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Abstract: The trajectory planning and control of multi-agent systems requires accurate localization,
which may not be possible when GPS signals and fixed features required for SLAM are not available.
Cooperative Localization (CL) in multi-agent systems offers a short-term solution that may signifi-
cantly improve vehicle pose estimation. CL algorithms have been mainly developed and assessed
for planar mobile robot networks due to complexities and singularities in three-dimensional (3D)
motion. In this paper, we develop the required singularity-free equations and apply and assess an
EKF-based CL for 3D vehicle networks. We assess the performance of CL with respect to the number
of simultaneous and redundant measurements. We further assess CL performance with only relative
position measurements available. Finally, experiments are performed to validate the proposed al-
gorithms. We further investigate the effect of absolute position measurements in CL. Conclusions:
Cooperative localization is an effective method when applied to 3D vehicle networks. However,
CL does not improve localization with only relative position measurements, and thus previously
reported results for 2D vehicle models were only effective due to relative orientation measurements.
Absolute measurement reduces the overall localization errors much more significantly when there
has been CL with prior relative position measurements.

Keywords: cooperative localization; extended Kalman filter; multi-robot navigation; three-dimensional
motion; state estimation; autonomous vehicles

1. Introduction

One of the vital technologies required for autonomous navigation is a localization
technique that is capable of recognizing the position and orientation of a vehicle or vehicle
networks, especially in GPS-denied environments. This problem is further exacerbated
by environments that are often unstructured and lack distinct features (such as deserts),
contain features that may change over time due to environment, or as the vehicles move
to new areas (such as urban settings). Methods such as feature-based Simultaneous Lo-
calization and Mapping (SLAM) [1] are not capable of providing accurate localization in
these environments. Collaborative systems of unmanned ground and air vehicles show
great promise for various applications [2,3]. Cooperative Localization (CL) can be utilized
for these systems to significantly reduce the rate of growth of estimation errors until GPS
becomes available again. In addition, CL can help reduce the sample rate requirement
for various SLAM methods in structured environments, since these methods require ex-
tensive computation. Cooperative SLAM techniques [4,5] have shown great promise for
precise localization, especially when combined with other techniques such as the Extended
Kalman Filter (EKF) [6]. However, the success of these techniques relies on the knowledge
of the environment.

CL can utilize several techniques, including Kalman filters [7–9] and particle fil-
ters [10,11]. Utilizing these techniques, CL has been suggested as a powerful method to
improve pose estimation in vehicle networks capable of inter-agent communication for
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data sharing [12]. In an early application of CL, an EKF algorithm [13] was developed
that distributes vehicle state information while keeping track of the cross-covariance terms.
These terms are created by relative measurements of each 2D vehicle’s pose. However,
this method requires a completely synchronous and interconnected communication net-
work. A decoupled CL algorithm is proposed [14] that eliminates the need for complete
and constant between vehicles. Vehicles are assumed to be equipped with the capability
of obtaining their own pose (via equations of motion and onboard sensors), measuring
the poses of nearby vehicles relative to their own reference frame, and processing this
information and communicating with other vehicles. CL allows a group of vehicles to
cooperatively approximate an individual vehicle’s pose by sharing the relative and absolute
pose measurements that each vehicle has obtained.

2. Motivation

Research works on multi-agent systems have focused on 2D vehicle models, even
treating vehicles as simple nodes [15]. CL methods have focused primarily on maneuvering
in 2D space [16–19] and particularly using wheeled mobile robots [20–22] and vehicles [23]
due to the complexities involved in the singularity-free representation of 3D orientation. It
is, however, critically important to apply CL to three-dimensional (3D) vehicle models to
improve the localization of networks with homogeneous and heterogeneous air, marine,
and ground vehicles. Others only consider relative localization without any regard to
the global reference frames [24,25]. There is also a CL method [26] that only uses range
measurements of a vehicle with access to absolute measurements via GPS and therefore
does not take advantage of cross-covariances terms. A common theme in these methods is
suffering from singularities due to using Euler angles to represent orientation. EKF-based
CL with relative pose measurements to improve the absolute pose of networks with 3D
vehicles has remained relatively unexplored due to the intricacies involved in the kinematic
representation and linearization of state and measurement equations. Alternative relative
localization methods [27] have also been explored. Euler angles are normally used to
measure orientation, but are associated with singularities in aggressive vehicle maneuvers
with relative or absolute angles reaching 90◦. Quaternions, on the other hand, do not have
any singularities but are not measurable by any sensors. Hence, they are calculated from the
rotation matrix, which may be challenging in the case of relative orientation representation.

3. Related Works

EKFs have commonly been used as the standard technique for state estimation in
CL. There are EKF-based methods that achieve localization utilizing stereo-vision and
sensor fusion [28] and can be further extended to target tracking [29]. However, these
methods require maximizing the overlap of each agent’s field of view to enhance local-
ization. Many localization techniques rely on a central system or single/multiple “leader”
agents responsible for sensor fusion [30–32]. Distributed or decentralized methods have
been investigated [33–35] to ameliorate the computational bottlenecks associated with
centralized systems. While these methods can be efficient and effective, they come at the
cost of accuracy. A combination of centralized–decentralized CL in ad hoc networks shows
great promise in improving localization without prior knowledge of an environment [14,36].
A distributed CL utilizing an EKF with low communication path requirements can also pro-
vide centralized-equivalent performance [37]. It is also possible to model the CL problem
as a graph model to further utilize additional algorithms [38].

