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Abstract: Despite the development of advanced technology, marine accidents have not decreased. To
prevent marine accidents, it is necessary to predict accidents in advance. With the recent development
of artificial intelligence (AI), AI technologies such as deep learning have been applied to create and
analyze predictive models in various fields. The purpose of this study is to develop a model for
predicting the frequency of marine accidents using a long-short term memory (LSTM) network. In this
study, a prediction model was developed using marine accidents from 1981 to 2019, and the proposed
model was evaluated by predicting the accidents in 2020. As a result, we found that marine accidents
mainly occurred during the third officer’s duty time, representing that the accidents are highly related
to the navigator’s experience. In addition, the proposed LSTM model performed reliably to predict
the frequency of marine accidents with a small mean absolute percentage error (best MAPE: 0.059)
that outperformed a traditional statistical method (i.e, ARIMA). This study could help us build LSTM
structures for marine accident prediction and could be used as primary data to prevent the accidents by
predicting the number of marine accidents by the navigator’s watch duty time.

Keywords: marine accident; prediction model; deep learning; LSTM; time series

1. Introduction

As shipbuilding technology continues to improve, ships are getting bigger and faster,
and the volume of seaborne trade worldwide increases every year [1]. South Korea,
surrounded by the sea on three sides, has developed fisheries and marine industries, while
99.7% of imports and exports are transported by ship [2]. It is also strategically located in
the center of Northeast Asia, serving as an important logistics hub. Due to geographical
influences, however, port areas and coastal waters used by ships for safe passage are limited.
As the size of ships gets larger and the volume of ships passing through limited waterways
increases, the risk of marine accidents increases. In South Korea, the number of marine
accidents has increased by 1080.8%, from 335 in 1981 to 3156 in 2020, and the social costs
are enormous [3].

The Korean coast guard responds to marine accidents by using surveillance means such
as coast guard ships, aircraft, and Vessel Traffic Service (VTS). However, monitoring per ship
is so broad that it is more focused on follow-up than on preventing accidents [4]. The VTS
can help to improve maritime safety by providing safety information to ships, but this also
has some limitations. It is imperative to predict the risk of marine accidents in advance to
prevent or reduce marine accidents by means limited to such a wide range of areas. If the
risk of marine accidents can be predicted in advance, then limited equipment and human
resources can be deployed effectively. Thus, forecasting the risk of marine accidents is crucial
for preventing or reducing marine accidents using limited surveillance capabilities.

Based on marine accident statistics data, previous studies used the Markov model [5]
or ANOVA analysis [6] to classify the type of marine accidents, and Lee et al. [7] identified
factors affecting accidents of ships controlled by VTS using a regression model. Wang et al. [8]
evaluated the safety of maritime transport utilizing Markov chains, Hänninen [9] examined the
benefits and disadvantages of using Bayesian networks for predicting marine accidents, and
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Lim [10] analyzed seafarers’ behavioral errors using Hidden Markov models. As such, a variety
of statistical and probability-based methods have been investigated to prevent marine accidents.

Recently, research on deep learning has been conducted in many fields with an un-
derstanding of artificial intelligence (AI). Oh et al. [11] developed a regression model, an
artificial neural network (ANN), and a structural equation model (SEM) to predict the
frequency of traffic accidents, respectively. Rye et al. [12] constructed a traffic accident pre-
diction model using deep learning technology and proposed that a deep learning approach
is helpful for traffic accident-related research by comparing the results with traditional
analysis methods. Ren et al. [13] analyzed that traffic flow is the most critical factor in
traffic accidents using the deep learning model. Pan et al. [14] constructed crash modeling
using Deep Brief Networks (DBN). They demonstrated that deep learning techniques are
excellent as an alternative to predicting the frequency of traffic accidents using real-world
crash datasets. In addition, Benoit [15] developed a long-short term memory (LSTM)
neural network to predict and visualize traffic accidents in Switzerland, and Sameen and
Pradhan [16] analyzed that the recurrent neural network (RNN) method is advantageous
in predicting the severity of traffic accidents compared to conventional NNs using traffic
accident records in Malaysia for six years. Roh and Bae [17] proposed a LSTM model to
forecast a traffic accident occurrence pattern. Many studies have used deep learning to
predict traffic accidents and demonstrate that the RNN model is optimized for predicting
time series data compared to other algorithms. However, most of the studies focused
on the comparative analysis of the models to increase the predictive accuracy of traffic
accidents on land, and studies predicting the occurrence of maritime traffic accidents were
found to be insufficient. Only a few studies have been investigated for the development
of marine traffic accident prediction models with machine learning techniques. Atak and
Arslanoğlu [18] developed a machine learning-based model for predicting marine port
accidents focused on container terminals. Kim et al. [19] predicted accidents at Korean
container terminals using machine learning techniques. However, there were no relevant
studies using deep learning techniques. To the best of our knowledge, therefore, our study
represents the first attempt to use a deep learning approach to forecast marine accidents.

