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Abstract: We show a successful numerical study of lid-driven square cavity flow with embedded
circular obstacles based on the spectral/hp element methods. Various diameters of embedded two-
dimensional circular obstacles inside the cavity and Reynolds numbers Re (from 100 to 5000) are
considered. In order to verify the effectiveness and accuracy of the current methods, numerical results
are investigated by comparing with those available in the literature obtained by the moving immersed
boundary method (MIBM) and the lattice Boltzmann method (LBM). The present spectral/hp element
methods have been not only successfully applied to study and visualize the primary and induced
vortices but also capture new vortices on the lower right, upper left and upper right positions of the
circular obstacle when Reynolds number Re = 100 and Re = 5000, which is not observed in the lattice
Boltzmann method. The current data and figures are in good agreement with the published results.
The results of the present study show that the spectral/hp element methods are effective and accurate
in simulation of lid-driven cavity flow with embedded circular obstacles, and the present methods
have the following advantages: less preprocesses required and high-resolution characteristics.

Keywords: spectral/hp element methods; lid-driven cavity flow; cavity flow with embedded circular
obstacles; high-order method; computational fluid dynamics

1. Introduction

The lid-driven square cavity flow is an internal recycling flow generated by one
or more wall movements. Although the model of lid-driven square cavity is relatively
simple, almost all possible flow phenomena (for example, eddies, secondary flows, Taylor–
Görtler-like vortex, fluid bifurcation, instabilities, transients and turbulence, etc.) in the
incompressible fluid can be observed in the lid-driven square cavity flow. Therefore, the
lid-driven square cavity flow can be utilized to analyze many important theoretical and
engineering problems. Numerical studies of the lid-driven square cavity flow have many
applications in practical engineering, such as in the meteorology, navigation, mechanology
and mining, etc. The lid-driven square cavity flow has been one of the classical problems in
research of the incompressible fluid flow.

In the past several decades, there were a lot of studies about the lid-driven square
cavity flow using different numerical approaches, for example, the implicit multigrid method
(BIMM) [1,2], the p-type finite element method [3], Chebyshev collocation method [4], stream
function–velocity formulation [5,6], the moving immersed boundary method (MIBM) [7–9]
and the lattice Boltzmann method [10–13], etc. Among the methods mentioned above, the
most commonly used method is the lattice Boltzmann method. Although many results
about the lid-driven square cavity flow have been obtained using different numerical
methods, only a few studies are focused on the more complex aspect of the lid-driven
square cavity flow with an embedded obstacle. Recently, Cai et al. [8] investigated the
fluid flow problem of the lid-driven square cavity flow with an embedded cylinder in the
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domain center using the moving immersed boundary method, and compared results with
the body-conforming mesh method. Huang et al. [13] applied the lattice Boltzmann method
to study the lid-driven square cavity flow inside cavities with internal circular obstacles for
various Reynolds numbers Re (Re is between 100 to 5000).

In the field of industrial applications, Gamaoun et al. [14] studied T91 steel specimens
in liquid lead. They described the various specimens and treatment conditions either
giving rise to the cavitation effect or not. Sarris et al. [15,16] investigated numerically
laminar free convection flow in a square enclosure driven by magnetic forces and MHD
natural convection in a laterally and volumetrically heated square cavity. In this paper, we
only consider the classical lid-driven square cavity flow with embedded circular obstacles
instead of considering heat exchanges.

The spectral/hp element methods incorporate both the spectral method and the hp-
version finite element method, and combine the flexibility of the classical finite element
solution domain with the faster convergence and higher accuracy of the spectral method.
Theoretically, the spectral/hp element methods can provide an arbitrary order of accuracy
in spatial discretization requiring relatively lower computational cost. Hence, in recent
years, the spectral/hp element methods have attracted more and more attention and
have been widely used in academia and engineering, especially in computational fluid
dynamics (CFD), see [17–23]. Although the spectral/hp element methods have been
extended to various engineering fields, as far as we know, few research of lid-driven square
cavity flow with embedded obstacles using the high-order method can be found in the
existing literature.