EKF-based CL algorithms are popular due to their ease of execution and computational
efficiency. However, linearizing an extremely nonlinear system can lead to inaccuracies and
numerical instabilities. Unscented Kalman Filter (UKF)-based methods were introduced
in [39] with the advantage of not requiring any linearization. The UKF is deemed to be
more robust [40] since it does not rely on the computation of the Jacobian matrix and
is an excellent option for self-localization and tracking [41–44]. On the other hand, the
UKF has a much higher computation cost compared to the EKF, especially considering the
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Cholesky factorizations at every step. As an alternative, the Squared Root UKF [45] does
help mitigate the computation cost. However, implementation of UKF-based CL algorithms
and simultaneous measurements is very complex and has not been fully explored. Table 1
lists some of these related works along with their advantages and limitations.

Table 1. Limitations of related works.

Algorithm Advantages Limitations

SLAM Obtain localization of multiple vehicles,
mapping of an environment

Requires knowledge of the environment and
designated landmarks, needs assigned “leaders”
and “followers” or a central processing station

Particle Filter Nonlinear applications, low error in ideal
situations, no linearization required

Requires individual agent identification, not
robust to false-positive detections

Decentralized EKF with
Euler angles No designated central processing center needed Prone to singularity issues due to gimbal lock,

requires linearization (Jacobian)

Current Method Singularity-free, computationally effective Quaternions cannot be measured directly,
requires linearization

4. Main Contributions and Novelties

In this paper, we extend a previous conference proceedings publication [46] to include
additional subcases, physical experiments, and identifying additional limitations to CL. We
extend the centralized EKF-based CL algorithm presented in [13,14] to include 3D vehicle
models and assess its performance. Specifically, we utilize quaternions to represent vehicle
orientation in order to avoid singularities. For measurements, we introduce quaternions cor-
responding to relative orientation represented by the rotation matrix and present linearized
measurement equations, i.e., the output matrix. We then assess the performance of CL in
3D vehicle networks through a series of Monte Carlo-type simulations. We use a sequential
update procedure [47] to assess the effect of simultaneous and redundant measurements on
individual vehicles, as well as the overall network. Assuming that absolute orientation can
be accurately measured by onboard sensors, we further assess the performance of CL when
only relative position measurements are available and investigate the circumstances under
which the method could be effective or ineffective. Finally, experiments are preformed to
verify the algorithm.

The main contributions and novelties of this publication are outlined as follows:

1. The development and application of singularity-free EKF-based CL for networks of
three-dimensional vehicles;

2. The first comprehensive assessment of EKF-based CL with only relative position
measurements;

3. The identification of limitations of CL with respect to the number of simultaneous
measurements, redundant measurements, and relative position-only measurements;

4. The experimental verification of the EKF CL algorithm’s performance and limitations.

The paper is organized as follows. The vehicle model is presented in Section 5. A multi-
vehicle system with state and measurement equations and their linearization are presented
in Section 6, followed by the CL algorithm in Section 7. Simulations and experiments
are presented in Sections 8 and 9, respectively, followed by the concluding remarks in
Section 10.

5. Vehicle Model
5.1. Vehicle Pose

Each vehicle is assigned a body-fixed reference frame XvYvZv. Figure 1 depicts the
pose of the vehicle, which is then represented by the position of the origin of XvYvZv
and its orientation with respect to the inertial reference frame X0Y0Z0. Hence, the vector
rv

0 = [xv
0 yv

0 zv
0]
> represents the position of the vehicle, and the orthogonal rotation
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matrix Rv
0 that transforms the coordinates of any vector in XvYvZv to X0Y0Z0 determines

its orientation. Rv
0 can be calculated using quaternions, which are favored over Euler

angles since they do not suffer from singularities and require less computational overhead.
The quaternion vector of the vehicle reference frame q̄v can be presented as:

q̄v =

[
qv

0
qv

]
, qv =

qv
1

qv
2

qv
3

 (1)

where there is redundancy due to the four scalar values representing three rotational
degrees of freedom. The constraint relating the quaternions is q̄v> q̄v − 1 = 0, indicating
that q̄v is a unit vector.

��

��

��

 !

 "
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�$

�$

�$
%$
�

Figure 1. Vehicle 3D Kinematic Model.

The orthogonal rotation matrix is given in terms of the quaternions as [48]:

Rv
0(q̄

v) = [2(qv
0)

2 − 1]I3 + 2[qvqv> + qv
0S(qv)] (2)

where S(qv) defines a skew-symmetric matrix of a vector such that

S(qv) =

 0 −qv
3 qv

2
qv

3 0 −qv
1

−qv
2 qv

1 0

 (3)

and I3 is the 3× 3 identity matrix. Given the rotation matrix in (2), we can calculate q̄v,
as described in [46].

5.2. Vehicle Velocity

In the global coordinate frame, X0Y0Z0, the vehicle translational velocity vector, ṙv
0 , is

related to its body-fixed velocities in XvYvZv, ṙv
v, as [49]:

ṙv
0 = Rv

0(q̄
v)vv (4)
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where vv , ṙv
v. The angular velocity vector of a vehicle about its body-fixed reference frame,

ωv = [ωv
x ωv

y ωv
z ]
>, is used to calculate the time derivative of the quaternion vector, ˙̄qv, as:

˙̄qv =
1
2

Gv>ωv, ωv = 2Gv ˙̄qv (5a)

Gv =
[
−qv, qv

0 I3 − S(qv)
]

(5b)

The unit-length constraint equation that relates the time derivatives of the quaternions
is also given as q̄v> ˙̄qv = 0.