The purpose of this study was to build a model that can predict the frequency of marine
accidents using LSTM by utilizing statistical data on marine accidents as a fundamental study
to predict the risk of marine accidents. We also aimed to find the best LSTM models to
forecast marine accidents by navigators’ watch duty time with different setups and to see if
the LSTM models outperform the traditional statistical analysis methods. In order to achieve
our objectives, we built four different LSTM models and compared the proposed LSTM
models with an autoregressive integrated moving average (ARIMA) model, which is one of
the commonly used models for time series forecasting. Through this LSTM-based prediction
model, the risk of future marine accidents could be anticipated in advance using certified
marine accident statistics data, and a monitoring system could be effectively established.

The remainder of the paper is organized as follows: We first describe how the data
were collected and preprocessed for this study. Next, the prediction model and the research
methodology utilized in this study are presented, followed by the results. Lastly, the
findings and implications of this study are discussed.

2. Materials and Methods

In this section, we presented the workflow for our approach to predicting the frequency
of marine accidents based on LSTM models. Figure 1 illustrates the entire process of this
study, including data acquisition, data preprocessing, the development of a prediction
model using LSTM and ARIMA, and the evaluation of the model based on the results of
the prediction.
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Figure 1. Workflow for predicting the frequency of marine accidents.

2.1. Data Acquisition
2.1.1. Data Mining

Research on marine accident statistics is found in statistical reports published annually
by the Korean Maritime Safety Tribunal (KMST) and the Korea Coast Guard (KCG). In this
study, we used statistical data on marine accidents that was published by the KMST. We
collected data on marine accidents by watch duty time from 1981 to 2020. In this study,
we used the accident data that occurred in Korean territorial waters, including the harbor
area. Most statistical studies have been conducted in the field of social science. Therefore,
it is necessary to develop scientific statistical techniques for marine accident data. Table 1
shows the sample of marine accidents by the types of marine accidents.

Table 1. Sample of collected raw data.

Year

Types of Marine Accidents

Total
Collision Contact Grounding Capsizing Fire Sinking Engine

Failure Casualty Others

1981 171 57 57 5 20 22 45 18 26 421
1982 160 35 55 2 10 16 48 22 25 373
1983 130 30 49 3 10 29 54 23 34 362
1984 150 33 67 8 16 43 146 40 53 556
1985 184 30 61 7 19 66 82 13 39 501

...
...

...
...

...
...

...
...

...
...

...
2019 244 38 140 110 132 61 888 228 1130 2971
2020 277 39 198 108 128 69 878 203 1256 3156

2.1.2. Data Preprocessing

Upon collecting the data from KMST statistics, we performed a preprocessing step
in order to classify the accident data by a navigator’s watch duty time and remove the
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unknown data. Table 2 represents the sample of the processed data on marine accidents by
watch duty time. In total, 41,163 data of marine accidents from 1981 to 2020 were used for
this study.

Table 2. Sample of processed data.

Year
Frequency of Marine Accidents by Watch Duty Time

Total
0–4 4–8 8–12 12–16 16–20 20–24

1981 40 59 70 55 59 51 334
1982 31 66 62 45 46 44 294
1983 47 56 54 42 44 45 288
1984 65 76 97 75 99 65 477
1985 53 79 72 63 71 55 393

...
...

...
...

...
...

...
...