This study aims to apply the spectral/hp element methods of high accuracy and effi-
ciency to simulate the flow inside a square cavity with embedded two-dimensional circular
obstacles. The computational tool used in the simulation is an open source spectral/hp
element framework: Nektar++5.0.1 [24]. In order to show the less preprocess requirements
and high-resolution characteristics of the present methods, we compare current results with
Cai et al. [8] and Huang et al. [13] and adopt the same parameters and the boundary condi-
tions (various diameters and different Reynolds numbers Re (Re is between 100 to 5000)) in
numerical models. The effectiveness and accuracy of current methods are demonstrated by
numerical models.

2. Spectral/hp Element Methods
2.1. Governing Equation

For the dimensionless incompressible N-S equations for a viscous Newtonian fluid,
the continuity equation and momentum equation can be written as follows:

∇ · u = 0, (1)

∂ρu
∂t

+ u · ∇ρu = −∇p +∇ · (µ∇u) + f, (2)

where u, ρ, p, µ and f are the fluid velocity vector, fluid density, the pressure, the kinematic
viscosity of fluid and the body force, respectively. The dimensionless Reynolds number
Re = ρUL/µ, where U is the lid motion velocity and L is the length of cavity. For simplicity,
we suppose the fluid density ρ = 1.

2.2. Spectral/hp Element Methods

A detailed content of the spectral/hp element methods can refer to Karniadakis et al.
and Szabó et al. [25,26].

Generally, for the partial differential equations (PDEs), Lu = 0, which is defined
on a domain Ω, the domain Ω is divided into n-dimensional finite element meshes

Ωe1 , Ωe2 ,· · · · · · , ΩeN , n = 1, 2, 3, Ω =
N
∪

i=1
Ωei , Ωei∩Ωej = ∂Ωeiej . We seek the weak

solution of the PDEs Lu = 0, u
∣∣∣Ωei
∈W1,2(Ωei ) (Sobolev space). We find u ∈ H1(Ω) such
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that a(u, v) = f (v), ∀v ∈ H1(Ω), where a(·, ·) is a symmetric bilinear form, f (·) is a linear
form, and H1(Ω) is a Sobolev space, which is defined as follows:

H1(Ω) = W1,2(Ω) =
{

u ∈ L2(Ω)
∣∣∣Dαu ∈ L2(Ω), ∀

∣∣∣α∣∣∣≤ 1
}

. (3)

In a finite dimensional subspace SN ⊂ H1(Ω), we seek u∗ ∈ SN such that a(u∗, v∗) = f (v∗),
∀v∗ ∈ SN ; in order to keep continuity across elements, SN ⊂ C0 is required. Suppose u∗

can be written as a linear combination of trial functions Φi(x), i.e.,u∗(x) =
N
∑

i=1
CiΦi(x),

where Φi(x) is defined on Ω. Then, the problem converts to determining the coefficients Ci.
Next, the residual R = Lu∗ are restricted so that its L2 inner product is zero with respect
to the test functions Ψi(x). As it is well known to all, for the Galerkin projections, we let
Ψi(x) = Φi(x).

For the construction of the global basis functions Φi(x), the contributions from every
element Ωei in the solution domain should be considered. We mapped every Ωei into a
standard element Ωst ⊂ [−1, 1]n(n = 1, 2, 3) by an isoparametric mapping. Similarly, the
mappings of high-order elements can refer to Szabó et al. [26].

We denote the space ϕp as the polynomials space of order p defined on the standard
element Ωst. In one-dimensional case, the local polynomial basis functions on each standard
element Ωst can be constructed by the following hierarchical basis functions [25]:

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
, Ni(ξ) = φi−1(ξ), i = 3, 4, · · · , p + 1,

where φj is defined by the following Legendre polynomial Pj−1,

φj(ξ) =

√
2j− 1

2

∫ ξ

−1
Pj−1(t)dt, j = 2, 3, . . ..

In two- and three-dimensional cases, the tensorial basis functions are used, which are
derived as the tensor-product of the one-dimensional basis functions on one-dimensional,
two-dimensional or three-dimensional elements. If we define the local polynomial basis
functions by the Lagrange interpolation polynomials, then it will lead to the spectral
element method.

2.3. High-Order Splitting Scheme

Consider the incompressible N-S equations for viscous Newtonian fluids governed by
the following:

∂u
∂t

+ u · ∇u = −∇p + µ ∇2u + f, (4)

∇ · u = 0, (5)

where u denotes the velocity vector, p is the pressure, µ is the kinematic viscosity of fluid,
and f is the body force.

