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Abstract

:

Manhattan distance is mainly used to calculate the total absolute wheelbase of two points in the standard coordinate system. The secure computation of Manhattan distance is a new geometric problem of secure multi-party computation. At present, the existing research secure computing protocols for Manhattan distance cannot resist the attack of malicious participants. In the real scene, the existence of malicious participants makes it necessary to study a solution that can resist malicious attacks. This paper first analyzes malicious attacks of the semi-honest model protocol of computing Manhattan distance and then designs an advanced protocol under the malicious model by using the Goldwasser–Micali encryption system and Paillier encryption algorithm, and utilizing some cryptographic tools such as the cut-choose method and zero-knowledge proof. Finally, the real/ideal model paradigm method is used to prove the security of the malicious model protocol. Compared with existing protocols, the experimental simulation shows that the proposed protocol can resist malicious participant attacks while maintaining high efficiency. It has practical value.
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1. Introduction


With the innovation and development of new generation information technologies such as the blockchain, big data, and artificial intelligence, data information in various fields of society is constantly enriched and information sharing value is increasing. However, information privacy leakage is getting more and more attention. Secure multi-party computation (MPC) is one of the important tools to protect information data privacy and finish collaborative computing [1,2,3,4,5].



The earliest MPC problem is the Millionaire problem proposed by Professor Yao [6]. Goldreich and other scholars [7,8] are also involved in the research on MPC. There are many aspects of researching MPC, including secure computing applications [9,10], secure data mining [11,12], secure scientific computing [13,14,15,16,17,18], secure multi-party computational geometry problems [19,20], etc. MPC is widely used to solve many practical problems [21,22,23,24]. As tools in cryptography, homomorphic secret sharing (HSS) [25,26], oblivious transfer (OT) [27], and the cut-choose method [28] have become effective tools to combat malicious participants in MPC.



The MPC protocol of Manhattan distance is a typical problem of secure multi-party computational geometry problems [19,20,29,30,31]. In machine learning, Manhattan distance is often necessary to compute a similarity measure across different samples when making a classification, which requires computing the “distance” across samples, and it is a practical method for distance calculation. In early computer graphics, screens were constructed from pixel dots whose coordinates were generally integers and it was costly to carry out float operations, but using Manhattan distance, which requires only addition and subtraction, can greatly improve the operation speed. Therefore, the study of Manhattan distance has extremely important theoretical value and practical significance.



At present, there is some research on the secure computing of Manhattan distance [29,30,31], and the existing protocols are designed in the semi-honest model. Consequently, it is particularly significant to study the MPC protocol of Manhattan distance to resist malicious attacks. In this paper, an MPC protocol for calculating the Manhattan distance is designed. The contributions are as follows:




	
Firstly, the protocol in Reference [29] is analyzed and found that some situations may be attacked by malicious participants.



	
According to the possible attacks of malicious participants, we design a new MPC protocol for computing the Manhattan distance can resist malicious attacks. In the process of designing the protocol, we use the Goldwasser–Micali and Paillier encryption algorithm, the cut-choose and zero-knowledge proof methods are used. The secure computation of the Manhattan distance will be converted into the Millionaires’ problem to further improve the efficiency of the protocol.



	
The real/ideal model paradigm method is used to prove the security of the proposed malicious model MPC protocol. The performance and efficiency of the protocol are analyzed and simulated by experiments compared with existing protocols.









2. Related Work


Manhattan distance is a secure multi-party computational geometry problem. Manhattan distance can be seen everywhere in real life, which can be called the CityBlock distance or the taxi distance, that is, the actual distance as taxis pass from one crossroads to another. In a standard coordinate system, the sum of the absolute wheelbase of two points, which is the distance of two points in the north-south direction plus the distance in the east-west direction, which is the Manhattan distance between two points, can be noted as   d = |  X 2  −  X 1  | + |  Y 2  −  Y 1  |  . As shown in Figure 1.



In Fang [29], the authors designed a new coding method. With the help of homomorphism, the problem of calculating the Manhattan distance between two points is flexibly and skillfully transformed into calculating the Hamming distance of two vectors. This conversion idea not only improves the protocol efficiency but also prevents the disclosure of intermediate information. However, the protocol cannot resist malicious attacks.



Reference [30] invoked the absolute value of the difference and designed the MPC of Manhattan distance under different restrictions. The protocol’s performance is poor.



Reference [31] designed a new graph encryption scheme for shortest distance queries based on a 2-hop cover labeling, which uses symmetric-key primitives. This scheme can obtain the shortest distance between any two points in the graph, but it cannot resist malicious attacks.



In the above references, the MPC protocols of Manhattan distance is designed based on the semi-honest model, which cannot resist the attack of malicious participants. The protocol for secure computing Manhattan distance under the malicious model needs to be designed. The protocol proposed in reference [32] is a classic problem in the malicious model, but it is used to solve the Millionaire problem, which is different from the problem scenario we solve.




3. Preparatory Knowledge


3.1. Paillier Encryption Algorithm


Paillier proposed a probabilistic encryption algorithm [33] to solve the problem of composite residue classes. It has additive homomorphism.



