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Abstract: Automatic speaker verification (ASV) systems play a prominent role in the security field
due to the usability of voice biometrics compared to alternative biometric authentication modalities.
Nevertheless, ASV systems are susceptible to malicious voice spoofing attacks. In response to such
threats, countermeasures have been devised to prevent breaches and ensure the safety of user data
by categorizing utterances as either genuine or spoofed. In this paper, we propose a new voice
spoofing countermeasure that seeks to improve the generalization of supervised learning models.
This is accomplished by alleviating the problem of intraclass variance. Specifically, the proposed
approach addresses the generalization challenge by splitting the classification problem into a set of
local subproblems in order to lessen the supervised learning task. The system outperformed existing
state-of-the-art approaches with an EER of 0.097% on the ASVspoof challenge corpora related to
replaying spoofing attacks.

Keywords: speaker verification; voice spoofing; countermeasures; generalization; replay spoofing

1. Introduction

In order to protect the applications and stored data, biometric authentication is cur-
rently widely used along with other identification modalities to supervise and control
system accessibility [1]. Speaker verification (SV) systems exploit speech modalities to iden-
tify the user seeking to gain access to systems or services. Specifically, human voiceprint
authentication is performed by comparing the voice of the speaker to previously recorded
voiceprints. The growing popularity of voice-activated smart home systems has increased
the prominence of automatic speaker verification (ASV) technology as a security measure
for such devices. These ASV systems also benefit other services such as phone banking
and online payment processing. Nevertheless, serious security concerns constrain the
potential of these systems. Indeed, spoofing attacks pose a threat to ASV systems [2]. Both
the International Electrotechnical Commission (IEC) and the International Organization
for Standardization (ISO) have defined such intrusions as presentation attacks (Pas) [3].
These attacks are conducted by criminals impersonating an authenticated user to attempt
to gain access to private information [1], and are performed through the use of speech
synthesis (SS), replay attacks, and data voice conversion (VC) techniques [1,2]. Among
these techniques, replay attacks are the most common since they do not require substantial
technological knowledge. Furthermore, it is difficult to detect such attacks due to the sim-
plicity of the technique, which consists of collecting voice samples and then replaying them.
To block these spoofing attacks, it is necessary to devise antispoofing countermeasures.
This approach consists of using a classification system that distinguishes between genuine
and spoofed utterances.

Classifying voice utterances as genuine or spoofed typically entails both performing
suitable feature extraction and applying classification technique on these features. In this
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regard, potential audio features have been explored. In particular, Q Cepstral coefficients
(CQCC) [4] and the linear frequency Cepstral coefficient (LFCC) [5] have been explored.
Alternatively, for the supervised learning model, Gaussian mixture models (GMMs) [6]
and deep neural networks (DNNs) [7] have been utilized in the design of spoofing coun-
termeasures. Specifically, several deep learning architectures have been adapted to serve
antispoofing purposes, such as residual neural networks (ResNets) [8] and recurrent neural
networks (RNNs) [9]. Nevertheless, these models are outperformed by Gaussian mix-
ture model (GMM)-based techniques, which were even more successful than existing
industry-leading approaches [2].

Despite these advances, the trained models perform poorly when classifying new
instances. This is known as the generalization problem, and it represents a significant
challenge for spoofing counter-measures [2]. This problem is mainly due to the large
variance of the intra-class instances [10,11]. For genuine utterances, disparities in the
user voice represent the primary reason for this impediment. Indeed, the voice can be
distorted by many factors such as emotional state, user health, or the authentication device,
in addition to the obvious discrepancy between different users’ voiceprints [12,13]. While
the same variation factors apply to spoofed utterances, the latter feature additional forms
of variation, such as those caused by recording devices or the algorithms deployed for
manipulation purposes [2].

Given the above factors, the generalization problem can be addressed by handling the
variance in both genuine and spoofed utterances. In this regard, we propose to tackle the
variance problem by dividing the classification problem into several subproblems. This is
performed by learning the hidden partitions of the utterances through the use of clustering
techniques. Then, a countermeasure suitable for each subgroup is devised. For this purpose,
various classifiers are investigated with respect to each subgroup. Furthermore, ensemble
learning is exploited to seek better predictive performance.

2. Background

Both unsupervised and supervised learning paradigms are involved in the design of
the proposed approach. Indeed, unsupervised learning, specifically clustering, is utilized
to learn the underlying structure of the data and split it automatically into homogeneous
subgroups. Alternatively, supervised learning, particularly classification, is exploited to
devise a set of countermeasures suitable for each subgroup.

2.1. Clustering

Clustering uses a specific measure to group similar utterances to the same cluster and
dissimilar ones to different ones. This method entails three main techniques. The first
technique is hierarchical clustering, which involves establishing a hierarchal structure of
the clusters by adopting either a top–down approach (known as divisive) or a bottom–up
approach (known as agglomerative). The second technique is partitioning clustering (also
known as centroid-based clustering). This method learns a representative instance from
each cluster (e.g., the cluster centers) and assigns the instances to the closest representative.
The third technique is density-based clustering [12], which assigns instances to each cluster
on the basis of density. More specifically, clusters are formed of dense instances, while
sparse instances are categorized as outliers.