5.3. Vehicle State Equations

Considering the single vehicle shown in Figure 1 and as described in the previous
section, the pose of the vehicle can be represented by rv

0 = [xv
0 yv

0 zv
0]
> and q̄v. For a

kinematic model, we may choose the state vector as a collection of the seven pose variables:

xv =

[
rv

0
q̄v

]
(6)

Using (4) and (5), the driftless state equations may be written as:

ẋv = gv(xv)uv (7)

where

gv =

[
Rv

0 03×4

03×3
1
2 GvT

]
, uv =

[
vv

ωv

]
(8)

where 0n×m represents the n×m zero matrix and the vehicle input vector consists of the
body-fixed velocities vv and ωv.

The 7× 7 Jacobian matrix of state equations, Jv, necessary for EKF linearization is
calculated as:

Jv =
∂(gv(xv)uv)

∂xv =


03×3

∂ṙv
0

∂q̄v

04×3
∂ ˙̄qv

∂q̄v

 (9)

where the nonzero components are:

∂ṙv
0

∂q̄v =

[
∂ṙv

0
∂qv

0

∂ṙv
0

∂qv

]
(10a)

∂ ˙̄qv

∂q̄v =
1
2

[
0 −ωv>

ωv −S(ωv)

]
(10b)

and

∂ṙv
0

∂qv
0
= [(4qv

0)I3 + 2S(qv)]vv (11a)

∂ṙv
0

∂qv = 2qvvv> + 2(qv>vv)I3 − 2qv
0S(vv) (11b)

It is important to note that several approaches have been proposed to adhere to the
unit quaternion constraint during the integration of the state equations [50–52].

6. Multi-Vehicle System Model
6.1. State Equations

In order to formulate the CL algorithm, let us first consider a three-vehicle system
shown in Figure 2. In the illustrated scenario, a vehicle designated as b or “base vehicle”
obtains a pose measurement of another vehicle designated as t or “target vehicle” relative
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to its own body-fixed reference frame. Referring to (6)–(8), the system may be represented
by the 14 states representing absolute poses of the two vehicles. The state equations are
written as:

ẋ = g(x)u

x =
[
rb>

0 q̄b> rt>
0 q̄t>

]>
u =

[
vb> ωb> vt> ωt>

]>
g = diag

[
Rb

0
1
2

Gb Rt
0

1
2

Gt
]

(12)

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pose geometry for a two-vehicle network.

The 14× 14 Jacobian matrix, J, for the two-vehicle network is simply defined as:

J = diag
[

Jb Jt
]

(13)

where Jb and Jt are defined for vehicle b and vehicle t according to (9)–(11).

6.2. Measurement Equations

Consider a base vehicle b acquiring a relative pose measurement of a target vehicle t.
A problem with quaternions is that they are not kinematic quantities that can be directly
measured by any sensor. Thus, we assume the rotation matrix representing the relative
orientation of t with respect to b, perhaps derived from Euler angles, is the measured
quantity. We then derive the quaternions corresponding to the relative rotation matrix.
Similarly, the relative range, bearing angle, and elevation angle of t with respect to b are
the quantities normally measured that may be used to determine the relative position.
Here, we define the measurement output vector, z, in terms of the relative position vector,
r, and the three components of the quaternion vector q, which are determined from the
relative orientation matrix:

z =

[
r
q

]
. (14)

Note that the q0 component is not needed since it can be derived from q using the
unit-length constraint equation. Using the system states, the relative position r can be
written as:

r = Rb
0
>

rbt
0 = Rb

0
>
(r>0 − rb

0) = Rb
0
>

r0 (15)
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where r0 = r>0 − rb
0. Quaternions representing the relative orientation are derived from the

relative rotation matrix:
R(q̄) = Rb

0
>
(q̄b)Rt

0(q̄
t) (16)

Vector q is then derived from the elements of R(q̄) [46].
Next, we linearize the measurement output equations, z = Hx where:

H =
[
Hb Ht] =

−Rb
0
> ∂r

∂q̄b Rb
0
>

03×4

03×3
∂q
∂q̄b 03×3

∂q
∂q̄t

. (17)

The term
∂r
∂q̄b can be written in terms of its components as

∂r
∂q̄b =

[
∂r

∂qb
0

∂r
∂qb

]
. These

components can then be defined similar to (11) as:

∂r
∂qb

0
= [(4qb

0)I3 + 2S(qb)]r0 (18a)

∂r
∂qb = 2qbr>0 + 2(qb>r0)I3 − 2qb

0S(r0). (18b)

Assuming q0 6= 0, the remaining derivative terms can be shown as:

∂q
∂q̄b =

1
4q0

∂p
∂q̄b ,

∂q
∂q̄t =

1
4q0

∂p
∂q̄t (19)

where p is represented in terms of the elements of the matrix R(q̄)

p = [R32 − R23 R13 − R31 R21 − R12]
>, (20)

and the components of (19) are derived as:

∂p
∂qb

0
= 16qb

0qt
0qt + 2[Rt

0 − tr(Rt
0)I3]qb

∂p
∂qt

0
= −16qb

0qt
0qb − 2[Rb

0 − tr(Rb
0)I3]qt

∂p
∂qb = 2qb

0[R
t
0 − tr(Rt

0)I3]− 2S(qb)Rt
0
>
+ 2S(Rt

0
>qb)