From [27,28], the high-order splitting scheme can be divided into two steps:

1. Firstly, we derived the weak pressure approximation as follows:

∫
Ω
∇q · ∇pn+1 =

∫
Ω

q∇ ·
(
− û

∆t
+ N(u)∗,n+1

)
−
∫

∂Ω
q
(

∂un+1

∂t
+ N(u)∗,n+1 + µ(∇×∇× u)∗,n+1

)
· n. (6)

This equation can be written as an equivalent strong form of the pressure Poisson
equation:

∇2 pn+1 = ∇ ·
(

û
∆t
− N∗,n+1

)
(7)
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with consistent Neumann boundary conditions

∂pn+1

∂n
= −

(
∂un+1

∂t
+ µ(∇×∇× u)∗,n+1 + N∗,n+1

)
· n. (8)

2. Secondly, we discretize the Equation (4) at time step n + 1 and solve the velocity un+1

by using the pressure at step n + 1 from step 1. Now the approximation of the time
derivative is:

∂un+1

∂t
≈ γ0un+1 − û

∆t
. (9)

Then, the Helmholtz problem is derived as follows:(
∆− γ0

µ∆t

)
un+1 = −

(
γ0

µ∆t

)
û +

1
µ
∇pn+1. (10)

The Helmholtz problem can be solved. A detailed discussion can be found in [25,27,28].
In this paper, the governing equations are discretized by using the spectral/hp element

methods. The spatial discretization is performed by using orthogonal polynomials, for
example, Legendre or Chebyshev polynomials. The time discretization is performed by
using the high-order splitting scheme. A detailed analysis of the high-order splitting
scheme can refer to [27,28].

3. Numerical Examples
3.1. Lid-Driven Square Cavity Flow with an Embedded Circular Obstacle

We consider the classical lid-driven square cavity flow, except an embedded circular
obstacle is placed in the domain center. Figure 1 shows the parameters and configuration of
the model. In order to demonstrate the validation and performance of current approaches,
we implement the same parameters and the boundary conditions as Cai et al. [8] and Huang
et al. [13], namely the top lid moves toward the right with a uniform horizontal velocity
u = 1; the boundary conditions are all non-slip wall conditions, u = 0, v = 0, ∂p/∂n = 0
on ∂Ω.
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Figure 1. The lid-driven square cavity flow with an embedded circular obstacle. (a) Model (b) Meshes.

3.2. Results and Discussion

Figure 2 displays the comparison of vorticity contours and streamlines with Cai
et al. [8] at radius r = 0.2, Reynolds number Re = 1000. As we can see from Figure 2, three
vortices appeared in the lid-driven square cavity. One is at the upper right corner of the
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circular obstacle and the other two vortices locate at the bottom lower left and right corners.
These results are similar to those of [8]. The only difference is that the immersed boundary
method identifies the internal circular obstacle as a fluid. The center coordinates of the
three vortices are also listed in Table 1. Compared with the data in Cai et al. [8], the relative
errors of this paper are less than 1.8%. It is worth noting that the total mesh number of
200 × 200 is used in [8] applying the immersed boundary method, but the total number of
meshes used in the spectral/hp element methods is 4864, which shows that the present
method is accurate and effective for the numerical investigation of the lid-driven square
cavity flow with an embedded circular obstacle, and with lesser preprocess costs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 

 

(a) (b) 

Figure 1. The lid-driven square cavity flow with an embedded circular obstacle. (a) Model (b) 
Meshes. 

3.2. Results and Discussion 
Figure 2 displays the comparison of vorticity contours and streamlines with Cai et al. 

[8] at radius 0.2r = , Reynolds number e 1000R = . As we can see from Figure 2, three 
vortices appeared in the lid-driven square cavity. One is at the upper right corner of the 
circular obstacle and the other two vortices locate at the bottom lower left and right cor-
ners. These results are similar to those of [8]. The only difference is that the immersed 
boundary method identifies the internal circular obstacle as a fluid. The center coordi-
nates of the three vortices are also listed in Table 1. Compared with the data in Cai et al. 
[8], the relative errors of this paper are less than 1.8%. It is worth noting that the total mesh 
number of 200 × 200 is used in [8] applying the immersed boundary method, but the total 
number of meshes used in the spectral/hp element methods is 4864, which shows that the 
present method is accurate and effective for the numerical investigation of the lid-driven 
square cavity flow with an embedded circular obstacle, and with lesser preprocess costs. 