These clustering techniques can be either crisp or fuzzy. The former involves assigning
instances to only one cluster, whereas the latter uses a membership degree to assign
instances to multiple clusters on the basis of their probability to belong to each cluster.
This allows for fuzzy clustering to be applied to real-word problems with overlapping
cluster boundaries [6]. Three fuzzy clustering processes are outlined in the next section:
competitive agglomeration CA [13] algorithms, fuzzy C-means (FCM) clustering [14], and
simultaneous clustering and attribute discrimination (SCAD) [15].
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2.1.1. Fuzzy C-Means

By minimizing intracluster distances, fuzzy C-means (FCM) [14] conducts the fuzzy
partitioning of unlabeled data. To be specific, if xj represents a set of instances; by minimiz-
ing the objective function defined in (1) subject to (2), the cluster representatives (centers),
ci, and fuzzy memberships, (µij) are derived. Both ci and (µij) are then learned alternatively
through iterative learning as follows.

J = ∑C
i=1 ∑N

j=1 (µij)
m‖xj − ci‖2, (1)

subject to

µij ∈ [0, 1] ∀i, j; and
C

∑
i=1

µij = 1 (2)

In (2), d denotes the dimension of the vectors, C denotes the number of clusters, m is
parameter controlling the membership fuzziness, and N is the number of utternaces, xj and
ci ∈ Rd. FCM is fast and robust with a time complexity of O(N).

2.1.2. Simultaneous Clustering and Attribute Discrimination

Feature selection and aggregation can be performed using an extension of FCM
called simultaneous clustering and attribute discrimination (SCAD) [15]. For each cluster,
this process learns relevant feature weights, V = [vik]i = 1..C

k = 1..d

, and fuzzy memberships,

U =
[
uij
]

i = 1..C
j = 1..N

and centers, C = [cik]i = 1..C
k = 1..d

by minimizing the following objective

function in (3):

J(C, U, V; X) =
C

∑
i=1

N

∑
j=1

um
ij

d

∑
k=1

vik

(
xjk − cik

)2
(3)

subject to

0 ≤ uij ≤ 1; and
C

∑
i=1

uij = 1, (4)

and

vik ∈ [0, 1] ∀i, k; and
d

∑
k=1

vik = 1, ∀ i (5)

where N denotes the number of utterances; C denotes the cluster number; d denotes the
size of the feature, with vik, cik, and uij i ∈ Rd. Since SCAD is based on fuzzy C-means, it is
fast and robust. It has also the same time complexity as that of O(N).

2.1.3. Competitive Agglomeration

Another extension of FCM is competitive agglomeration (CA) [13]. CA handles the
challenge of determining the cluster number. This technique fuses hierarchical and parti-
tioning processes to utilize the advantages of both in order to learn the number of clusters,
cluster representatives, and fuzzy memberships. CA learns the optimal cluster number by
splitting the utterances into tiny groups that subsequently compete over instances in the
optimization process. Consequently, empty clusters slowly vanish. CA is achieved through
the optimization of the objective function in (6):

F =
C

∑
i=1

N

∑
j=1

(uij)
2·d2

ij(xj, βi)− α
C

∑
i=1

[
N

∑
j=1

uij

]2

(6)
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where the cluster representatives are B = (β1, . . . , βc), and the distance between the feature
vector xj and prototype βi is d2

ij
(
xj, βi

)
. uij represents the degree of belongness of utterance

j to the partition i.
The cost defined in (6) contains two parts. The left term represents the FCM clustering

technique as defined in (1) responsible for the fuzzy portioning, while the right term
expresses the competition between instances to be enclosed in cluster competition. Similarly,
CA is based on fuzzy C-means. Therefore, it is a time complexity of O(N).

2.2. Classification

Classification is a supervised learning technique where a model is built using labeled
data instances in order to predict the class value for unseen instances [16]. Specifically,
the model learns how to map input instances to the predefined classes. Thus, for the
learned model to be effective, the set of training data should be representative and suf-
ficiently available. A problem that requires classification can be a binary classification
problem or multiclass classification problem. For binary classification, only two classes
are considered, while for multi class classification, more than two classes are considered.
Another way of categorizing the classification problem is as linear or nonlinear. Linear
classifiers employ linear models for class prediction. Alternatively, nonlinear classifiers
learn nonlinear models [6]. In the literature, various classifications algorithms have been
proposed. However, there is no way to know which classification model is more suitable for
a certain problem. As such, the choice of the classifier is generally empirically performed.
In the following, we outline the classification approaches that are exploited in the design of
the proposed approach: the Gaussian mixture model (GMM) classifier [6], support vector
machine SVM) [17], and extreme gradient boosting (XGBoost) [18].

