot, S.; Habets, E.A.P. Multi‑microphone speech dereverberation and noise reduction using relative early
transfer functions. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 240–251. [CrossRef]

11. Nakatani, T.; Kinoshita, K. A unified convolutional beamformer for simultaneous denoising and dereverberation. IEEE Signal
Process. Lett. 2019, 26, 903–907. [CrossRef]

12. Dietzen, T.; Doclo, S.; Moonen, M.; van Waterschoot, T. Integrated sidelobe cancellation and linear prediction Kalman filter for
joint multi‑microphone speech dereverberation, interfering speech cancellation, and noise reduction. IEEE/ACM Trans. Audio
Speech Lang. Process. 2020, 28, 740–754. [CrossRef]

13. Nakatani, T.; Yoshioka, T.; Kinoshita, K.; Miyoshi, M.; Juang, B.‑H. Speech dereverberation based on variance‑normalized de‑
layed linear prediction. IEEE/ACM Trans. Audio Speech Lang. Process. 2010, 18, 1717–1731. [CrossRef]

14. Hashemgeloogerdi, S.; Braun, S. Joint beamforming and reverberation cancellation using a constrained Kalman filter with mul‑
tichannel linear prediction. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 481–485.

15. Braun, S.; Habets, E.A.P. Linear prediction‑based online dereverberation and noise reduction using alternating Kalman filters.
IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1119–1129. [CrossRef]

16. Cohen, A.; Stemmer, G.; Ingalsuo, S.; Markovich‑Golan, S. Combined weighted prediction error and minimum variance dis‑
tortionless response for dereverberation. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal
Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 446–450.

17. Dietzen, T.; Spriet, A.; Tirry, W.; Doclo, S.; Moonen, M.; van Waterschoot, T. Partitioned block frequency domain Kalman filter
for multi‑channel linear prediction based blind speech dereverberation. In Proceedings of the IEEE International Workshop on
Acoustic Signal Enhancement (IWAENC), Xi’an, China, 13–16 September 2016; pp. 1–5.

18. Braun, S.; Habets, E.A.P. Online dereverberation for dynamic scenarios using a Kalman filter with an autoregressive model.
IEEE Signal Process. Lett. 2016, 23, 1741–1745. [CrossRef]

19. Dietzen, T.; Doclo, S.; Spriet, A.; Tirry, W.; Moonen, M.; van Waterschoot, T. Low‑Complexity Kalman filter for multi‑channel
linear‑prediction‑based blind speechdereverberation. In Proceedings of the IEEEWorkshoponApplications of Signal Processing
to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 15–18 October 2017; pp. 284–288.

20. Kodrasi, I.; Doclo, S. Analysis of eigenvalue decomposition‑based late reverberation power spectral density estimation.
IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1106–1118. [CrossRef]

21. Schwartz, O.; Gannot, S.; Habets, E.A.P. Joint estimation of late reverberant and speech power spectral densities in noisy en‑
vironments using frobenius norm. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO), Budapest,
Hungary, 29 August–2 September 2016; pp. 1123–1127.

22. Schwartz, O.; Gannot, S.; Habets, E.A.P. Joint maximum likelihood estimation of late reverberant and speech power spectral
density in noisy environments. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016; pp. 151–155.

23. Kuklasiński, A.; Doclo, S.; Jensen, S.H.; Jensen, J. Maximum likelihood PSD estimation for speech enhancement in reverberation
and noise. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 1599–1612. [CrossRef]

http://doi.org/10.1121/1.2202888
http://www.ncbi.nlm.nih.gov/pubmed/16875230
http://doi.org/10.1109/TASL.2010.2062590
http://doi.org/10.1109/53.665
http://doi.org/10.1109/78.934132
http://doi.org/10.1109/TASL.2009.2016395
http://doi.org/10.1109/TASLP.2014.2372335
http://doi.org/10.1109/LSP.2019.2911179
http://doi.org/10.1109/TASLP.2020.2966869
http://doi.org/10.1109/TASL.2010.2052251
http://doi.org/10.1109/TASLP.2018.2811247
http://doi.org/10.1109/LSP.2016.2616888
http://doi.org/10.1109/TASLP.2018.2811184
http://doi.org/10.1109/TASLP.2016.2573591


Appl. Sci. 2022, 12, 11819 22 of 22

24. Higuchi, T.; Ito, N.; Yoshioka, T.; Nakatani, T. Robust MVDR beamforming using time‑frequency masks for online/offline ASR
in noise. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), Shanghai,
China, 20–25 March 2016; pp. 5210–5214.

25. Ito, N.; Araki, S.; Yoshioka, T.; Nakatani, T. Relaxed disjointness based clustering for joint blind source separation and derever‑
beration. In Proceedings of the IEEE InternationalWorkshop onAcoustic Signal Enhancement (IWAENC), Juan‑les‑Pins, France,
8–11 September 2014; pp. 268–272.