  
(a) (b) 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16 
 

  
(c) (d) 

Figure 2. Vorticity contours and streamlines at 0.2r= , e 1000R = . (a) Vorticity (Present) (b) Vorti-
city (Cai et al. [8]) (c) Streamlines (Present) (d) Streamlines (Cai et al. [8]). 

Table 1. Comparison of vortice center coordinates with the moving immersed boundary method 
(at  0.2r= , e 1000R = ). 

 Upper Right Vortex Lower Left Vortex Lower Right Vortex 
       

Present 0.7044 0.6800 0.0762 0.0715 0.8890 0.1072 
Cai et al. [8] 0.6942 0.6881 0.0789 0.0720 0.8852 0.1063 

Error/% 1.14  −1.18  −1.75  −1.53  0.43  0.85  

Figure 3 shows the comparison of the horizontal and vertical velocity of the lid-
driven square cavity flow with an embedded circular obstacle at different Reynolds num-
ber with Huang et al. [13]. The results are similar to those of [13]. 

 
(a) 

Figure 2. Vorticity contours and streamlines at r = 0.2, Re = 1000. (a) Vorticity (Present) (b) Vorticity
(Cai et al. [8]) (c) Streamlines (Present) (d) Streamlines (Cai et al. [8]).

Table 1. Comparison of vortice center coordinates with the moving immersed boundary method (at
r = 0.2, Re = 1000).

Upper Right Vortex Lower Left Vortex Lower Right Vortex

x y x y x y

Present 0.7044 0.6800 0.0762 0.0715 0.8890 0.1072
Cai et al. [8] 0.6942 0.6881 0.0789 0.0720 0.8852 0.1063

Error/% 1.14 −1.18 −1.75 −1.53 0.43 0.85
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Figure 3 shows the comparison of the horizontal and vertical velocity of the lid-driven
square cavity flow with an embedded circular obstacle at different Reynolds number with
Huang et al. [13]. The results are similar to those of [13].
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Figure 3. Comparison of the profiles of u-velocity and v-velocity in the lid-driven square cavity flow
with an embedded circular obstacle at various Reynolds numbers. (a) The profiles of u-velocity and
v-velocity alone x = 0.5 and y = 0.5 (Huang et al. [13]). (b) The profiles of u-velocity and v-velocity
alone x = 0.5 and y = 0.5 (Present).

In order to evaluate the characteristics of flow around obstacles in a lid-driven
square cavity with an embedded circular obstacle, the variations of the flow are nu-
merically simulated at radius r = 1/16, 1/6, 1/5, 1/4, 2/5 and Reynolds number
Re = 100, 400, 1000,3000, 5000, respectively. The numbers of meshes used in the simula-
tion are 7168, 4096, 4864, 6376 and 1536 corresponding to radius r = 1/16, 1/6,1/5, 1/4, 2/5,
respectively. Since the computational domain varies with the cylinder radius, the number
of meshes also varies with the different division of meshes. The order of interpolated
polynomial on individual grid is different when using the adaptive hierarchical techniques;
because the upper and lower limits of tolerance are the same for all cases, the computational
accuracy is guaranteed.
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Figure 4 displays the variation of the flow in the lid-driven square cavity for different
Reynolds numbers at the radius r = 1/16. As we can see from Figure 4, with the increase
in Re, the vortex at the bottom of the square cavity gradually grows in size.
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Figure 4. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at
various Reynolds numbers at r = 1/6.

The center of the vortex at the upper right side of the cavity gradually approaches
to the boundary of the internal obstacle and decreases. When Re is greater than 3000, a
new vortex appears on the upper left position of the cavity, and the corner vortex becomes
larger with the increase in Re.

Figure 5 displays the variation of the flow in the lid-driven square cavity at different
Reynolds numbers at the radius r = 1/6. As it can be seen in Figure 5, with the increase in
Re, the corner vortex at the bottom gradually grows in size. The center of the vortex at the
upper right position of the cavity gradually approaches the boundary of the embedded
obstacle and decreases. When Re is greater than 3000, an induced vortex appears on the
upper left position of the cavity, and the induced vortex becomes larger with the increase
in Re. However, in the results obtained by Huang et al. [13] using the lattice Boltzmann
method, the corner vortex in the lower right corner of the square cavity is not observed
at Re = 100. Owing to the higher-order properties of the method used here, the present
spectral/hp element methods successfully capture the third vortex on the lower right
corner of the cavity, and the vortex on the lower right corner is clearly visible.
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Figure 5. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at
different Reynolds numbers Re at r = 1/6.