Preparation: Select two large prime numbers  p  and  q , satisfying   gcd   ( p q , ( p − 1 ) ( q − 1 )   = 1  , calculate   N = p q  ,   λ ( N ) = l c m ( p − 1 , q − 1 )  ,    S N  = { μ <  N 2    μ ≡ 1 mod N   }  , and defining function   L ( μ ) =   μ − 1  N  ( ∀ μ ∈  S N  )  . A random number   g ∈  Z   N 2   ∗    is selected, with     N , g     as the public key, and  λ  as the private key.



Encryption: A random number   r < N   is selected to perform the encryption operation   c = E ( m ) =  g m   r N  mod  N 2   .



Decryption: The private key  λ  is used for decryption to obtain the ciphertext:   m =   L (  c λ  mod  N 2  )   L (  g λ  mod  N 2  )   mod N  .



Addition homomorphism:   E (  m 1  ) E (  m 2  ) =  g   m 1     r N  mod  N 2  ⋅  g   m 2     r N  mod  N 2  =  g   m 1  +  m 2     r N  mod  N 2     = E (  m 1  +  m 2  )  .




3.2. Goldwasser–Micali Encryption Algorithm


The Goldwasser–Micali (GM) encryption algorithm [34] has XOR homomorphism.



Preparation: Two large prime numbers  p  and  q  are selected to get   n = p q  . And   t ∈  Z n 1    (where    Z n 1    is a subset of Jacobi containing elements of    Z n *   ) is selected as part of the public key. The private key of the algorithm is   ( p , q )   and the public key is   ( n , t )  .



Encryption: For   m =  m 1   m 2  ⋯  m s  (  m i  ∈ { 0 , 1 } )   in binary representation, the random number  r  is selected to encrypt the message    m i   :



  E (  m    i    ) =  t   m i     r i 2  mod n =       t  r i 2  mod n ,      m i  = 1        r i 2  mod n ,      m i  = 0        .



Decryption: The private key   ( p , q )   is used for decryption to obtain the ciphertext:



   m i  =       0 ,    (    E (  m i  )  p  ) = (   E (  m i  )  q  ) = 1       1 ,    (    E (  m i  )  p  ) = (   E (  m i  )  q  ) = − 1        .



Among them,   (  a p  )   is defined as follows:


  (  a p  ) =      1 ,     p    cannot   divide    a ,   p    is   the   sec ond   residue   of    a ;      − 1 ,   p    is   not   divisible   by    a  ,    p    is   a   quadratic   non - residue   of    a ;     0 , p      can   divide    a .      











XOR homomorphism:   E (  m 1  ) ⋅ E (  m 2  ) = E (  m 1  ⊕  m 2  )  .




3.3. Zero-Knowledge Proof


The zero-knowledge proof means that in the process of interaction between the certifier and the verifier, when the certifier does not provide effective information, the verifier believes that the conclusion is correct through the interaction of both parties, then we say that the process has realized the zero-knowledge proof. In the process of interaction between the two sides, the information obtained by the verifier is only the right and wrong of the conclusion. For example, the zero-knowledge proof protocol   D L E Q (  g 1  ,  h 1  ,  g 2  ,  h 2  )   [35] is as follows, where    h 1  =  g 1    α   ,    h 2  =  g 2    α   .




	
The certifier selects random numbers  w  and  c , calculates   C = H (  g 1 w  ,  g 2 w  )  ,   r = w − α   ⋅ c  , and finally publishes   ( r , c , C )  .



	
The verifier can verify whether   C = H (  g 1 r   h 1 c  ,  g 2 r   h 2 c  )   is established. If it is true, the verifier believes that the conclusion is correct, that is, the certifier knows the secret  α .









3.4. Encoding


To study the MPC protocol of Manhattan distance, the encoding method is used to further simplify the research problem. The following methods are the coding rules and calculation principles of this protocol.



3.4.1. Encoding Rule


A universal set   U = {  u 1  , ⋯ ,  u n  }  ,   i ∈ { 1 , 2 , ⋯ , n }  , where    u 1  <  u 2  < ⋯ <  u n   . And the abscissa and ordinate of points   P (  x 1  ,    y 1  )   and   Q (  x 2  ,    y 2  )   are   {  x 1   ,     x 2  ,    y 1  ,    y 2  } ∈ U  . Next, take   P (  x 1  ,    y 1  )   as an example to introduce the coding method.



Point  P  can be constructed as an array   A = (  a  11   , … ,  a  1 k   , ⋯ ,  a  1 n   ,    a  21   , … ,  a  2 l   , ⋯ ,  a  2 n   )   according to the full set  U , and its construction method is as follows: If    x 1  =  u k   ,   k ∈ { 1 , 2 , ⋯ , n }  , set    a  11   = , ⋯ , =  a  1 k   = 1  ,    a  1 ( k + 1 )   = , ⋯ , =  a  1 n   = 0  ; if    y 1  =  u l   ,   l ∈ { 1 , 2 , ⋯ , n }  , set    a  21   = , ⋯ , =  a  2 l   = 1  ,    a  2 ( l + 1 )   = , ⋯ , =  a  2 n   = 0  .