2019 214 525 758 741 499 234 2971
2020 216 586 826 773 499 256 3156

2.1.3. Data Normalization and Time Series Data

We created a time series data by connecting the number of marine accidents by navigator’s
watch duty time for each year, as illustrated in Figure 2a. To avoid the significant gradient
updates that can occur when using large values directly to train an LSTM network, we also
rescaled the input data from 0 to 1 before training the LSTM model, as shown in Figure 2b.
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2.2. Modeling
2.2.1. LSTM Architecture

Based on the refined data, we developed an LSTM network model, an extension of an
RNN, to predict the number of marine accidents by watch duty time. While the RNN is
proven to be effective in sequence prediction tasks, numerous problems are still associated
with its processing of large data sequences [20]. Due to the gradient propagation problem
of the recurrent network over many layers, the RNN is challenging with regard to learning
the long-term dependence. Hochreiter and Schimdhuber [21] developed the LSTM network
to address these concerns. The LSTM network replaces hidden layers with memory cells
for modeling long-term dependencies. Figure 3 illustrates the LSTM architectures.
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LSTM models were implemented using Keras libraries in Python, and Tensorflow
as the backend in the Spyder tool for Python. We initialized weights and biases for each
layer using random values. The LSTM consists of forget gate (Ft), input gate (It), cell state
(Ct), and output gate (Ot), which stores information in memory cells and transfers it to
the next stage. The forget gate determines how much past information will be forgotten,
and it is the process of applying the sigmoid function after multiplying the current data
and the hidden layer values of the past by each weight. The input gate controls new
information in the cell based on how important the information is. The cell state forgets
the past information as calculated by the forget gate and calculates the current memory
cell value by multiplying the current information value by the importance of the input
gate. Finally, the output gate determines how the information in the cell will be used in the
output cell. Each cell contains weights that are used to control each gate. Optimization of
the weights is performed by a training algorithm based on an error resulting from network
output [24,25]. The mathematical expression of the forget gate (Ft), input gate (It), cell state
(Ct), and output gate (Ot) are defined in Equations (1)–(4) [23]:

Ft = sigmoid
(

Wx f Xt + Wh f Ht−1 + b f

)
(1)

It = sigmoid(WxinXt + WhinHt−1 + bin) (2)

Ct = FtCt−1 + It · tanh(WxcXt + Whc Ht−1 + bc) (3)

Ot = sigmoid(WxoutXt + WhoutHt−1 + bout) (4)

where t is different time steps, Xt represents the t-th observations of variables, tanh denotes
the hyperbolic tangent function, W and b are the parameters of the LSTM network, and Ht
is the output of the LSTM, which is defined in Equation (5) [23]:

Ht = Ot · tanh(Ct) (5)

In this study, we used the LSTM models with one and two hidden layers and one
output layer, since the time series data covered in this paper is relatively simple. The
number of LSTM units and the number of Time Steps of input data in the hidden layer are
optimized. The output layer is composed of a dense layer which is a fully connected layer.

2.2.2. Hyperparameter Tuning for LSTM Model

This study required tuning the hidden units and number of layers of hyperparameters
separately for each model to determine the optimal network structure. First, we separated
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our data into training and test sets. For the training set, we used statistics on marine
accidents from 1981 to 2019, and statistics on marine accidents in 2020 were used for the
test set. In order to observe how well the network structure is learning, the training set was
further divided into 80% training data and 20% validation data. Validation of the prediction
model was conducted using the test set. In addition to the use of the validation set, we also
used an early stopping strategy that stops training when there was no improvement in the
validation metric to avoid an overfitting issue [26]. Input variables that affect learning and
accuracy of the LSTM models include the number of layers in the hidden layer, the number
of nodes in each hidden layer, activation functions, optimizers, batch size and epoch size.
Finding suitable hyperparameter values used in algorithms is of paramount importance
in model design for performance optimization of the LSTM models. The hyperparameter
tuning process has no fixed method, and the best hyperparameter can be found through an
empirical study. Hyperparameters do not have the absolute best values, but they can find
suitable values depending on the data and model used. We tuned hyperparameters, such
as the number of layers, number of nodes (i.e., hidden units), epoch size, and batch size,
using the automated tuning package in Keras [27]. The other input variables we used in
this study were as follows:

• Time steps: This is the number of observations required by the model as inputs to
make a future prediction. We set the time steps as six for this study since we divided
time into six time periods based on the navigators’ watch duty time.