2.2.1. Gaussian Mixture Model

The Gaussian mixture model (GMM) classifier [6] learns a probabilistic model. The
latter estimates an instance as a mixture of weighted Gaussians. More specifically, on the
basis of the probability density functions of an input instance with respect to each class,
this classifier predicts the class of each instance using Bayes’ rule [19]. The mean, standard
deviation, and weight of each Gaussian involved in the mixture are estimated using the
expectation maximization (EM) [20] iterative approach or maximum a posteriori (MAP)
approach [21].

2.2.2. Support Vector Machine

Support vector machine (SVM) [17] is a binary classifier that learns a hyperplane that
separates the two considered classes. The model of the hyperplane is learned in a way
that ensures a maximal margin of separation between the two classes. This version of
SVM, which does not allow for any instance to reside within the margin, is called hard
SVM [22]. Alternatively, in order to learn a less complex hyperplane and avoid overfitting,
soft SVM [23] allows few classification errors by letting certain instances from both classes
to reside within the margin. Although SVM is designed to be a binary classifier, it can be
employed for multiclass problems. This application involves learning a hyperplane with
respect to each class. The problem then amounts to classifying each category against all
other classes, with the name versus all SVMs [24]. In case the data are not linearly separable,
kernel SVM [25] is more suitable. This method applies the kernel trick to transform the
data by expressing it in new space of higher dimension, allowing for a better separation of
the categories.

2.2.3. Extreme Gradient Boosting

Decision tree (DT) is a classification model which consists of nested “if/else” condi-
tions. Alternatively, a gradient boosting decision tree (GBDT) fuses a set of DT models
to achieve a better DT model. The improvement of one DT model is achieved through
combination with other DT models. This process involves building a series of DT models
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iteratively, where each new generated model accounts for and addresses the previous
model’s flaws. As a result, the output consists of a weighted sum of all considered DT
outputs. Similarly, extreme gradient boosting (XGBoost) [18] is a GBDT. Nevertheless, it
performs parallel tree boosting rather than sequential boosting like GBDT, and checks all
gradient values to assess each conceivable split of the training set.

3. Related Works

Audio classification seeks learning a model that is able to predict the category of
unknown audio utterance [26]. This machine learning task can benefit many practical fields
such as medical applications related to diagnosing sleep bruxism [27], dementia [28], and
depression [29]. Moreover, industrial applications exploited audio classification techniques
for several scenarios, such as detecting machine chatter [30] and the condition of rotating
machines [31] Furthermore, environmental sound recognition [32,33] has contributed to
the understanding of the context of the occurring audio. In fact, it is crucial to trigger
decisive actions such as evacuating a building when an alarm occurs or reaching a baby
when he cries.

Recently, the ASVspoof challenge series (https://www.asvspoof.org, accessed on
10 October 2022) deployed antispoofing benchmarks [34–36]. This triggered the research
on presentation attack detection [2], particularly speech synthesis (SS), voice conversion
(VC), and replay attacks.

Typically, state-of-the-art approaches consist of classifying a voice utterance as genuine
or spoofed. These approaches are based on conventional classification paradigms, deep
learning paradigms, or a combination of supervised and unsupervised learning paradigms.

3.1. Conventional Approaches

Conventional approaches consist of two main aspects. While the first involves ex-
tracting an audio feature suitable for discriminating genuine from spoofed utterances, the
second component trains a model able to categorize the extracted features. In particular,
the work in [4] employed the Cepstral coefficient (CQCC) feature [4] and employed the
Gaussian mixture model (GMM) [6] as a classifier. This system is considered to be a baseline
approach to assess antispoofing systems [1,2]. Similarly, the countermeasure proposed
in [37] extracted a combination of cochlear filter Cepstral coefficients (CFCCs) [38] and
the instantaneous frequency (IF) [39], and fed them into a GMM classifier. Alternatively,
the authors in [5] proposed a countermeasure based on LFCC [40] features and a GMM
classifier after comparing 19 different features coupled with SVM [17] and GMM [6,41]
classifiers. On the other hand, the study in [42] combined mel-frequency Cepstral coeffi-
cient (MFCC) [43], mel-frequency principal coefficient (MFPC) [44], and CosPhase principal
coefficient (CosPhasePC) [45] features and conveyed them to an SVM classifier.

3.2. Deep Learning Approaches

Due to the boost achieved by deep neural networks (DNNs) in the machine learning
field, particularly in classification tasks, antispoofing approaches based on a deep learning
paradigm have been proposed. For this purpose, several DL models have been exploited.
More specifically, the system outlined in [46] utilizes a dilated residual network (DRN) deep
learning model [47] including a ResNet [47] model with an attention filtering mechanism
to discard irrelevant audio segments such as background noise. The ResNet [47] deep
learning model was also utilized in the system described in [48]. Here, two low-level
cepstral features, MFCCs [43] and CQCCs [4], were fed into the network instead of the
raw data. A similar model was deployed in the system described in [49]. However, rather
than conveying MFCCs [43] as input, this model uses high-frequency Cepstral coefficients
(HFCCs). Similarly, the authors in [50] employed ResNet along with SENet [51], Mean-Std
ResNet [51], and Dilated ResNet [52] to analyze CQCCs and spectrogram features. The
fusion in these models is performed using the greedy fusion scheme presented in [53].
As a result, the fusion of these deep learning models was found in [50] to yield a system

https://www.asvspoof.org
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that outperformed reported state-of-the-art approaches when using the Asvspoof 2019
Replay Benchmark.