Then   P (  x 1  ,    y 1  )   can be coded as   A ( P ) = (  a  11   , … ,  a  1 k   , ⋯ ,  a  1 n   ,    a  21   , … ,  a  2 l   , ⋯ ,  a  2 n   )  .




3.4.2. Calculation Principle


The universal set   U = {  u 1  , ⋯ ,  u n  }  , Alice holds   P (  x 1  ,    y 1  )  , Bob holds   Q (  x 2  ,    y 2  )  , and   {  x 1   ,     x 2  ,    y 1  ,    y 2  } ∈ U  .



 P  is coded as   A = {  a  11   ,   ⋯ ,    a  1 n   ,    a  21   ,   ⋯ ,    a  2 n   }  ;  Q  is coded as   B = (  b  11   ,   ⋯ ,    b  1 n   ,    b  21   ,   ⋯ ,    b  2 n   )  .



Then, the Manhattan distance between points  P  and  Q  can be calculated according to the following formula:


  d ( P , Q ) =    x 1  −  x 2    +    y 1  −  y 2    = A ⊕ B =  ∑  i = 1  2   ∑  j = 1  n  (  a i    j  ⊕  b i    j  )  



(1)









3.5. Security Definition under the Malicious Model


Under the malicious model, the widely accepted security definition is the real /ideal model paradigm method [32].



Definition 1.

For    B —  = (  B 1  ,  B 2  )   in the ideal protocol, if    A —  = (  A 1  ,  A 2  )   can be recognized in the actual protocol, so that:


    { I D E A  L  F ,  B —  ( z )   ( x , y ) }   x , y , z    ≡ c    { R E A  L  Π ,  A —  ( z )   ( x , y ) }   x , y , z    



(2)









At this time, the protocol can be said to safely calculate the function  F , where    A —  = (  A 1  ,  A 2  )   and    B —  = (  B 1  ,  B 2  )   are the probability polynomials constructed under the actual protocol and the ideal protocol respectively;  x  and  y  are the information owned by both parties;  F  is the function of executing      { 0 , 1 }   *  ×    { 0 , 1 }   *  →    { 0 , 1 }   *  ×    { 0 , 1 }   *   ; and  z  is the auxiliary input information.   I D E A  L  F ,  B —  ( z )   ( x , y )   refers to that in the ideal situation the participant uses strategy    B —    to calculate   F ( x , y )   with the participation of auxiliary input information  z . During the interaction between    A 1  ( x , z )   and    A 2  ( y , z )  , the output result generated is recorded as   R E A  L  Π ,  A —  ( z )   ( x , y )  .





4. The MPC Protocol of Computing Manhattan Distance under the Semi-Honest Model


In Reference [29], the method of calculating the Manhattan distance between two points is converted into the Hamming distance between vectors. The specific MPC protocol is as follows (Algorithm 1):








	Algorithm 1 Securely computing the Manhattan distance under the semi-honest model



	Input: Alice owns point   P (  x 1  ,  y 1  )   and Bob owns point   Q (  x 2  ,  y 2  )  .

Output:     x 2  −  x 1    +    y 2  −  y 1     .

Preparation: Alice and Bob construct the vectors   A = (  P  11   ,   ⋯ ,    P  1 n   ,    P  21   ,   ⋯ ,    P  2 n   )   and    B = (  Q  11   ,   ⋯ ,    Q  1 n   ,    Q  21   ,   ⋯ ,    Q  2 n   )    corresponding to point   P   and point   Q   respectively using the coding rules.

	
Alice gets the public-private key   p k ( A )   and   s k ( A )   of GM encryption algorithm and sends   p k ( A )   to Bob. Alice encrypts   A   to obtain    E ( A ) = ( E (  P  11   ) ,   ⋯ ,   E (  P  1 n   ) ,   E (  P  21   ) , ⋯ ,   E (  P  2 n   ) )   , and sends   E ( A )   to Bob.



	
Bob encrypts vector   B  , calculates    R = ( E (  P  11   ) E (  Q  11   ) ,   ⋯ ,   E (  P  1 n   ) E (  Q  1 n   ) ,   E (  P  21   ) E (  Q  21   ) ,   ⋯ ,   E (  P  2 n   ) E (  Q  2 n   ) )   , disturbs the order of elements in   R   to get    R ^   , and sends it to Alice.



	
Alice decrypts    R ^    using the private key   s k ( A )  , obtains   D (  R ^  ) = (  d  11   , ⋯ ,  d  2 n   )  , calculates   y =  d  11   + ⋯ +  d  2 n    , and sends   y   to Bob.







The protocol ends.






This protocol is secure for Alice and Bob under the semi-honest model. However, if either Alice or Bob is malicious, the protocol will no longer be secure. Solutions need to be designed for possible malicious behavior.




5. The MPC Protocol of Computing Manhattan Distance under the Malicious Model


Ideas: This part first analyzes the possible malicious attacks of the semi-honest model protocol, designs the corresponding countermeasures to resist the malicious attacks, and finally makes the malicious participant unable to attack or be found (Note: the case where participants provided incorrect input cannot be considered, because this could not be avoided under the ideal model).