∂p
∂qt = −2qt

0[R
b
0 − tr(Rb

0)I3] + 2S(qt)Rb
0
> − 2S(Rb

0
>

qt)

(21)

If q0 = 0, components of
∂q
∂qb and

∂q
∂qt are derived as:

∂qi

∂qb
j
=

1
4qi

∂Rii

∂qb
j

, qi 6= 0

∂qi

∂qt
j
=

1
4qi

∂Rii

∂qt
j

, qi 6= 0

∂qi

∂qb
j
=

∂qi

∂qt
j
= 0, qi = 0

, i, j = 1, 2, 3 (22)
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Finally, the terms
∂Rii
∂qb

and
∂Rii
∂qt

can be derived as:

∂Rii

∂qb
j
= 2Rt

0ji
qb

i , i 6= j

∂Rii

∂qb
j
= 2Rt

0ji
qb

i + 2
3

∑
j=1

Rt
0ji

qb
j , i = j

∂Rii

∂qt
j
= 2Rbji

qt
i , i 6= j

∂Rii

∂qt
j
= 2Rb

0ji
qt

i + 2
3

∑
j=1

Rb
0ji

qt
j, i = j

(23)

7. Cooperative Localization

Consider a network of n vehicles numbered 1 to n. A vehicle i, at sample time (k),
utilizes absolute measurements to propagate its pose using the discrete form of (7):

xi(k + 1) = gi(xi(k))ui(k) + γi(xi(k))ηi(k) (24)

where xi, ui, and ηi refer to the state, input, and process noise vectors, respectively, and gi(xi)
and γi(xi) are the input and process noise coefficient functions, respectively. Next, we
assume that vehicle i in the set {1, · · · , n}measures the relative pose of vehicle, where j 6= i.
Subsequently, the measurement vector zij can be written as:

zij(k + 1) = hij(xi(k), xj(k)) + νi(k) (25)

where νi(k) represents the measurement noise and hij = [rij> qij> ]>; see (14).
For the EKF procedure, we denote variables at the propagation step with “−” and the

updated step with “+”. We also use over “ ˆ ” for estimated state values. Thus, x̂i− and
x̂i+ indicate the predicted and updated state estimates for vehicle i, respectively. The key
to success of EKF-based CL is the cross-covariance [14], which is the correlation term
between vehicles i and j due to the relative measurements. Given initial conditions xi(0),
Pij(0) = 07×7, and the initial guess of Pii(0) = I7, the prediction step state estimates,
covariance matrix, and cross-covariance matrix of vehicles i = 1, · · · , n at step k + 1 are
given in terms of step k terms as:

x̂i−(k + 1) = gi(xi+(k))ui

Pii−(k + 1) = JiPii+ Ji> + ΓiQiΓi
>

Pij−(k + 1) = JiPii+ J j>

(26)

where j = 1, · · · , n, j 6= i, Ji =
∂gi

∂xi (k) is calculated using (9)–(10), Γi =
∂γi

∂xi , and Qi > 0 is

the covariance of process noise.
At the update step, the state vector and (cross) covariance matrices remain unchanged

if there are no relative measurements. Let us now assume that a “base” vehicle b takes
relative measurements of a “target” vehicle t. Then, the innovation error between the
measurement zbt and the estimated output through propagated states is:

eb(k + 1) = zbt − hbt(x̂b−(k + 1), x̂t−(k + 1))

≈ zbt −
[

Hb Ht
][x̂b−(k + 1)

x̂t−(k + 1)

]
(27)
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where [Hb Ht] is defined in (17). The cross-covariance terms modifies the innovation
covariance matrix as follows:

Sbt(k + 1) = HbPbb−Hb> + HtPtt−Ht>

+ HbPbt−Ht> + HtPtb−Hb> + Rb

(28)

Utilizing (27) and (28), the Kalman gains along with the states and covariance terms
for all vehicles i = 1, · · · , n are updated as follows:

Ki(k + 1) = [Pit−Ht> + Pib−Hb>]Sbt−1

x̂i+(k + 1) = x̂i− + Kieb

Pii+(k + 1) = Pii− − KiSbtKi>

Pij+(k + 1) = Pij− − KiSbtK j>

(29)

where j = 1, · · · , n, j 6= i. The Kalman gain, due to its semi-definite nature, ensures that
a decrease in localization error is achieved by any relative measurement, as long as the
measurements are not too noisy and the EKF linearization is accurate. The step-by-step
procedure for the centralized CL algorithm can be found in [14].

The structure of the EKF-based CL algorithm is illustrated as a diagram in Figure 3 for
better understanding of the procedure.

Figure 3. Centralized EKF-based CL diagram.

8. Simulation Results

Given a propagation time step size of ∆t, the seven state equations of vehicle i
in (4) and (5) can be written in discrete form as:{

ri
0(k + 1) = ri

0(k) + Ri
0(k)

(
vi(k) + ηi

v
)
∆t

q̄i(k + 1) = q̄i(k) + 1
2 Gi(k)

(
ωi(k) + ηi

ω

)
∆t

(30)

where ηi
v and ηi

ω are the corresponding components of ηi in (24) representing the input
velocity process noise. Similarly, Ri

0(q̄
i(k)) and 1

2 Gi(q̄i(k)) are the components of γi in (24).
The relative measurements obtained by all vehicles are polluted by additive Gaussian

measurement noise (AWGN) with a standard deviation of 0.05 m for the position states
(based on distances between vehicles) and 0.02 for the quaternion states of each vehicle.
Vehicles may also be capable of obtaining absolute pose measurements with a standard
deviation of 0.1 m for position and 0.02 for the quaternion states. As far as process noise
is concerned, the standard deviations are 0.1vi for ηi

v and 1◦/s for ηi
ω across all vehicles.