• Activation function: This determines the output of the model and serves to transfer
the calculation result by the weight to the next layer. We used a hyperbolic tangent,
which is commonly used as the activation function [28].

• Loss function: The mean squared error (MSE) method was used for loss function in
this study. The error on the predicted value is expressed in numbers, and the larger
the errors, the larger the values, and vice versa.

• Optimizer: This is used to update the network parameters to minimize loss functions.
We chose the Adam optimizer which has the advantage of reducing the load of com-
putational memory [29]. The Adam, which is short for adaptive moment estimation, is
an algorithm for the optimization technique for gradient descent. The Adam optimiza-
tion algorithms have been widely adopted in computer vision and natural language
processing applications as an extension to stochastic gradient descent. In order to
update network weights iteratively based on training data, the Adam can be used
instead of conventional stochastic gradient descent [29].

• Batch size: This determines the size of the data to be learned at each training stage,
and in this paper, it was empirically determined by examining the effect of batch size
of 32, 64, 128, 256, and 512 on the prediction performance for all four LSTM networks.

• Epoch: This is the number of repetitive learnings for the entire training data by batch
size. The best epoch we used in this study is 100, which was determined by applying
different epoch sizes of 50, 100, 200, 300, 400, and 500.

2.2.3. ARIMA Model

The ARIMA model, developed by Box and Jenkinson in 1970 [30], combines autore-
gressive (AR) and moving average (MA) models. Since it requires the stationary time series,
differencing (integrating) the time series is necessary. Using the Augmented Dickey-Fuller
(ADF) [31] unit-root test, we can determine whether or not the time series is stationary.
The ARIMA model is represented as ARIMA (p,d,q) with three parameters, such as the
order of AR (p), the degree of differencing (d), and the order of MA (q). We estimated the
parameters of the ARIMA model using a graph of the autocorrelation function (ACF) and a
correlogram of partial autocorrelation (PACF). We chose the best ARIMA model using an
automated function in the pmdarima package [32], which utilizes a stepwise approach to
search multiple combinations of p, d, and q parameters. The statistical significance level
for the ARIMA model was set at 0.05. An Akaike information criterion (AIC), which is an
extensively used measure in the evaluation of ARIMA models, was used to evaluate the
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ARIMA model. It measures the goodness of fit of the model as well as the simplicity of the
model. The AIC is defined as:

AIC = −2lnL(
∧
θ) + 2p (6)

where L(
∧
θ) is the likelihood of the model evaluated at the maximum likelihood estimate

(MLE), p is the total number of parameters, and n is the number of observations. Lower
AIC values indicate a better model fit.

2.2.4. Performance Evaluation Criteria

To evaluate the learning ability of the LSTM models, in this study, the loss function
was used and the most commonly used MSE method was selected among the loss functions.
The mean absolute error (MAE) method was used as a metric to measure the accuracy of
LSTMs. The MAE is the average of the absolute value between the predicted value and
the actual value. In addition, we used mean absolute percentage error (MAPE) to measure
the performance of the LSTM and ARIMA models. The MAPE is used to estimate the
prediction accuracy of the proposed LSTM and ARIMA models. The MAPE is one of the
typical accuracy metrics for time series forecasts. Since the MAPE varies between 0 and 1,
we can judge how good the prediction is irrespective of the scale of the series. The error
values of these criteria show higher accuracy as the values approach 0. The MSE, MAE,
and MAPE are defined as:

MSE =
1
n

n

∑
1
(y− ŷ)2 (7)

MAE =
1
n

n

∑
1
|y− ŷ| (8)

MAPE =
1
n

n

∑
1

∣∣∣∣y− ŷ
y

∣∣∣∣ (9)

where, y and ŷ are the actual value and the predicted value for the frequency of marine
accidents, respectively.