Possible malicious attacks in Algorithm 1 (as shown in Figure 2):




	
In Step 3 of Algorithm 1, the result can only be calculated by Alice (Bob has no private key), which is unfair to Bob.



	
There may be a malicious attack in step 3, that is, Alice may tell Bob the wrong calculation result or terminate the protocol. In the end, Alice gets the right result, while Bob may get the wrong result or not.








To prevent the above attacks, the solution is to use the GM and Paillier encryption algorithm, utilizing the zero-knowledge proof and cut-choose method.



5.1. Specific Protocol


The specific protocol is as follows (Algorithm 2):








	Algorithm 2 Securely computing the Manhattan distance under the malicious model



	Input: Alice owns point   P (  x 1  ,  y 1  )   and Bob owns point   Q (  x 2  ,  y 2  )  .

Output:    f 1  ( P , Q ) =  f 2  ( P , Q ) =    x 1  −  x 2    +    y 2  −  y 1     .

Preparation stage:

	(a)

	
Alice and Bob respectively generate the public and private keys   p  k  ( A )   / s  k  ( A )     and   p  k  ( B )   / s  k  ( B )     of the GM encryption system and send their public keys to each other. Alice generates the public key   (  g a  ,  N a  )   and private key      λ a    of Paillier encryption system and calculates   μ =  g a   λ a    mod  N a 2   . Similarly, Bob generates   (  g b  ,  N b  )  ,    λ b   , and calculates   ν =  g b   λ b    mod  N b 2   . Alice and Bob exchange   (  g a  ,  N a  , μ )   and     and   (  g b  ,  N b  , ν )  .




	(b)

	
Alice constructs the vector   A = (  P  11   , ⋯ ,  P  1 n   ,  P  21   , ⋯ ,  P  2 n   )   of point   P   according to the coding rules.




	(c)

	
Bob constructs the vector   B = (  Q  11   , ⋯ ,  Q  1 n   ,  Q  21   , ⋯ ,  Q  2 n   )   of point   Q   according to the coding rules.








Processing steps:

	
Alice encrypts vector   A   with   p  k  ( A )     to get     E  p  k  ( A )     ( A ) = ( E (  P  11   ) ,   ⋯ ,   E (  P  1 n   ) , E (  P  21   ) ,   ⋯ ,   E (  P  2 n   ) )   , and sends    E  p  k  ( A )     ( A )   to Bob.



	
Bob encrypts vector   B   with Alice’s GM public key to obtain:     E  p  k  ( A )     ( B ) = ( E (  Q  11   ) ,   ⋯ ,   E (  Q  1 n   ) ,   E (  Q  21   ) ,   ⋯ ,   E (  Q  2 n   ) )   , calculates    E  p  k  ( A )     ( A ) ⋅  E  p  k  ( A )     ( B )  , and obtains the ciphertext:    E  p  k  ( A )     ( A ⊕ B ) =  E  p  k  ( A )     ( A ) ⋅  E  p  k  ( A )     ( B )   based on the GM encryption system. The    R ^  (  E  p  k  ( A )     ( A ⊕ B ) )   is obtained by randomly disrupting the sequence of    E  p  k  ( A )     ( A ⊕ B )   and then sent to Alice.



	
Alice decrypts    R ^  (  E  p  k  ( A )     ( A ⊕ B ) )   term by term using the GM private key to get    R ^  ( A ⊕ B ) = (  d  11   , ⋯ ,  d  2 n   )   and calculates   x =  d  11   + ⋯ +  d  2 n    .



	
Bob encrypts vector   B   with   p  k  ( B )     to get:     E  p  k  ( B )     ( B ) = ( E (  Q  11   ) ,   ⋯ ,   E (  Q  1 n   ) , E (  Q  21   ) ,   ⋯ ,   E (  Q  2 n   ) )   , and sends    E  p  k  ( B )       to Alice.



	
Alice encrypts vector   A   with Bob’s GM public key to obtain:     E  p  k  ( B )     ( A ) = ( E (  P  11   ) ,   ⋯ ,   E (  P  1 n   ) ,   E (  P  21   ) ,   ⋯ ,   E (  P  2 n   ) )   , calculates    E  p  k  ( B )     ( A ) ⋅  E  p  k  ( B )     ( B )  , and then obtains ciphertext:    E  p  k  ( B )     ( A ⊕ B ) =  E  p  k  ( B )     ( A ) ⋅  E  p  k  ( B )     ( B )  . The    R ^  (  E  p  k  ( B )     ( A ⊕ B ) )   is obtained by randomly disrupting the sequence of    E  p  k  ( B )     ( A ⊕ B )   and then sending it to Bob.



	
Bob decrypts    R ^  (  E  p  k  ( B )     ( A ⊕ B ) )   term by term with his GM private key to obtain    R ^  ( A ⊕ B ) = (  e  11   , ⋯ ,  e  2 n   )   and calculates     and   calculates   y =  e  11   + ⋯ +  e  2 n    .