Finally, since there is additive noise in both measurement and process steps, after several
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trial runs, we concluded that about 100 runs in each simulation scenario are required to
remove any significant effect stemming from outliers.

All simulations are run for 200 s and use the same input velocities and process and
measurement noise properties in order to remove any input bias from the assessments.
Input velocities are applied to each vehicle with varying magnitudes, as listed in Table 2.
Since vehicles normally have a “forward” velocity input, 3D movement is attained through
orientation changes, as a result of input angular velocities. Therefore, linear velocity is only
applied in the x-direction. We selected ∆t = 0.02 s, which is sufficiently small for accurate
propagation without any noise, given the magnitude of input velocities.

Table 2. Input linear (m/s) and angular (◦/s) velocities of vehicles for all simulations.

[vx, vy, vz] [ωx, ωy, ωz]
Linear Angular

V1 −0.30, 0.00, 0.00 0.28, 0.55, 0.55
V2 −0.35, 0.00, 0.00 0.35, 0.70, 0.70
V3 0.40, 0.00, 0.00 0.43, 0.85, 0.85
V4 0.35, 0.00, 0.00 0.50, 1.00, 1.00
V5 −0.30, 0.00, 0.00 0.58, 1.15, 1.15
V6 −0.35, 0.00, 0.00 0.65, 1.30, 1.30

To provide a comprehensive assessment, we initially present a test case with a changing
measurement scenario. Next, we evaluate the effect of sequentially adding measurements
that do not directly involve a given vehicle to show how CL can improve its localization and
the localization of the entire network. We then assess the effect of redundant measurements
when two or more vehicles simultaneously measure each other’s poses. Next, we assess the
effectiveness of CL when only relative positions are measured, followed by an investigation
of how a single vehicle’s absolute measurement can affect localization in this scenario.

8.1. A Test Case

We initially simulate a test case to demonstrate the effectiveness of CL using the first
four vehicles listed in Table 2. In the test case, there are no relative measurements for the
first 40 s, and therefore, each state is estimated using propagation only. Then, some vehicles
fall within the line of sight of other vehicles such that vehicle 1 measures the relative pose
of vehicle 2, vehicle 2 measures vehicle 3, and vehicle 3 measures vehicle 4 from t = 40 s
until t = 160 s. These measurements all happen simultaneously. For the final 40 s, all
vehicles lose sight of each other, such that there are no relative measurements. However,
vehicles 1 and 4 take absolute measurements of their own pose until t = 200 s possibly due
to the availability of GPS or SLAM for those vehicles.

The actual paths of the four vehicles along with those estimated with and without
CL are shown in Figure 4 where significant improvement in the estimation of the path is
observed after 40 s when CL is applied. We denote the norm of error in position vector
rv

0 as ∆r and the norm of error in orientation vector qv as ∆q. Figures 5 and 6 compares
the time history of ∆r and ∆q for the four vehicles with and without CL, along with their
2σ plots. It is clear that there is a significant improvement in the estimation of the pose
of all vehicles during CL (from 40 s to 160 s), including vehicle 1, whose relative pose
is never measured. In addition, the absolute measurements of vehicles 1 and 4 not only
greatly reduce localization errors for those vehicles but also for vehicles 2 and 3 due to
their cross-covariance matrices with vehicles 1 and 4. Another observation is that there
are discontinuities in state estimations when measurement scenarios are changed, caused
by abrupt changes in the covariance matrix, as observed in the 2σ plots in Figures 5 and 6.
These discontinuities, however, are not of any concern as long as the algorithm remains
numerically stable.
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Figure 4. Vehicle actual path versus paths estimated with and without CL in the test case.
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Figure 5. Time history of vehicle position error norm in the test case.



Appl. Sci. 2022, 12, 11805 12 of 21

0 50 100 150 200

time(s)

-0.5

0

0.5

1

1.5

 q

Vehicle # 1

CL

No CL

CL 2  Bounds

0 50 100 150 200

time(s)

-0.5

0

0.5

1

1.5

 q

Vehicle # 2

0 50 100 150 200

time(s)

-0.5

0

0.5

1

1.5

 q

Vehicle # 3

133.93 133.96
0.147

0.15

0 50 100 150 200

time(s)

-0.5

0

0.5

1

1.5

 q

Vehicle # 4

Figure 6. Time history of vehicle orientation error norm in the test case.

8.2. Simultaneous Relative Pose Measurement Assessment

For CL, the number of relative measurements plays a significant role in lowering
uncertainty. Therefore, we investigate how the error for a given vehicle (and across all
vehicles) is affected by sequentially adding simultaneous measurements by other vehicles.
We also assess what happens when vehicles make redundant measurements, such as
two vehicles simultaneously taking relative measurements and exchanging information
with each other. Hence, we consider two networks, one with all six vehicles, n = 6,
for assessment of additional simultaneous measurements (Scenario 1), and another with
only the first three vehicles, n = 3, for the assessment of redundant measurements (Scenario
2). In each scenario, we start with one vehicle taking the relative measurements of another
vehicle. In subsequent cases, we continue to add more relative measurements to assess
their contribution.