3. Results
3.1. Hyperparameter Tuning Results for LSTM

In this study, we built four different LSTM models to see which LSTMs performed best
for our data as follows: (1) One LSTM layer with 64 hidden units (LSTM1), (2) Two LSTM
layers and 128 hidden units (LSTM2), (3) Two LSTM layers with 64 hidden units (LSTM3),
and (4) Two LSTM layers with 256 hidden units (LSTM4). To achieve the best results in
terms of prediction accuracy and error, we performed hyperparameter tuning steps for our
models. We trained our LSTM models with 100 epochs and the best hyperparameters were
tuned by using a function GridSearchCV [33] which is an automated tuning method in
the Scikit-learn library in Python. Figure 4, an example of the parameter tuning procedure
in the LSTMs, illustrates that loss and MAE for training and validation were identified
through 100 epochs. Table 3 shows the best hidden units by the hyperparameter tuning
results based on the smallest MAPEs for each LSTM model. The other parameters, such
as batch size, epoch size, and the number of layers were also selected in the same way.
Table 4 summarizes the list of the best selected hyperparameters for all four models based
on our empirical study. Table 5 shows the results of the best loss and MAE for training and
validation among 100 epochs.
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Table 3. The best hyperparameter for hidden units. Hidden units for LSTM1 to LSTM4 were selected
as 64, 128, 64, and 256, respectively. * represents the smallest MAPE values for each model.

Hidden Units
MAPE

LSTM1 LSTM2 LSTM3 LSTM4

32 0.106 0.098 0.120 0.137
64 0.094 * 0.110 0.066 * 0.079

128 0.099 0.095 * 0.077 0.096
256 0.103 0.101 0.105 0.065 *
512 0.098 0.099 0.087 0.084

Table 4. List of the best selected hyperparameters for each LSTM model using GridSearchCV. We
fixed the time steps, learning rate, and optimizer in this study.

Model LSTM Layer Hidden
Units Time Steps Batch Size Learning

Rate Epoch Optimizer

LSTM1 1 64 6 18 0.0001 100 Adam
LSTM2 1 128 6 24 0.0001 100 Adam
LSTM3 2 64 6 30 0.0001 100 Adam
LSTM4 2 256 6 6 0.0001 100 Adam

Table 5. Results of loss and MAE for training and validation. The loss and MAE values in the table
were the best values among 100 epochs.

Model
Loss MAE

Training Validation Training Validation

LSTM1 0.0021 0.0018 0.0300 0.0351
LSTM2 0.0024 0.0024 0.0318 0.0298
LSTM3 0.0029 0.0009 0.0342 0.0276

3.2. ARIMA Results

Marine accident data from 1981 to 2019 were used as a training dataset to develop an
ARIMA prediction model. Based on the results of the ADF test, the training dataset was
not stationary (p = 0.99). ARIMA (2,1,3) was selected as the best ARIMA model for marine
accident forecasting since it had the lowest AIC (AIC = −833.107). Table 6 shows the results
of the AIC values of different ARIMA models. The best ARIMA model (i.e., ARIMA (2,1,3))
performed well in the process of testing (MAPE = 0.089). Figure 5 represents the prediction
results of the ARIMA (2,1,3) model showing the comparison between actual and predicted
values for the testing data.

Table 6. Comparison of the ARIMA models. ARIMA (2,1,3) was selected as the best model with the
lowest AIC.

Model AIC Model AIC

ARIMA (0,1,0) −390.901 ARIMA (2,1,1) −743.474
ARIMA (0,1,1) −492.557 ARIMA (2,1,2) −813.302
ARIMA (1,1,0) −435.452 ARIMA (2,1,3) −833.107
ARIMA (1,1,1) −495.050 ARIMA (3,1,0) −723.283
ARIMA (1,1,2) −548.133 ARIMA (3,1,1) −776.187
ARIMA (1,1,3) −595.263 ARIMA (3,1,2) −777.236
ARIMA (2,1,0) −629.584 ARIMA (3,1,3) −824.376



Appl. Sci. 2022, 12, 11724 10 of 13Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 14 
 

 

Figure 5. Prediction results of ARIMA (2,1,3) model (MAPE = 0.089). The blue line represents train-

ing data, and the orange and green lines represent actual and forecasted values, respectively. 