	
Alice and Bob select  m  random numbers    a i  ,  b i  ( i = 1 , ⋯ , m )   respectively, calculate   (  C  1 a  i  ,  C  2 a  i  ) = (  g a   a i  x   mod  N a 2  ,  g a   a i    mod  N a 2  )  ,   (  C  1 b  i  ,  C  2 b  i  ) = (  g b   b i  y   mod  N b 2  ,  g b   b i    mod  N b 2  )  , and publish   (  C  1 a  i  ,  C  2 a  i  )   and   (  C  1 b  i  ,  C  2 b  i  )   respectively.



	
Using the cut-choose method, Alice selects   m / 2   groups   (  C  1 b  i  ,  C  2 b  i  )   from  m  groups   (  C  1 b  i  ,  C  2 b  i  )  . After Bob publishes    b i  y  , Alice verifies    g b   b i  y   mod  N b 2  =  C  1 b  i   . If the verification passes, she continues to execute the protocol, if not, terminates the protocol.



	
Bob selects   m / 2   groups   (  C  1 a  i  ,  C  2 a  i  )   from m groups   (  C  1 a  i  ,  C  2 a  i  )  . After Bob publishes    a i  x  , Alice verifies    g a   a i  x   mod  N a 2  =  C  1 a  i   . If the verification passes, he continues to execute the protocol, otherwise terminate the protocol.



	
Alice and Bob randomly select one   (  C  1 a  j  ,  C  2 a  j  )   and   (  C  1 b  j  ,  C  2 b  j  )   from the remaining   m / 2   groups   (  C  1 a  i  ,  C  2 a  i  )   and   (  C  1 b  i  ,  C  2 b  i  )  , and select   a ∈  Z b ∗    and   b ∈  Z a ∗   .



	
Alice calculates    C b  =  E b  ( a  b j  ( x − y ) ) =   (  C  2 b  j  )   a x     (  C  1 b  j  )   − a    r 1   N b    mod  N b 2  =  g b  a  b j  ( x − y )    r 1   N b    mod  N b 2    and sends it to Bob.



	
Bob calculates    C a  =  E a  (  a i  b ( x − y ) ) =   (  C  1 a  i  )  b    (  C  2 a  i  )   − b y    r 2   N a    mod  N a 2  =  g a   a i  b ( x − y )    r 2   N a    mod  N a 2    and sends it to Alice.



	
Alice uses    λ a    to calculate    m a  =  C a   λ a    mod  N a 2   , Bob uses    λ b    to calculate    m b  =  C b   λ b    mod  N b 2   , and publishes    m a    and    m b    respectively.



	
Both parties verify the correctness of the calculation with the help of the zero-knowledge proof. Alice proves     log    C a     m a  =   log    g a    μ   and Bob proves     log    C b     m b  =   log    g b    ν  . If one of them fails to pass the proof, he or she is the malicious participant.



	
If the certificate is passed, Bob calculates   L (  m a  ) / L ( μ )   to obtain    a i  b ( x − y )  , and then obtains    a i  ( x − y )  . When    a i  ( x − y ) = 0  , then   x = y .  .



	
Alice calculates   L (  m b  ) / L ( ν )   to obtain   a  b j  ( x − y )  , and then gets    b j  ( x − y )  . When    b j  ( x − y ) = 0  , then   x = y  .



	
If   x = y  , then    f 1  ( P , Q ) =  f 2  ( P , Q ) = x = y  . Alice and Bob get    f 1  ( P , Q )   and    f 2  ( P , Q )     respectively.







The Protocol ends.







5.2. Correctness Analysis


The following is a correctness analysis of Algorithm 2:




	
The main purpose of the first six steps in Algorithm 2 is that Alice and Bob calculate the Manhattan distance respectively. In this process, Alice and Bob decrypt using their own GM private key, so they cannot get each other’s information. At the same time, in order to prevent the other party from obtaining its own information, the obtained ciphertext is randomly scrambled in steps 2 and 5 and then sent to the other party.



	
In 7–16 steps, the problem of calculating Manhattan distance has been skillfully transformed into the socialist millionaires’ problem.



	
In step 13, Alice must calculate    m a    correctly, otherwise, it cannot be proved by the zero-knowledge, that is, cheating is impossible. If    a i  x   in the remaining   m / 2   group   (  C  1 a  i  ,  C  2 a  i  )   also satisfies    a i  x <  N a  / 2   and Bob selects   b <  N b  / 2  , Bob can calculate   F ( x , y )   after publishing    m a   .



	
In this process, if Alice wants to successfully implement the malicious behavior, she can only select a    a i    that does not meet the requirements, which is not found in the verification in step 8 and is selected by Bob in step 10, so Bob will not get the correct result. But Alice cannot get  y , because    a i  b ( x − y )   is unsolvable (an equation has two unknown numbers).



	
If Alice uses the above method to cheat, the maximum success rate of deception is that in  m  group   (  C  1 a  i  ,  C  2 a  i  )  ,   m − 1   groups meet the requirements, and only one group does not meet the requirements, that is, the maximum probability is   1 / m  . When the probability of success is the largest (i.e., one group does not meet the requirements), when the probability of success of   m = 10   deception is      C 9 5     C  10  5    ×  1 5  =  1  10     and five groups do not meet the requirements, the probability of success of deception is reduced to      C 5 5     C  10  5    =  1  252    . When   m = 50  , these two probabilities are reduced to   2 ×   10   − 2     and   7.9 ×   10   − 15     respectively. If the group greater than   1 / 2   does not meet the requirements, the probability of successful deception will be reduced to 0 (it will always be found in the verification stage). Similarly, Bob’s probability of successful malicious behavior is the same as Alice’s. Therefore, the protocol is secure.