Recurrent neural networks (RNNs) [9] have also been exploited to design counter-
measures. As such, the research in [54,55] employed long short-term memory (LSTM) [56].
The research in [57,58] exploited RNN [9] along with a convolutional neural network
(CNN) [59]. In these works, CNN functioned as a feature extractor, while RNN performed
long dependency processing. Similarly, the study in [60] exploited a combination of CNN
and RNN. Specifically, the study combined three i-vector [61] systems, namely, the light
convolutional neural network (LCNN) [62] system and the CNN + RNN one. LCNN was
also employed along with a small Bayesian neural network [63] in [63,64]. In [65], the
softmax function was replaced with the softpus function to estimate the deep learning
model prediction uncertainty. Alternatively, a light convolutional gated recurrent neural
network (LC-GRNN) was used in [66], and the authors in [67] adopted a variety of LCNNs
based on context gate CNN (CGCNN), which used gated linear unit (GLU) activations as a
context-gate for each filter. The adopted feature for this system was Log-CQT.

Recently, variational autoencoders (VAEs) [68] have also been adopted to devise new
countermeasure, such as those used in [69]. Additionally, a combination of two visual
geometry group (VGG) [70] models were employed in [71].

3.3. Combination of Unsupervised and Supervised Learning

Recently, a spoofing countermeasure based on mining hidden partitions of genuine
and spoofed utterances using fuzzy clustering was proposed in [72]. This countermeasure
partitions each class (genuine/spoofing) into subgroups such that each subgroup shared
the same characteristics and thus exhibited low variance. The classification of unknown
utterances was than performed by assigning them to the closest subgroup.

Figure 1 depicts the spoofing countermeasure reported in [72]. First, audio features are
extracted from all utterances. Then, the instances of each category (genuine/spoofing) are
clustered using the fuzzy clustering approach. As such, the representatives of the genuine
sub-categories and those of the spoofing one are learned. In particular, fuzzy clustering
techniques are employed. The experimental results showed that two genuine clusters and
two spoofing clusters dramatically increased the performance. It yielded a testing EER of
1.07% on the ASVspoof 2017 replay benchmark dataset.
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Figure 1. Architecture of the spoofing countermeasure based on mining hidden partitions of genuine
and spoofed utterances [72].

An illustrative example of the countermeasure reported in [72] is depicted in Figure 2.
In this example, six clusters {S1, S2, S3, S4, S5, S6} are learned for the spoofing class, and
four clusters {G1, G2, G3, G4} are learned for the genuine class. Then, an unknown utterance
is compared to the 10 cluster centers. Since the closest cluster is G1, one of the genuine
clusters, the unknown utterance is classified as genuine.
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Figure 2. Illustrative example of the spoofing countermeasure based on mining hidden partitions of
genuine and spoofed utterances [72].

Tables 1 and 2 report the performance of the state-of-the-art approaches for 2017 and
the 2019 ASVspoof replay benchmark datasets, respectively. The study in [72] achieved the
best performance, with a testing error rate of 1.07% on the ASVspoof 2017 replay benchmark
dataset. For the ASVspoof 2019 replay benchmark dataset, the countermeasure proposed
in [50] obtained the best performance, with a testing error rate of 0.59%.

Table 1. State-of-the-art training and testing error rates when using the ASVspoof 2017 replay
benchmark dataset.

Reference Input Model Training Error Rate (%) Testing Error Rate (%)

[4] CQCCs GMM 10.35 24.77

[46] Signal Logspec via FFT ResNet 6.09 8.54

[48] CQCC and MFCC GMM, ResNet 2.58 13.30

[49] Fusion of HFCC and CQCC DNN, SVM 7.6 11.5

[54] MFCC, Fbank LSTM and GRU RNN 6.32 9.81

[60] CQT and FFT LCNN, SVM, CNN + RNN 3.95 6.73

[66] Spectrogram features LC-GRNN + PLDA 3.26 6.08

[69] CQCC C-VAE 18.1 28.1

[69] Spectrogram C-VAE 22.81 29.52

[73] CQCC LCNN 21.73 8.20

[72] MFCC, CQCC SCAD, KNN 0.13 1.07

Bold number indicates the lowest EER value.

Table 2. State-of-the-art training and testing error rates when using the ASVspoof 2019 replay
benchmark dataset.