3.3. Prediction Results for LSTM 

With the LSTM models trained using the data from 1981 to 2019, we predicted the 

number of marine accidents for the marine accidents in 2020 for testing the models. The 

prediction results for each model are shown in Figure 6 and Table 7. We also calculated 

the MAPE for each model summarized in Table 7 and then compared the results to find 

the best model for predicting the frequency of marine accidents by navigator’s watch duty 

time for 2020. We found that the LSTM3 performed best among the four models (MAPEs 

for: LSTM3 (0.059) > LSTM4 (0.065) > LSTM1 (0.066) > LSTM2 (0.076). 

Table 7. Comparison of prediction results of four different LSTM models with the ARIMA model. 

LSTM3 has the smallest MAPE (0.059). Except for LSTM2, all other LSTM models outperformed the 

ARIMA model. 

Model Value 
The Number of Marine Accidents by Watch Duty Time 

MAPE 
00–04 04–08 08–12 12–16 16–20 20–24 

- Actual 216 586 826 773 499 256 - 

LSTM1 Predicted 216 534 809 814 512 212 0.066 

LSTM2 Predicted 224 513 799 832 523 229 0.076 

LSTM3 Predicted 217 573 795 828 536 226 0.059 

LSTM4 Predicted 247 601 842 768 519 228 0.065 

Figure 5. Prediction results of ARIMA (2,1,3) model (MAPE = 0.089). The blue line represents training
data, and the orange and green lines represent actual and forecasted values, respectively.

3.3. Prediction Results for LSTM

With the LSTM models trained using the data from 1981 to 2019, we predicted the
number of marine accidents for the marine accidents in 2020 for testing the models. The
prediction results for each model are shown in Figure 6 and Table 7. We also calculated
the MAPE for each model summarized in Table 7 and then compared the results to find
the best model for predicting the frequency of marine accidents by navigator’s watch duty
time for 2020. We found that the LSTM3 performed best among the four models (MAPEs
for: LSTM3 (0.059) > LSTM4 (0.065) > LSTM1 (0.066) > LSTM2 (0.076).
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Figure 6. Prediction results with test data (marine accidents by watch duty time in 2020) for each LSTM:
(a) LSTM1 (MAPE = 0.087), (b) LSTM2 (MAPE = 0.107), (c) LSTM3 (MAPE = 0.076), and (d) LSTM4
(MAPE = 0.133). The numbers 0 to 5 in the time axis represent the navigator’s watch duty time 00–04,
04–08, 08–12, 12–16, 16–20, and 20–24, respectively. Blue and orange lines represent actual and predicted
values, respectively.
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Table 7. Comparison of prediction results of four different LSTM models with the ARIMA model.
LSTM3 has the smallest MAPE (0.059). Except for LSTM2, all other LSTM models outperformed the
ARIMA model.

Model Value
The Number of Marine Accidents by Watch Duty Time

MAPE
00–04 04–08 08–12 12–16 16–20 20–24

- Actual 216 586 826 773 499 256 -
LSTM1 Predicted 216 534 809 814 512 212 0.066
LSTM2 Predicted 224 513 799 832 523 229 0.076
LSTM3 Predicted 217 573 795 828 536 226 0.059
LSTM4 Predicted 247 601 842 768 519 228 0.065

4. Discussion

Many researchers studied the prediction of the number of marine accidents, but no
research was conducted on the prediction of marine accidents according to the navigator’s
duty time. In addition, existing studies related to predicting the number of marine accidents
have been conducted via different methods. However, studies related to deep learning,
such as LSTM, have been relatively insufficient. To the best of our knowledge, this was
the first attempted study to predict the number of marine accidents using LSTM. In this
study, marine accidents that occurred in Korea over the past 39 years from 1981 to 2019
were classified by navigator’s duty time, and the number of marine accidents by duty time
in 2020 was predicted through the LSTM model. The prediction results were compared
with the actual number of marine accidents in 2020.