5.3. Example Description


Suppose Alice holds   P ( 5 , 9 )  , Bob holds   Q ( 8 , 12 )  , and the full set is   U = { 5 , 6 , 7 , 8 ,     9 , 10 , 11 , 12 , 13 , 14 }  . The output should be    f 1  ( P , Q ) =  f 2  ( P , Q ) =    x 1  −  x 2    +    y 2  −  y 1    = 6  .



Preparation:



Alice and Bob respectively generate the public and private keys   p  k  ( A )   / s  k  ( A )     and   p  k  ( B )   / s  k  ( B )     of the GM encryption system and send their public keys to each other. Alice generates the public key   (  g a  ,  N a  )   and private key    λ a    of Paillier encryption system and calculates   μ =  g a   λ a    mod  N a 2   . Similarly, Bob generates   (  g b  ,  N b  )  ,    λ b   , and calculates   ν =  g b   λ b    mod  N b 2   . Alice and Bob exchange   (  g a  ,  N a  , μ )   and   (  g b  ,  N b  , ν )  .



Convert points to vectors:



Alice constructs the vector   A = ( 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,    1 , 1 , 1 , 1 , 1 ,       0 , 0 , 0 , 0 , 0  )   of point  P  according to the coding rules. Bob constructs the vector   B = ( 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ,    1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0  )   of point  Q  according to the coding rules.



Protocol Start:




	
Alice encrypts vector  A  with   p k ( A )   to get    E  p  k  ( A )     ( A ) = ( E ( 1 ) ,   E ( 0 ) ,   ⋯ ,   E ( 0 ) ,   E ( 1 ) ,   E ( 1 ) ,   ⋯ ,   E ( 0 ) )  , and sends    E  p  k  ( A )     ( A )   to Bob.



	
Bob encrypts vector  B  with   p k ( A )   to obtain:    E  p  k  ( A )     ( B ) = ( E ( 1 ) , E ( 1 ) ,   ⋯ , E ( 0 ) ,   E ( 1 ) , E ( 1 ) ,     ⋯ , E ( 0 ) )  , and calculates the ciphertext    E  p  k  ( A )     ( A ⊕ B ) =  E  p  k  ( A )     ( A ) ⋅  E  p  k  ( A )     ( B ) = { E ( 1 ) ⊕ E ( 1 ) ,     E ( 0 ) ⊕ E ( 1 ) , … , E ( 0 ) ⊕ E ( 0 ) ,   E ( 1 ) ⊕ E ( 1 ) , E ( 1 ) ⊕ E ( 1 ) , … , E ( 0 ) ⊕ E ( 0 ) }   based on the XOR homomorphism of GM encryption system. Bob randomly disturbs the sequence of elements in    E  p  k  ( A )     ( A ⊕ B )   to get    R ^  (  E  p  k  ( A )     ( A ⊕ B ) ) = { E ( 0 ) ⊕ E ( 1 ) , E ( 1 ) ⊕ E ( 0 ) , … , E ( 0 ) ⊕ E ( 0 ) , … , E ( 1 ) ⊕ E ( 1 ) }   and sends it to Bob.



	
Alice decrypts    R ^  (  E  p  k  ( A )     ( A ⊕ B ) )   term by term using   s k ( A )   to get    R ^  ( A ⊕ B ) = { 1 , 0 , … , 1 }   and calculates:   x = 1 + 0 + … + 1  .



	
Bob encrypts vector  B  with   p k ( B )   to get:    E  p  k  ( B )     ( B ) = ( E ( 1 ) ,   E ( 1 ) ,   ⋯ ,   E ( 0 ) ,   E ( 1 ) ,   E ( 1 ) ,   ⋯ ,   E ( 0 ) )  , and sends    E  p  k  ( B )     ( B )   to Alice.



	
Alice encrypts vector  A  with   p k ( B )   to obtain:    E  p  k  ( A )     ( A ) = ( E ( 1 ) ,   E ( 0 ) ,   ⋯ ,   E ( 0 ) ,   E ( 1 ) ,   E ( 1 ) ,     ⋯ ,   E ( 0 ) )  , and calculates the ciphertext    E  p  k  ( B )     ( A ⊕ B ) =  E  p  k  ( B )     ( A ) ⋅  E  p  k  ( B )     ( B ) = { E ( 1 ) ⊕ E ( 1 ) ,     E ( 0 ) ⊕ E ( 1 ) , … , E ( 0 ) ⊕ E ( 0 ) ,   E ( 1 ) ⊕ E ( 1 ) , E ( 1 ) ⊕ E ( 1 ) , … , E ( 0 ) ⊕ E ( 0 ) }  . Alice randomly disturbs the sequence of elements in    E  p  k  ( B )     ( A ⊕ B )   to get    R ^  (  E  p  k  ( B )     ( A ⊕ B ) ) = { E ( 1 ) ⊕ E ( 0 ) , E ( 0 ) ⊕ E ( 0 ) ,     … , E ( 1 ) ⊕ E ( 1 ) , … , E ( 0 ) ⊕ E ( 1 ) }   and then sent it to Bob.