8.2.1. Scenario 1—Effect of Other Vehicle Measurements on Single-Vehicle Localization

The idea for Scenario 1 is to see how other vehicles taking additional simultaneous
relative measurements affects the localization of a single vehicle and, consequently, all
vehicles in the network. Table 3 shows five cases that were simulated, concentrating on the
localization of vehicle 1. In case 1, relative measurements of vehicle 2 are taken by vehicle
1, while in case 2, vehicle 2 simultaneously takes relative measurements of vehicle 3 and
so on. In each case, errors are averaged across the 100 simulations.

The mean of the position error norm (∆r) and the orientation error norm (∆q) for
vehicle 1 in all 100 simulations are plotted in Figures 7 and 8, respectively, for propagation
without measurements and the five CL cases. Both ∆r and ∆q show that the performance
increases as more relative measurements are added, and all CL cases show significant
improvement over the propagation. An interesting observation is the significant error
reduction in both ∆r and ∆q of vehicle 1 from Case 1 to Case 2 when vehicle 2 measures the
relative pose of vehicle 3. Hence, the overall error for vehicle 1 is reduced even though it is
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not involved in the additional measurement. When subsequent measurements are added
in cases 3 through 5, the localization errors continue to decrease but are relatively marginal.
This demonstrates that the beneficial effects of CL may not outweigh its additional com-
putational cost as the number of simultaneous measurements is increased. It should also
be noted that the temporary dip in quaternion propagation error in Figure 8 is due to the
complete rotation of the vehicles, bringing some components of the quaternion closer to
their actual values.

Table 3. Simultaneous measurement descriptions for Scenario 1.

Simultaneous Measurements (b → t)

Case 1 1→ 2
Case 2 1→ 2, 2→ 3
Case 3 1→ 2, 2→ 3, 3→ 4
Case 4 1→ 2, 2→ 3, 3→ 4, 4→ 5
Case 5 1→ 2, 2→ 3, 3→ 4, 4→ 5, 5→ 6
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Figure 7. Scenario 1—vehicle 1 mean ∆r norm.
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Figure 8. Scenario 1—vehicle 1 mean ∆q norm.

Table 4 lists the error norm statistics across the 100 simulations for vehicle 1, which in-
cludes statistical terms such as mean and standard deviation for position r and orientation q.
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To calculate these terms, we determine the norms of ∆r and ∆q at each time step of each
simulation, and their root means squared are derived over time. Finally, the mean, standard
deviation, min, and max are derived across all simulations. In CL, the cross-covariances
contribute to lower overall error for vehicles when additional measurements are performed.
The statistics again illustrate that the error reduction beyond Case 2 is relatively marginal.
However, it also demonstrates that the variability is significantly increased in CL (see the
standard deviation of CL cases compared to propagation).

Table 4. Position (m) and quaternion error statistics of vehicle 1 across 100 simulations for Scenario 1.

Position Orientation

ermean erstd ermin ermax eqmean eqstd eqmin eqmax

Propagate 2.87 0.01 2.84 2.91 0.05 0.00 0.05 0.05
Case 1 1.99 0.82 0.70 4.48 0.05 0.01 0.02 0.09
Case 2 1.48 0.85 0.38 4.56 0.04 0.02 0.01 0.09
Case 3 1.50 0.76 0.39 4.34 0.03 0.01 0.01 0.08
Case 4 1.33 0.69 0.39 4.34 0.03 0.01 0.01 0.07
Case 5 1.23 0.58 0.24 3.03 0.03 0.01 0.01 0.05

Case 5 [14] 1.27 0.01 1.16 1.19 0.04 0.00 0.03 0.04

We also compared the same statistics across all vehicles. In this case, ∆r and ∆q are
again calculated at each time step of each simulation, and the root mean squared of the
means is derived across all time steps and then averaged for all vehicles. Finally, the mean,
standard deviation, min, and max are derived across all simulations. The results are listed
in Table 5. The data show a similar trend to Table 4, where there is a reduction in the
error estimates of both ∆r and ∆q as simultaneous measurements are added. However,
as expected, the reduction in overall localization errors continues to be significant as
the number of vehicles that rely solely on propagation decreases. The same increase in
variability is also observed in the location of all vehicles.

Table 5. Position (m) and quaternion error statistics across 100 simulations of all vehicles for Scenario 1.

Position Orientation

ermean erstd ermin ermax eqmean eqstd eqmin eqmax

Propagate 14.97 0.02 14.91 15.03 0.43 0.00 0.43 0.44
Case 1 13.30 1.61 10.80 18.37 0.42 0.03 0.37 0.49
Case 2 10.58 2.58 7.16 19.59 0.36 0.04 0.28 0.50
Case 3 9.33 2.77 5.40 19.83 0.30 0.05 0.21 0.44
Case 4 7.82 2.91 3.50 20.95 0.23 0.05 0.13 0.40
Case 5 6.15 2.59 1.67 14.13 0.15 0.06 0.05 0.33

Case 5 [14] 8.20 0.05 8.07 8.32 0.21 0.00 0.20 0.21

To demonstrate the importance of cross-covariances, we repeated the simulations in
case 5 but without maintaining the cross-covariance updates as presented in [14]. The error
norm statistics in the 100 simulations for vehicle 1 and all vehicles are listed as the last rows
of Tables 4 and 5. It is clear that our method performs better for the overall network and
the localization of individual vehicles. In addition, we plotted the time history of the error
norms ∆r and ∆q for this method in Figures 7 and 8, respectively. It is observed that while
initially the method in [14] performs better, the errors grow at much faster rate.
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8.2.2. Scenario 2—Effect of Redundant Pose Measurements

Scenario 2 is added in order to assess simultaneous redundant pose measurements
and communications. In this scenario, we only consider the first three vehicles, n = 3,
while presenting the localization errors across all vehicles. We again assume vehicle 1
measures the relative pose of vehicle 2 as Case 1 and then add measurements until all
vehicles simultaneously measure the relative pose of all other vehicles in the network,
as listed in Table 6.