Figure 6 shows the streamlines in the lid-driven square cavity at different Reynolds
numbers Re at the radius r = 1/5. At this radius, the characteristics of the flow in the
square cavity at various Reynolds numbers are essentially the same as at the radius r = 1/6.
With the increase in Re, the corner vortex at the two sides of bottom gradually expand,
but the vortex in the upper right corner of the square cavity gradually becomes smaller.
Compared to the streamlines at r = 1/6, the primary vortex at the upper position of the
embedded obstacle in the cavity tends to elongate to some extent in the case of Re = 100.

We continue to increase the radius r; when r = 1/4, the primary vortex at the upper
position of the internal obstacle in the cavity gradually splits into two vortices. However,
with the increase in the Reynolds number, these two vortices merge again into a vortex
gradually contracting towards the upper right position of the embedded obstacle. The
induced vortices on the upper left side of the cavity also expand with the increase in Re, as
displayed in Figure 7. In the case of r = 1/4, Re = 100, the number of meshes is 4096 and
the tolerance is set to 10−10, the time required to arrive to a steady state of CPU (a single
core) is 1652 s.

When the radius of the embedded circular obstacle becomes larger due to the strength-
ening of the wall effect, at r = 2/5, Re = 100, the upper primary vortex in the cavity
transforms almost into two corner vortices, as shown in Figure 8. With the increase in Re,
the two vortices on the upper region of the square cavity do not show the merger of the
vortices as at r = 1/4; instead, a small-scale vortex on the upper left side and a large-scale
vortex on the upper right of the obstacle are formed by gradual contraction.



Appl. Sci. 2022, 12, 11711 9 of 14Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 
Figure 6. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at 
various Reynolds numbers at 1/5r= . 

We continue to increase the radius r ; when 𝑟 = 1/4, the primary vortex at the up-
per position of the internal obstacle in the cavity gradually splits into two vortices. How-
ever, with the increase in the Reynolds number, these two vortices merge again into a 
vortex gradually contracting towards the upper right position of the embedded obstacle. 
The induced vortices on the upper left side of the cavity also expand with the increase in 
Re, as displayed in Figure 7. In the case of 1/ 4r = , Re = 100, the number of meshes is 4096 
and the tolerance is set to 1010− , the time required to arrive to a steady state of CPU (a 
single core) is 1652 s. 

Figure 6. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at
various Reynolds numbers at r = 1/5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 
Figure 7. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at 
different Reynolds numbers Re at 1/4r= . 

When the radius of the embedded circular obstacle becomes larger due to the 
strengthening of the wall effect, at 2 /5, e 100r R= = , the upper primary vortex in the cav-
ity transforms almost into two corner vortices, as shown in Figure 8. With the increase in 
Re, the two vortices on the upper region of the square cavity do not show the merger of 
the vortices as at 𝑟 = 1/4; instead, a small-scale vortex on the upper left side and a large-
scale vortex on the upper right of the obstacle are formed by gradual contraction. 

Figure 7. Streamlines of the lid-driven square cavity flow with an embedded circular obstacle at
different Reynolds numbers Re at r = 1/4.



Appl. Sci. 2022, 12, 11711 10 of 14
Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 
Figure 8. Streamlines of the lid-driven square cavity flow with an internal circular obstacle at dif-
ferent Reynolds numbers at 2 / 5r = . 

Two newly induced vortices are observed on the upper left and right sides of the 
circular obstacle, respectively. This result is different from the result in Huang et al. [13]; 
the lattice Boltzmann method cannot capture these new vortices in [13]. This also shows 
the high-resolution characteristics of the spectral/hp element methods. 