	
Bob decrypts    R ^  (  E  p  k  ( B )     ( A ⊕ B ) )   term by term with   s k ( B )   to obtain    R ^  ( A ⊕ B ) = { 0 , 0 , … , 1 }   and calculates   y = 0 + 0 + … + 1  .



	
In steps 7–12, Alice and Bob follow Algorithm 2, which will not be described in detail.








In Algorithm 2, Alice and Bob have the same operations, and the status of both parties is fair. Assume Alice is a malicious participant to explain. Alice’s possible malicious behaviors include: using the wrong  x  to calculate    C b    in step 11, using the wrong    λ a    to calculate    m a    in step 13, etc. Then Alice cannot prove through the zero-knowledge proof in step 14. Bob knows that Alice is a malicious participant, and Algorithm 2 is terminated. If Algorithm 2 is not finished by step 15 and   x = y   is obtained, it can be proved that both parties have implemented the protocol in a semi-honest way, and Bob will get the correct conclusion that    f 2  ( P , Q ) = y = 6   in step 17.




5.4. Security Proof


This paper uses the real/ideal model paradigm method to prove the security.



In steps 3 and 6 of Algorithm 2, Alice and Bob get  x  and  y  respectively. We can take  x  and  y  as the input data for further execution of Algorithm 2 in the first six steps. Executing the protocol with the false  x  and  y  is equivalent to providing the false input, which is unavoidable under an ideal protocol, so it is not considered. Therefore, only steps 7–17 need to be proven secure.



Theorem 1.

Algorithm 2 (mentioned as Π ) is secure.





Proof of Theorem.

The Algorithm  Π  is feasible only if at least one of the two parties in the protocol is not a malicious participant, that is, there are two cases that need to be proven secure.





(Case I)    A 1    is honest,    A 2    is dishonest. In this situation,    A 1    and    A 2    execute  Π , then:


  R E A  L  Π ,  A —    ( x , y ) = { F ( x ,  A 2  ( y ) ,  A 2  (  C  1 a  i  ,  C  2 a  i  ) ,  m a  , S }  



(3)




where  S  is the sequence message received by    A 2    through the zero-knowledge proof.



   A 1    will execute the protocol honestly, and    B 1    is determined.    B 2    of the ideal model is indistinguishable from    A 2    of the actual protocol needs to be proven. The output of    B —  = (  B 1  ,  B 2  )   is indistinguishable from   R E A  L     Π ,  A —  ( x , y )       in the actual model (note:    A 2    is the actual executor of  Π . Therefore, when proving, the security of  Π  needs to be verified according to    A 2   ’s behavior, that is    A 2  ( y )  ).




	
   A 1    in the actual protocol is honest, so    B 1    will send right  x  to TTP. According to dishonest    A 2   ’s strategy,    B 2    decides what information to send to TTP. Consequently, the input of    B 2    is    A 2  ( y )  .



	
TTP obtains the   ( x ,  A 2  ( y ) )   and calculates   F ( x ,  A 2  ( y ) )  .



	
   B 2    dresses up as    A 1    and executes  Π  with    A 2   , that is,    B 2    selects    x ′    and makes   F (  x ′  ,  A 2  ( y ) ) = F ( x ,  A 2  ( y ) )  .




	①

	
   B 2    and    A 2    execute  Π  and send the information   {  A 2  (  C  1 a    i ′    ,  C  2 a    i ′    ) }   to    A 2    in step 7 based on Algorithm 2.




	②

	
In step 8,    B 2    verifies the information he asked    A 2    to publish.




	③

	
In step 9,    B 2    publishes the information required by    A 2   .




	④

	
In steps 10–12,    B 2    selects, calculates, and publishes the information according to  Π .




	⑤

	
In step 13,    m a ′    is calculated and published.




	⑥

	
In step 14, the information sequence    S ′    is obtained.














In the process of  Π , the following can be got:


  I D E A  L  F ,  B —    ( x , y ) = { F ( x ,  A 2  ( y ) ) ,  A 2  (  C  1 a    i ′    ,  C  2 a    i ′    ) ,  m a ′  ,  S ′  }  



(4)







In steps 7–14,  Π  adopts the same encryption algorithm,   (  C  1 a  i  ,  C  2 a  i  )  ≡ c  (  C  1 a    i ′    ,  C  2 a    i ′    )  ,    m a ′   ≡ c   m a   , and the zero-knowledge proof ensures    S ′   ≡ c  S  , so:


  { I D E A  L  F ,  B —    ( x , y ) }  ≡ c  { R E A  L  Π ,  A —    ( x , y ) }  



(5)







(Case II)    A 1    is dishonest,    A 2    is honest. There are two cases:




	
Alice gets the result and ignores TTP, then  ⊥  is sent to Bob by TTP, so:


  R E A  L  Π ,  A —    ( x , y ) = {  A 1  (  C  1 b  i   C  2 b  i  ) ,  m b  , S , ⊥ }  



(6)







	
Conversely,    f 2  ( x , y )   is sent to Bob by TTP, then:


  R E A  L  Π ,  A —    ( x , y ) = {  A 1  (  C  1 b  i   C  2 b  i  ) ,  m b  , S , F (  A 1  ( x ) , y ) }  



(7)




where  S  is the sequence message received by    A 1   .