26. Mandel, M.; Ellis, D.; Jebara, T. An EM algorithm for localizingmultiple sound sources in reverberant environments. InAdvances
in Neural Information Processing Systems 19: Proceedings of the 2006 Conference; MIT Press: Cambridge, MA,USA, 2007; pp. 953–960.

27. Pan, C.; Chen, J.; Benesty, J. Performance study of theMVDR beamformer as a function of the source incidence angle. IEEE/ACM
Trans. Audio Speech Lang. Process. 2014, 22, 67–79. [CrossRef]

28. Simon, D. Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches; Wiley: Hoboken, NJ, USA, 2006.
29. Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory, 1st ed.; Prentice‑Hall: Englewood Cliffs, NJ, USA, 1993.
30. Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice‑Hall: Englewood Cliffs, NJ, USA, 2002.
31. Enzner, G.; Vary, P. Frequency‑domain adaptive Kalman filter for coustic echo control in hands‑free telephones. Signal Process.

2006, 86, 1140–1156. [CrossRef]
32. Yang, W.; Huang, G.; Chen, J.; Benesty, J.; Cohen, I.; Kellermann, W. Robust dereverberation with kronecker product based

multichannel linear prediction. IEEE Signal Process. Lett. 2021, 28, 101–105. [CrossRef]
33. Kinoshita, K.; Delcroix, M.; Kwon, H.; Mori, T.; Nakatani, T. Neural network‑based spectrum estimation for online WPE dere‑

verberation. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; pp. 384–388.
34. Cheng, R.; Bao, C.; Cui, Z. Mass: Microphone array speech simulator in room acoustic environment for multi‑channel speech

coding and enhancement. Appl. Sci. 2020, 10, 1484. [CrossRef]
35. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S. DARP: A TIMIT Acoustic‑Phonetic Continous Speech Corpus

CD‑ROM. NIST Speech Disc 1‑1.1; NASA STI/Recon Technical Report N 93, 27403; NASA: Washington, DC, USA, 1993.
36. ITU‑T. Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End‑to‑End Speech Quality Assessment of Narrowband

Telephone Networks and Speech Codecs; ITU‑T Recommendation P.862; International Telecommunication Union: Geneva, Switzer‑
land, 2001.

37. Taal, C.H.; Hendriks, R.C.; Heusdens, R.; Jensen, J. An algorithm for intelligibility prediction of time‑frequency weighted noisy
speech. IEEE/ACM Trans. Audio Speech Lang. Process. 2011, 19, 2125–2136. [CrossRef]

38. Hu, Y.; Loizou, P.C. Evaluation of objective quality measures for speech enhancement. IEEE/ACM Trans. Audio Speech Lang.
Process. 2008, 16, 229–238. [CrossRef]

39. Loizou, P.C. Speech Enhancement: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2007.
40. Goetze, S.; Warzybok, A.; Kodrasi, I.; Jungmann, J.O.; Cauchi, B.; Rennies, J.; Habets, E.A.P.; Mertins, A.; Gerkmann, T.; Doclo,

S.; et al. A study on speech quality and speech intelligibility measures for quality assessment of single‑channel dereverbera‑
tion algorithms. In Proceedings of the 14th International Workshop on Acoustic Signal Enhancement (IWAENC), Juan‑les‑Pins,
France, 8–11 September 2014; pp. 233–237.

41. Dietzen, T. GitHub Repository: Integrated Sidelobe Cancellation and Linear Prediction Kalman Filter for JointMulti‑microphone
Speech Dereverberation, Interfering Speech Cancellation, and Noise Reduction. July 2019. Available online: https://github.com/
tdietzen/ISCLP‑KF (accessed on 14 January 2021).

42. Drude, L.; Heymann, J.; Boeddeker, C.; Haeb‑Umbach, R. NARA‑WPE: A Python package for weighted prediction error dere‑
verberation in Numpy and Tensorflow for online and offline processing. In Proceedings of the 13th ITG‑Symposium, Speech
communication, Oldenburg, Germany, 10–12 October 2018; pp. 216–220.

http://doi.org/10.1109/TASL.2013.2283104
http://doi.org/10.1016/j.sigpro.2005.09.013
http://doi.org/10.1109/LSP.2020.3044796
http://doi.org/10.3390/app10041484
http://doi.org/10.1109/TASL.2011.2114881
http://doi.org/10.1109/TASL.2007.911054
https://github.com/tdietzen/ISCLP-KF
https://github.com/tdietzen/ISCLP-KF

	Introduction 
	Signal Model 
	Complex Gaussian Mixture Model 
	Multichannel Linear Prediction Reverberation Model 

	Proposed Dereverberation Method 
	Algorithm Architecture 
	Application of Kalman Filter 
	Low-Complexity Algorithm Based on the Kronecker Product 
	Initialization of Kalman Filtering 

	Experiments and Evaluation 
	Acoustic Scenario and Experimental Setup 
	Reference Methods 
	Analysis and Comparison of the Test Results 
	Effect of Filter Order 
	Effect of the PSD Initialization 
	Performance Comparison with Reference Methods 
	Comparison of the Spectrogram 
	Comparison of Computational Complexity 


	Conclusions 
	References