This study showed that the number of marine accidents by the navigator’s watch duty
time can be predicted using LSTM through time series data. As a result of comparing
the number of marine accidents predicted using the LSTM model with the actual number
of marine accidents by duty time in 2020, the proposed LSTM models performed reliably.
The MAPEs for all four LSTM models were less than 0.1, which means that the accuracies
of the proposed LSTMs were greater than 90%. The best LSTM model was LSTM3, with
the smallest MAPE, as shown in Table 7. We found that two LSTM layers (i.e., LSTM3
(MAPE = 0.059) and lSTM4 (MAPE = 0.065)) performed better than a single LSTM layer (i.e.,
LSTM1 (MAPE = 0.066) and LSTM2 (MAPE = 0.076)). In terms of the effect of hidden units,
we noticed that 64 hidden units were better than 128 or 256 hidden units. In addition, the best
batch size for each model varied from 18, 24, 30, and 6, respectively. These results can help us
guide in the building of a more complex LSTM network structure for our future studies.

To explore the advantage of the LSTM models, we also implemented an ARIMA model,
which is a traditional statistical algorithm for time series forecasts. We also compared the
performance results of the LSTMs with the ARIMA model. It was shown that all LSTMs
outperformed the ARIMA model (MAPE = 0.089). This result proved the superiority of
LSTM compared to the ARIMA. Thus, we can say that the LSTM is better than the ARIMA
at predicting the frequency of marine accidents by watch duty hours.

Nevertheless, this study still has several limitations. First, although we tuned several
hyperparameters, there are more hyperparameters that could significantly affect the perfor-
mance of the LSTM models. Also, the application of various deep learning algorithms in
marine accident prediction models other than LSTM is required. However, since this study
is the first attempt to make marine accident predictions using deep learning technology,
it can be a guideline when making a complex model for forecasting marine accidents in
the future. In addition, this study only used data on the frequency of marine accidents,
as this is a univariate time series forecasting study which only uses the previous values
of the time series to predict its future values. No other factors were included in this study.
Regardless, it is necessary to expand the prediction scope of marine accidents by using
time series data with different variables such as weather, human errors, traffic density, and
mechanical defects that may be involved in marine accidents. Since this study is a leading
study in predicting accidents using deep learning, we believe that it can be a stepping-stone
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to the study of complex accident prediction models in the future. Lastly, predicting accident
frequency does not help prevent it directly. However, by predicting the number of acci-
dents by watch duty time, the pattern of accidents can be learned, and, in fact, most of the
accidents occurred during the daytime. This might be because most fishing boats returned
in the morning from night fishing and most of the cruise ships and passenger ships that
come and go between land and islands were operated during the daytime. Furthermore,
many accidents occurred during the watch time of junior officers. On the basic premise
that the frequency of marine accidents changes according to the navigator’s experience, it
is possible to establish customized accident prevention measures by time by identifying
whether the actual marine accidents are concentrated during the junior officer’s duty time.
Thus, it is also necessary to reflect the trend of accidents according to these duty hours in
the marine accident reduction policy. Using the results, we will be able to help prevent
accidents in advance if we make VTS or coast guard officers pay more attention during the
time when accidents occur the most. Further study is needed to address these limitations
in the future.

5. Conclusions

Marine accidents cause human, material, and environmental damage. In order to min-
imize the damage caused by the occurrence of an accident, it is necessary to respond to
the accident as soon as possible. In other words, if it is possible to predict the approximate
time when many marine accidents occur, the department in charge of responding to marine
accidents will be able to prevent the spread of additional damage caused by marine accidents
by preparing in advance. In this study, we developed the prediction model of the frequency of
marine accidents using the LSTM. The proposed LSTM models reliably predicted the number
of marine accidents compared to another traditional statistical method, the ARIMA model.

In terms of academic implications, this study could be used for the basis of deep
learning approaches for marine accident prediction. In terms of industrial implications,
this study could help develop technologies for marine accident prediction and can be used
to prevent accidents in industries engaged in maritime safety, such as VTS or the coast
guard. The results of this study are expected to be used as basic data to prevent the spread
of additional damage by predicting the number of marine accidents by duty time of the
navigator and responding early in the event of marine accidents. Although the number
of marine accidents can be predicted, it is still insufficient to utilize it to prevent marine
accidents in advance. Therefore, future studies will predict marine accidents and propose a
model to prevent marine accidents in advance based on the results of this study.
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