Table 6. Simultaneous measurement descriptions for Scenario 2.

Simultaneous Measurements (b → t)

Case 1 1→ 2
Case 2 1→ 2, 2→ 3
Case 3 1→ 2, 2→ 3, 3→ 1
Case 4 1→ 2, 2→ 3, 3→ 1, 2→ 1
Case 5 1→ 2, 2→ 3, 3→ 1, 2→ 1, 3→ 2
Case 6 1→ 2, 2→ 3, 3→ 1, 2→ 1, 3→ 2,1→ 3

Table 7 summarizes the mean, standard deviation, minimum, and maximum error
statistics for position and orientation estimates across all vehicle. As expected, the initial
errors are reduced as measurements are added. However, there is no improvement beyond
Case 3. In fact, there seems to be an increase in localization errors beyond Case 4 attributed
mainly to computational inaccuracies. Therefore, redundant measurements (i.e., two
vehicles simultaneous measuring each other’s relative poses and communicating their
estimations and statistical properties) can negatively affect CL.

Table 7. Position (m) and quaternion error statistics across 100 simulations of all vehicles for Scenario 2.

Position Orientation

ermean erstd ermin ermax eqmean eqstd eqmin eqmax

Propagate 18.08 0.04 17.98 18.16 0.36 0.00 0.36 0.36
Case 1 14.20 2.93 9.95 23.07 0.33 0.05 0.24 0.47
Case 2 10.28 4.76 3.69 24.40 0.23 0.08 0.09 0.50
Case 3 8.44 3.66 2.61 20.94 0.18 0.07 0.06 0.37
Case 4 8.23 4.60 2.56 23.84 0.17 0.07 0.06 0.33
Case 5 10.73 4.57 3.47 23.46 0.20 0.07 0.05 0.39
Case 6 11.33 4.13 4.66 24.18 0.21 0.06 0.10 0.40

8.3. Relative Position Only Measurement Assessment

In this section, we assume each vehicle can reliably obtain its own orientation using
an IMU and/or a gyroscope and does not measure the relative orientation of other vehicles.
Therefore, the only means of CL is through relative position measurements. We use
Scenario 2 for the simulations, but only relative position measurements are considered.
Table 8 lists the error statistics for only ∆r across the 100 simulations. Our first observation
is that the inclusion of absolute orientation measurements drastically reduces the overall
error across vehicles, since IMUs can provide relatively accurate orientation information.
Our second observation is that CL does not achieve statistically significant improvement in
any of the cases. Therefore, the additional computational cost of CL does not justify its use
in conjunction with the kinematic model presented in this and other works. There were
no advantages in applying CL to this set because the equations of motion (4) and (5) and
consequently the state equations (7) and (30) do not depend on position variables. We can
further conclude that the improvements observed in Section 8.2 are only due to relative
orientation measurements. These conclusions have not been previously reported and are
valid even when applying CL to 2D vehicle models employed by other researchers [13,14].
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Table 8. Mean position error (m) statistics across 100 simulations of all vehicles for Scenario 2 with
only relative position measurements.

ermean erstd ermin ermax

Propagate 1.35 0.01 1.32 1.39
Case 1 1.34 0.01 1.31 1.38
Case 2 1.30 0.10 1.25 2.28
Case 3 1.28 0.02 1.24 1.32
Case 4 1.28 0.02 1.25 1.32
Case 5 1.28 0.01 1.25 1.32
Case 6 1.27 0.01 1.25 1.31

8.4. Effect of Absolute Position Measurements in CL

It has previously been reported that measuring the absolute position of one vehicle
can reduce the localization errors of other vehicles in CL [14]. Therefore, CL with only
relative position measurements may still be useful if a vehicle is able to attain the absolute
position measurement via GPS, SLAM, etc. The three-vehicle system of Scenario 2 was
utilized to illustrate the effect of absolute measurements. We consider two cases. In one
case, the relative positions of vehicles 2 and 3 are measured by vehicles 1 and 2, respectively,
for the first 100 s (CL). Afterwards, vehicle 1 measures its own absolute position for a short
period of 1 s in addition to the relative measurements. Afterwards, there are no subsequent
measurements by any of the vehicles. In the other case, there are no measurements for the
first 100 s (no CL), after which vehicle 1 measures its own absolute position. There are no
other measurements involved.

The mean error norm ∆r across all vehicles and simulations was calculated to be
0.85± 0.04 for the CL case and 1.05± 0.01 for the no CL case. This clearly indicates that
the absolute measurement reduces the overall localization errors much more significantly
when there has been CL with prior relative position measurements.