Figure 9 displays the vorticity contours for the different radius r  at e 100R = . As we 
can see from the figure, for all the cases of radius r , the larger absolute values of vorticity 
( | | 1ω ≥ ) appear in the thin shear layer region near the walls of the cavity and walls of the 
obstacle, the absolute value of the maximum vorticity appears in the top corner region of 
the upper left and right corners of the cavity, and the vorticity on the upper side in the top 
corner region is negative, whilw the vorticity on the underside at the top corner region is 
positive. For the smaller Reynolds numbers, the radius r  has no substantial effect on the 
vorticity distribution. The distribution of vorticity inside the square cavity is similar at 
different radii; however, the radius of the embedded circular obstacle has an important 
effect on the vorticity inside the cavity. The variation of the Re has a great influence on the 
square cavity flow with an embedded circular obstacle. At a higher Reynolds number (Re 
= 5000), the absolute value of vorticity ( | | 1ω ≥ ) is larger in the near wall area and the area 
surrounding the circular obstacle, as shown in Figure 10. 

Figure 8. Streamlines of the lid-driven square cavity flow with an internal circular obstacle at different
Reynolds numbers at r = 2/5.

Two newly induced vortices are observed on the upper left and right sides of the
circular obstacle, respectively. This result is different from the result in Huang et al. [13];
the lattice Boltzmann method cannot capture these new vortices in [13]. This also shows
the high-resolution characteristics of the spectral/hp element methods.

Figure 9 displays the vorticity contours for the different radius r at Re = 100. As we
can see from the figure, for all the cases of radius r, the larger absolute values of vorticity
(|ω|≥ 1) appear in the thin shear layer region near the walls of the cavity and walls of the
obstacle, the absolute value of the maximum vorticity appears in the top corner region of
the upper left and right corners of the cavity, and the vorticity on the upper side in the top
corner region is negative, whilw the vorticity on the underside at the top corner region
is positive. For the smaller Reynolds numbers, the radius r has no substantial effect on
the vorticity distribution. The distribution of vorticity inside the square cavity is similar
at different radii; however, the radius of the embedded circular obstacle has an important
effect on the vorticity inside the cavity. The variation of the Re has a great influence on
the square cavity flow with an embedded circular obstacle. At a higher Reynolds number
(Re = 5000), the absolute value of vorticity (|ω|≥ 1) is larger in the near wall area and the
area surrounding the circular obstacle, as shown in Figure 10.

The figures above (Figures 2–10) are plotted by visualizing those data files obtained
from the spectral/hp element methods.
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4. Conclusions

In the paper, the lid-driven square cavity flow with embedded circular obstacles was
numerically simulated by using spectral/hp element methods. The variation of the flow
at various diameters of internal two-dimensional circular obstacles inside the cavity and
Reynolds numbers were investigated. Numerical results were analyzed and compared
with the available data in the literature to validate the performance and accuracy of the
current methods. The conclusions of this paper can be summarized as follows:

• The stream function and the locations of the primary and secondary vortices obtained
by the present methods are compared with published data. These results are in very
good agreement with existing results. The validity of the numerical solution is verified.

• The simulation based on the spectral/hp element methods only needs less preprocess-
ing, has higher accuracy, which can be used not only to analyze the lid-driven square
cavity flow but also other 2D and 3D incompressible viscous flows.

• The main advantages of the spectral/hp element methods are high-resolution charac-
teristics and less preprocessing required. The spectral/hp element methods capture
new vortices in numerical analysis of the lid-driven square cavity flow with embedded
two-dimensional circular obstacles at r = 1/6, Re = 100 and r = 2/5, Re = 5000 (see
Figures 5 and 8). However, these new vortices cannot be observed in the lattice
Boltzmann method.

• Although the spectral/hp element methods have the advantages of less preprocessing,
high-resolution characteristics and faster convergence rate, due to the use of high-order
interpolation, despite the hierarchic type shape functions being employed, higher
computation cost is still inevitable. Hence, it is an important to balance between
accuracy and computation cost.
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Nomenclature

a symmetric bilinear form
C coefficients
f body force
f linear form
H Sobolev space
L length of cavity
p fluid pressure
q test function
r radius
Re Reynolds numbers
S finite dimensional subspace
t time
u fluid velocity vector
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U lid motion velocity
u, v velocity components in x and y directions
x, y spatial coordinates
Greek symbols
µ kinematic viscosity of fluid
ρ fluid density
Ω computational domain
Φ trial functions
Ψ test functions
γ0 constant
Subscripts and superscripts
n the number of iteration
ei the ith element
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