Reference Input Model Training Error Rate (%) Testing Error Rate (%)

[50] CQCC, spectrogram Fusion of SENet, Mean-Std ResNet,
and Dilated ResNet 0.129 0.59

[64] Spectrogram features Ensemble Weights for Bayesian
NN, LCNN 0.78 0.88

[66] Spectrogram features LC-GRNN + PLDA 0.73 2.23

[69] CQCC AC-VAE2 34.06 36.66

[71] spectrogram, CQT VGG, SincNet, LCNN 0.66 1.51
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Table 2. Cont.

Reference Input Model Training Error Rate (%) Testing Error Rate (%)

[67] LMS + LogCQT LCNN 0.16 1.16

[74] CQCC GMM 9.87 11.04

Bold number indicates the lowest EER value.

3.4. Discussion

Neither conventional nor deep learning approaches have managed to overcome the
challenge posed by the high variation of utterances. Indeed, these models suffer from
generalization issues. In other words, while these countermeasures increase the prediction
performance of trained utterances, they are unable to generalize utterances. Alternatively,
the countermeasure proposed in [72] addressed the generalization problem by mining
hidden partitions of the genuine and spoofed utterances separately. Nevertheless, while
taking into account the intra-class variance by learning the underline structure of each class,
this solution did not consider overlaps between genuine and spoofed categories. Indeed,
this method did not learn the overall underlying structure of the data.

4. Proposed Approach: Generalized Replay Spoofing Countermeasure Based on
Combining Local Sub-Classification Models

We propose an alternative approach that mines the hidden structure of the whole data.
More specifically, the proposed countermeasure splits the classification problem into local
subproblems. In other words, in order to avoid learning a complex classification model for
the whole data, we intend to split the data into groups formed of congregated instances
and build a simpler classification model from each group. These groups are heterogeneous
and include spoofing and genuine utterances assigned to the same group due to their
similarities. By classifying the utterances of each cluster into spoofing and genuine, a
classification model is learned with respect to each cluster. This results in a set of local
classification models. Using these models, the classification of an unknown instance is then
achieved through an ensemble learning approach that combines the obtained local models.

The proposed spoofing countermeasure is depicted in Figure 3. First, audio features are
extracted from the recorded utterances. Then, the three clustering techniques of FCM [14],
SCAD [15], and CA [13] are investigated to partition the data. FCM-based clustering ap-
proaches are explored because they learn the cluster centers while also learning a fuzzy
partition of the data. Alternatively, SCAD has the advantage of learning relevant feature
weights and their combinations while clustering the data, whereas CA learns the number
of homogeneous partitions automatically. From each cluster containing both spoofed and
genuine instances, a classification model is learned. We propose to employ GMM [6] and
SVM [17] as classification techniques, since these models were effective in the prediction of
spoofed utterances [4,5,37,42,48,49,60]. Lastly, an ensemble learning technique is adopted
to classify unknown instances by combining the decisions of the learned models. More
specifically, the pairwise distances between the unknown utterance and the cluster repre-
sentatives are computed. The classification model corresponding to the closest sub-group
is then used for classifying this utterance.

To better illustrate the proposed spoofing countermeasure based on local classification
subproblems, an example is presented in Figure 4. In this example, audio instances are
clustered into six groups: {R1, R2, R3, R4, R5, R6}. Although the training set was labeled
into spoofing and genuine instances, these labels were not used for the clustering task. In
fact, the whole data were considered without consideration of the ground truth. Therefore,
each obtained cluster included both spoofing and genuine instances. Then, during the
training phase, a classification model was learned from each cluster. This resulted in a set
of six classification models, which were used to classify the unknown utterance through
ensemble learning techniques. For example, since the unknown utterance is closest to
cluster R1, the model learned for R1 will be employed for its classification. Moreover,
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for each subgroup, a set of classifiers were investigated. This set contained the Gaussian
nixture nodel (GMM) classifier [6], support vector machine (SVM) [17], and XGBoost [18].
To minimize learning errors and enhance the overall learning performance of each local
subproblem, ensemble learning [75] was exploited to combine the considered classification
results. For this purpose, the majority strategy was employed [75].
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Figure 4. Illustrative example of the proposed spoofing countermeasure based on local classification
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5. Experiments

To assess the performance of the proposed approach, two replay datasets were con-
sidered: the ASVspoof 2017 version 2.0 benchmark dataset [35] and the ASVspoof 2019
benchmark dataset [36]. The audio files included in these datasets are characterized by a
16 kHz sampling rate and 16-bit resolution. As reported in Table 3, ASVspoof 2017 v2.0
was split into three subsets. The first subset was a training set that contained 3016 files, of
which 1507 were genuine, and 1507 were replay spoofing files. The second subset was a
development set containing 1710 files, of which 760 were genuine, and 950 were replay
spoofing files. The third subset was an evaluation set containing 13,306 files, of which 1298
were genuine, and 12,008 were replay spoofing files.
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Table 3. ASVspoof 2017 V.2.0 dataset.