Additional details can be found in Figure 9 where the comparisons between the time
histories of the two cases for the three vehicles are plotted. It is clear that CL does not make
a significant contribution during the first 100 s. After the first 100 s vehicle 1 measures its
own position and its localization error drops to near zero in both cases. However, despite
the lack of relative position measurements from 100 s to 200 s, the localization errors for
the “CL” case are significantly lower than the “no CL” case for vehicles 2 and 3. This is
due to the cross-covariance evolution in the CL algorithm during the first 100 s of the CL
case. In conclusion, we propose that when dependable absolute orientation measurements
are accessible, CL with relative position measurement does not improve localization errors
using the kinematic model. Nevertheless, if any vehicle can measure its absolute position
at some point during the experiment, CL can still greatly reduce the position errors of
all vehicles.
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Figure 9. Comparison of error norms when vehicle 1 measures its own position for 1 s at the 100 s
mark. Dashed lines indicate CL with relative position measurements for the first 100 s, and solid lines
indicate no CL.
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9. Experimental Results

We conduct two experiments with three vehicles to verify and evaluate the CL algo-
rithm. The first experiment utilizes relative pose measurements, while the second one only
takes relative position measurements. The duration for both experiments is 80 s, and each
vehicle follows a predefined path. The actual path data are processed through the CL EKF
algorithm as measurements obtained by a vehicle. Each vehicle propagates its own states
at a rate of ∆t = 0.02 s. However, relative measurements are obtained every 0.2 s.

Figure 10 shows an overview of one of the vehicles. All three vehicles have the same
generic configuration and possess similar capabilities. The vehicles are differential-drive
mobile robots with two motors controlled via a dual motor control and a PI controller
implemented on an Arduino Duo board using motor encoder measurements. A Raspberry
Pi computer performs most of the computation required to navigate the robot autonomously.
Relative positions are calculated via LiDAR measurements of distance and bearing angle.
However, the relative orientations are measured using a motion capture system that tracks
markers, which are otherwise unused. The 0.2 s measurement rate is the time required for
the LiDAR to rotate fully and the required data processing.

Figure 10. Overview of a mobile robot used for experiment.

9.1. Relative Pose Measurement Experiment

In these experiments, we investigated the effect of CL when relative pose measure-
ments are only available for a very short period. For the first case (no CL), each vehicle
propagates its own states for 40 s. Starting at 40 s, vehicle 3 measures its own pose for 1 s,
after which there are no other measurements. In the second case (CL), the same scenario is
repeated except that between 40 s and 41 s, vehicle 3 simultaneously measures the relative
pose of vehicle 2 and 1 in addition to its own pose.

Figure 11 compares the time history of the position error norms of the two cases in
this experiment for all three vehicles. As expected the performances for all three vehicles
are identical for the first 40 s and vehicle 3’s localization is similar throughout. However,
despite only 1 s of relative measurements (i.e., five samples), vehicle 1’s position estimation
is dramatically improved. Vehicle 2, on the other hand, does not initially benefit from CL.
However, as time passes, the localization errors start decreasing for CL while increasing for
the “no CL” case.
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Figure 11. Comparison of error norms when vehicle 3 measures its own pose for 1 s at the 40 s mark.
Dashed lines indicate CL with relative and absolute pose measurements starting at 40 s, and solid
lines indicate no CL.

9.2. Relative Position Measurement Experiment

Next, we performed experiments with only relative position measurements, similar to
the simulations in Section 8.4, where the absolute orientation measurements are available
throughout the experiments for all vehicles. In the first experiment (no CL), the three
vehicles propagate their position throughout while vehicle 1 measures its absolute position
at 40 s for only 1 s. The second experiment (CL) is similar to the first except that vehicles 1
and 2 measure the relative positions of vehicles 2 and 3, respectively, for the first 40 s. Note
that vehicle simply propagate their positions for the last 39 s in both cases.

Figure 12 shows the comparisons between the time history of the position error norms
of the two experiments for the three vehicles. For the first 40 s, it is evident that CL
has a mixed performance, where vehicles 2 and 3 seem to benefit from it while vehicle 1
localization deteriorates. However, after 40 s when vehicle 1 measures its own position for
only 1 s, there is a significant drop in estimation errors of vehicles 2 and 3 when compared to
the “no CL” case. This experiment confirms that even with intermittent absolute orientation
measurements, CL can be very effective in improving localization errors.
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Figure 12. Comparison of error norms when vehicle 1 measures its own position for 1 s at the 40 s
mark. Dashed lines indicate CL with relative position measurements for the first 40 s, and solid lines
indicate no CL.
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10. Conclusions

In this work, we implemented a centralized EKF-based CL algorithm to several net-
works of 3D vehicles. We build upon a previous publication [46] by adding additional
cases, experimental results, and explicit limitations of the proposed CL algorithm. We de-
rived state and relative measurement equations in terms of quaternions and also produced
the singularity-free linearized matrices required for EKF. We utilize quaternions to avoid
singularities linked to Euler angles. Simulation results demonstrated that CL consider-
ably reduces state estimation errors when relative orientation measurements are available,
though the performance does not proportionally improve with additional measurements.
We further showed that CL does not provide any notable advantages when redundant
measurements are applied. When utilizing CL with only relative position measurements,
no improvement is observed, which is attributed to the absence of position variables in the
state equations. However, CL with only position measurements can still provide significant
improvement in state estimation if absolute measurements by a vehicle in the network
becomes available any time during simulation. Furthermore, these conclusions are verified
with experimental results that demonstrate the effect that absolute position and pose mea-
surements have on CL. These experimental findings provide additional justification and
credibility towards the CL algorithm presented in this paper.

The main limitation of the current algorithm is the use of a simplistic kinematic model
that is not realistic for real-world applications. This limitation also leads to the lack of
effective localization when only relative positions are employed. Future work involves
updating the algorithm to utilize a fully nonlinear dynamic model and applying closed-
loop control. There will also be closed-loop control experiments to further evaluate the
effect CL has on a vehicle’s state estimation.
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