Subset No. of Speakers
No. of Utterances

Genuine Spoofed

Training 10 1507 1507

Development 8 760 950

Evaluation 24 1298 12,008

As shown in Table 4, the ASVspoof 2019 replay spoofing dataset comprised a training
set with 48,600 spoofed utterances and 5400 genuine utterances, a development set with
24,300 spoofed utterances and 5400 genuine utterances, and an evaluation set containing
various randomly chosen acoustic and playback configurations [36].

Table 4. ASVspoof 2019 replay spoofing dataset.

Subset No. of Speakers
No. of Utterances

Genuine Spoofed

Training 20 5400 48,600

Development 20 5400 24,300

Evaluation - 137,457

From the audio files, three audio features were extracted: mel-frequency Cepstral
coefficients (MFCCs) [43], the constant Q Cepstral coefficients (CQCCs) [4], and the linear
frequency Cepstral coefficient (LFCC) [5]. The equal error rate (EER) [76] is considered as
the performance measure. EER represents the operating point at which the false acceptance
rate (FAR) and false rejection rate (FRR) are equal [76].

5.1. Experiment 1: Number of Clusters and Audio Feature Investigation

In this experiment, the FCM [14] clustering approach was employed to mine the
hidden structure of the data. This approach partitions the whole ASVspoof 2017 benchmark
dataset into homogeneous local subgroups. Each subgroup contained genuine and replay
spoofed utterances, the latter of which constituted a local classification subproblem. Two
classifiers, SVM [17] with linear kernel and GMM [6] with two mixture components, were
utilized to solve these subproblems. Furthermore, to explore the structure of the data,
different numbers of clusters were considered. These numbers were tuned between 2 and
15. Moreover, the data were clustered using CQCC, MFCC, and LFCC features. Each
feature was considered independently and concatenated together. Figures 5 and 6 depict
the EER obtained with MFCC, QCC, LFCC, and concatenation together with respect to
the cluster number when considering SVM and GMM classifiers, respectively. The results
indicate that performance varied with respect to the number of clusters, the type of audio
features, and the classifier.

For SVM-based systems, CQCC features generally performed better than the other
considered features, especially when the cluster number was less than 9. However, the best
performance was achieved with two clusters. Alternatively, for GMM-based approaches,
the best performance was attained with four clusters. Nonetheless, CQCC remained the
best performing feature type. Table 5 reports the best performance achieved by each
combination of feature/classifier for the optimal number of clusters. The system that used
CQCC features with two clusters had the smallest EER (1.61%) and thus outperformed the
other combinations. The second best was the system employing CQCC features and GMM,
with an ERR of 4.23%.
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Table 5. Best performance achieved by each combination of feature/classifier for the optimal number
of partitions on the ASVspoof 2017 benchmark dataset.

Model No of Clusters EER%

SVM with MFCC 2 9.16

SVM with CQCC 2 1.61

SVM with LFCC 7 8.62

SVM with ALL 3 3.85

GMM with MFCC 13 20.18

GMM with CQCC 4 4.23

GMM with LFCC 8 14.63
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Table 5. Cont.

Model No of Clusters EER%

GMM with ALL 15 24.96
Bold number indicates the lowest EER value.

5.2. Experiment 2: Self-Learning the Number of Clusters

In this experiment, the hidden partition was discovered automatically using the
competitive agglomeration (CA) [13] clustering approach to simultaneously partition the
training utterances and estimate the cluster number. The cluster number was first set to 100.
The ASVspoof 2017 and the ASVspoof 2019 benchmark datasets were considered in this
experiment. Table 6 reports the EER obtained when employing SVM as a classifier along
with the cluster number learned for each feature. As shown in Table 6, CQCC achieved
the lowest EER of 1.42% and 1.63% on the ASVspoof 2017 and ASVspoof 2019 dataset,
respectively, with an optimal number of clusters equal to 2. Starting from a large number
of 100, CA achieved similar results to those obtained in the first experiment by tuning the
number of clusters. Alternatively, Table 7 reports the obtained EERs when using GMM
classifier along with the cluster number learned for each feature. The results confirm the
superiority of the CQCC features, which achieved an EER of 1.38% and 1.46% on the
ASVspoof 2017 and ASVspoof 2019 dataset, respectively, while learning an optimal number
of clusters equal to four. This result is consistent with the results obtained by exploring the
cluster number in experiment 1. This suggests that CA can discover the hidden partitions
of the data while self-learning the optimal number of clusters.

Table 6. Achieved EER when employing SVM as a classifier along with the estimated cluster numbers
for each feature on the ASVspoof 2017 and ASVspoof 2019 benchmark datasets.

MFCC CQCC LFCC CQCC + MFCC + LFCC

ASVspoof 2017
EER 8.24 1.42 7.29 3

No. of clusters 3 2 5 2

ASVspoof 2019
EER 9.79 1.63 6.88 2.34

No. of clusters 4 2 2 2
Bold number indicates the lowest EER value.

Table 7. Achieved EER when using the GMM classifier and the learned number of clusters with
respect to the considered features on the ASVspoof 2017 and ASVspoof 2019 benchmark datasets.

MFCC CQCC LFCC CQCC + MFCC + LFCC

ASVspoof 2017
EER 14.4 1.38 9.25 9.47

No. of clusters 3 4 4 3

ASVspoof 2019
EER 12.23 1.46 7 11.78

No. of clusters 3 2 5 5
Bold number indicates the lowest EER value.

5.3. Experiment 3: Feature Relevance Weight Learning

In this experiment, simultaneous clustering and attribute discrimination (SCAD) [15]
was used to mine the hidden structure of the data, and learnt the relevant feature weights
of CQCC, MFCC, and LFCC. First, the cluster number was set to 2 for SVM-based systems
and 4 for GMM-based systems, in accordance with the obtained results in Experiments
1 and 2. Table 8 reports the learned feature relevance weights. As shown in Table 8, the
largest weight was assigned CQCC. This result is consistent with Experiment 1 findings,
which proved that CQCC is more suitable.
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Table 8. Feature weights estimated for each cluster on the ASVspoof 2017 version 2.0 benchmark dataset.

CQCC MFCC LFCC

SCAD with SVM

Cluster 1 0.999963 0.000003 0.000034

Cluster 2 0.999962 0.000003 0.000035

SCAD with GMM

Cluster 1 0.999963 0.0000032 0.000033

Cluster 2 0.999962 0.0000033 0.000034

Cluster 3 0.999962 0.0000033 0.000034

Cluster 4 0.999963 0.0000032 0.000034

Next, we discarded MFCC and LFCC, and applied SCAD to the entries of CQCC to
learn the relevance of each entry. The considered cluster numbers were between 2 and 16.
Figure 7 shows the achieved EER for each cluster number when employing SCAD and
SVM [17] on the ASVspoof 2017 version 2.0 benchmark dataset. The lowest EER, equal to
0.154, was achieved for 2 clusters. When using the GMM classifier, the lowest EER was
equal to 0.302 with four clusters, as shown in Figure 8. This suggests that employing SCAD
on the CQCC gave better performance because this approach handled the large dimension
of CQCC feature by computing the weighted sum of the feature entrees.
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5.4. Ensemble Learning

On the basis of the findings of previous experiments, we only considered CQCC
features in this experiment. Next, we applied the CA [13] algorithm to estimate the optimal
cluster number. The learned fuzzy memberships were next used as the initial values for
the SCAD [15] clustering algorithm. Three classifiers were first considered separately:
SVM [17], GMM [6], and XGboost [18]. Next, the results of these classifiers were combined
using the majority vote ensemble learning strategy. Table 9 depicts the achieved ERR of
the considered systems. As shown in Table 9, the proposed approach based on SVM [17]
outperformed those based on XGboost [18] and GMM [6] with an ERR equal to 0.154%.
Furthermore, the ensemble majority voting strategy further improved performance by
achieving an ERR equal to 0.097%.



Appl. Sci. 2022, 12, 11742 14 of 18
Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

Figure 8. EER with respect to the number of clusters when using SCAD with GMM [6] on CQCC on 

the ASVspoof 2017 version 2.0 benchmark dataset. 

5.4. Ensemble Learning 

On the basis of the findings of previous experiments, we only considered CQCC fea-

tures in this experiment. Next, we applied the CA [13] algorithm to estimate the optimal 

cluster number. The learned fuzzy memberships were next used as the initial values for 

the SCAD [15] clustering algorithm. Three classifiers were first considered separately: 

SVM [17], GMM [6], and XGboost [18]. Next, the results of these classifiers were combined 

using the majority vote ensemble learning strategy. Table 9 depicts the achieved ERR of 

the considered systems. As shown in Table 9, the proposed approach based on SVM [17] 

outperformed those based on XGboost [18] and GMM [6] with an ERR equal to 0.154%. 

Furthermore, the ensemble majority voting strategy further improved performance by 

achieving an ERR equal to 0.097%. 

Table 9. EER for SCAD with different classifiers on the ASVspoof 2017 version 2.0 Benchmark Da-

taset. 

Model No of Clusters EER (%) 

SCAD + SVM 2 0.154 

SCAD + GMM 4 0.302 

SCAD + XGboost 3 1.07 

Majority vote on SVM, GMM, and XGboost 2, 4, 3 0.097 

Bold number indicates the lowest EER value. 

5.5. Experiment 4: Performance Comparison with Related Spoofing Detection Approaches 

According to the previous experiments’ findings, the SCAD clustering algorithm 

with CQCC achieved the best performance with respect to the three considered classifiers. 

As such, in this experiment, we considered four versions of the proposed approach using 

CQCC for feature extraction and SCAD for mining the structure of the data. These ap-

proaches use SVM, GMM, XGBoost, and their combination. These methods are referred 

to as the local-SVM-based approach, local-GMM-based approach, local-XGBoost-based 

approach, and local-ensemble-learning-based approach. We also compared the perfor-

mance of the proposed approaches to three state-of-the-art approaches. The first was the 

approach reported in [4], which consisted of extracting the CQCC feature and conveying 

Figure 8. EER with respect to the number of clusters when using SCAD with GMM [6] on CQCC on
the ASVspoof 2017 version 2.0 benchmark dataset.

Table 9. EER for SCAD with different classifiers on the ASVspoof 2017 version 2.0 Benchmark Dataset.

Model No of Clusters EER (%)

SCAD + SVM 2 0.154

SCAD + GMM 4 0.302

SCAD + XGboost 3 1.07

Majority vote on SVM, GMM, and XGboost 2, 4, 3 0.097
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5.5. Experiment 4: Performance Comparison with Related Spoofing Detection Approaches

According to the previous experiments’ findings, the SCAD clustering algorithm with
CQCC achieved the best performance with respect to the three considered classifiers. As
such, in this experiment, we considered four versions of the proposed approach using
CQCC for feature extraction and SCAD for mining the structure of the data. These ap-
proaches use SVM, GMM, XGBoost, and their combination. These methods are referred
to as the local-SVM-based approach, local-GMM-based approach, local-XGBoost-based
approach, and local-ensemble-learning-based approach. We also compared the perfor-
mance of the proposed approaches to three state-of-the-art approaches. The first was the
approach reported in [4], which consisted of extracting the CQCC feature and conveying it
to a GMM-based classifier. The second approach, which is the most recent, was reported
in [68], and it uses SCAD to cluster genuine utterances into G clusters, with the spoofed
utterances placed into two S clusters. As such, this approach assigns the unknown in-
stance as the class of the closest cluster (refer to Section 3.3). The third baseline approach,
published in [46], was the best performing method for the ASVspoof replay 2019 dataset.
This approach uses CQCCS and spectrogram features and conveys them to the SENet [47],
Mean-Std ResNet [47], and Dilated ResNet [48] deep-learning models. Then, the greedy
fusion scheme described in [49] was employed to explore the best system combination.

For this purpose, we considered the two available replay datasets: ASVspoof 2017
v2 [72] and ASVspoof 2019 [73]. The same datasets with the same training and testing sets
were employed for all considered approaches. To evaluate the generalization capabilities
of the proposed approach, both the training and testing ERR were compared, as reported
in Table 10, where the proposed approach based on ensemble learning outperformed all
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other considered systems with respect to the two datasets. Nonetheless, even without
considering ensemble learning, the three other approaches achieved smaller EERs than
the state-of-the-art ones, except for the local-GMM-based approach, which offered the
same performance as baseline approach 3 on the ASVspoof replay 2019 dataset. This result
was achieved by dividing the classification problem into sublocal problems to address the
utterance high variance problem and was confirmed by the training and testing ERR results.
The difference between the training and testing ERR was reduced. This result shows that
the generalization problem was addressed.

Table 10. Performance comparison with state-of-the-art approaches.

Model
ASVspoof 2019 ASVspoof 2017 v2

No. of Clusters Training
ERR (%)

Testing
ERR (%) No. of Clusters Training

ERR (%)
Testing

ERR (%)

Baseline System 1 [4] - 9.87 11.04 - 10.35 24.77

Baseline System 2 [68] 15 for genuine and 15
for spoofing 2.30 3.31 2 for genuine and 2

for spoofing 0.13 1.07

Baseline system 3 [46] - 0.129 0.59 - - -

Local-SVM-based approach 2 0.075 0.149 2 0.067 0.154

Local-GMM-based approach 2 0.189 0.59 4 0.151 0.302

Local-XGBoost-based approach 3 0.74 1.36 3 0.435 1.07

Local-Ensemble Learning-based
approach 2, 2, 3 0.06 0.119 2, 4, 3 0.0385 0.097

Bold number indicates the lowest EER value.

6. Conclusions and Future Works

Spoofing detection approaches is crucial to protect the user data against voice spoofing
attacks while using ASV. These spoofing detection approaches amount to a classification
problem where audio utterances are categorized into genuine or spoofed classes. However,
this task remains challenging due to the high variance of the utterances. This factor affects
the model’s generalization for unseen utterances.

In this paper, we devised a new replay countermeasure to address the high variance
of these utterances. This countermeasure was performed by dividing the challenging classi-
fication problem into a set of local subproblems by mining the hidden structure of the data.
Then, ensemble learning was used to combine these submodels. Various features, clustering
techniques, classifiers, and their combinations were investigated. The experiments showed
that CA clustering can automatically learn the number of homogeneous partitions of the
data. Moreover, the experimental results showed that CQCC audio features along with
the SVM classifier and SCAD clustering technique are the most suitable techniques to
build the proposed approach. As a result, the latter method outperformed state-of-the-art
approaches. Furthermore, when combining the results of the three classifiers (SVM, GMM,
and XGBoost), the proposed approach achieved even better results.

In future work, other audio features, classifiers, clustering techniques, and ensemble
learning strategies could be investigated. Moreover, the performance of the proposed
approaches on other types of voice spoofing could be explored.
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