   A 2    is honest,    B 2    is determined.    B 1    of the ideal model is indistinguishable from    A 1    of the actual protocol needs to be proven. That is, the output of strategy pair    B —  = (  B 1  ,  B 2  )   is indistinguishable from   R E A  L  Π ,  A —  ( x , y )     needs to be proven (note:    A 1    is the actual executor of  Π . Therefore, when proving, the security of  Π  needs to be verified according to    A 1   ’s behavior, that is    A 1  ( x )  ).




	
According to dishonest    A 1   ’s strategy,    B 1    decides what information to send to TTP. Therefore, the input value    B 1    sends to TTP is    A 1  ( x )  .



	
  (  A 1  ( x ) , y )   is obtained by TTP to calculate   F (  A 1  ( x ) , y )  .



	
   B 1    executes  Π  with    A 1    by dressing up as    A 2   , that is,    B 1    selects    y ′    simulation protocol and makes   F (  A 1  ( x ) ,  y ′  ) = F (  A 1  ( x ) , y )  .




	①

	
   B 1    and    A 1    execute the protocol and send   {  A 1  (  C  1 b    i ′    ,  C  2 b    i ′    ) }   in step 7 to    A 1   .




	②

	
In step 9,    B 1    verifies the information he asked    A 1    to publish in step 8.




	③

	
In steps 10–12,    B 1    selects, calculates, and publishes the information according to  Π .




	④

	
In step 13,    B 1    calculates    m b ′    and publishes it.




	⑤

	
In step 14, the information sequence    S ′    is obtained.














In the process of the protocol, there are two situations:




	
   A 1    receives the message and ignores TTP, so:


  I D E A  L  F ,  B —    ( x , y ) = {  A 1  (  C  1 b    i ′    ,  C  2 b    i ′    ) ,  m b ′  ,  S ′  , ⊥ }  



(8)







	
Conversely, that is:


  I D E A  L  F ,  B —    ( x , y ) = {  A 1  (  C  1 b    i ′    ,  C  2 b    i ′    ) ,  m b ′  ,  S ′  , F (  A 1  ( x ) ,  y ′  ) }  



(9)












In steps 7–14,  Π  uses the same encryption algorithm, so   (  C  1 b  i  ,  C  2 b  i  )  ≡ c  (  C  1 b    i ′    ,  C  2 b    i ′    )  ,    m b ′   ≡ c   m b   , and    S ′   ≡ c  S   ensured by the zero-knowledge proof, then:


  { I D E A  L  F ,  B —    ( x , y ) }  ≡ c  { R E A  L  Π ,  A —    ( x , y ) }  



(10)







Combining the above two cases it is proved that the output of the strategy to    B —  = (  B 1  ,  B 2  )   in the ideal model is indistinguishable from   R E A  L  Π ,  A —  ( x , y )     in the actual model, which meets Definition 1. Therefore, Algorithm 2 is secure. □





6. Performance Analysis


6.1. Overall Performance Comparison


This paper analyzes the performance of Algorithm 2 and protocols in other references [29,30,31], as shown in Table 1.




6.2. Computational Complexity


In Fang [29], the protocol adopts the GM encryption system. One-time encryption needs two modular multiplication operations, and one-time decryption needs   log N   modular multiplication operations. Alice’s encryption and decryption need   2 n   times. Bob’s encryption needs   2 n   times and the multiplication calculation is   2 n   times. Therefore, a total of   10 n + 2 n log N   modular multiplication operations are carried out.



In Dou [30], its protocol adopts the Paillier encryption algorithm. For the Paillier algorithm, one-time encryption or decryption needs   log N   modular multiplications. Alice’s encryption and decryption times are   2 m n   and 1 respectively; Bob’s encryption times are 1. Therefore, the protocol performs a total of   ( 2 m n + 2 ) log N   modular multiplication operations.



The protocol proposed by Liu [31] uses the 2HCL and symmetric-key primitives, and its computational complexity cannot be expressed by modular multiplication. In reference [31],  m  is used to represent the length of the label in the 2HCL index and  n  is denoted as the number of vertices in the graph, and the computational complexity of the protocol is   O ( m n )  .



In Algorithm 2 of this paper, the GM encryption system is used in steps 1–6. Alice and Bob perform encryption, decryption, and modular multiplication operations   4 n  ,   2 n  , and   2 n   times respectively. Steps 7–14 transformed the judgment conditions into the socialist Millionaires’ problem and carried out   10 m log N + 2   times of modular multiplication. Therefore, the protocol performs a total of   [ 20 n + ( 4 n + 10 m ) log N + 2 ]   modular multiplication operations.




6.3. Communication Complexity


In Fang [29], the two parties conducted two rounds of communication. In Dou [30], the two parties conducted three rounds of communication. In Liu [31], the number of communication rounds between the client-side and the server-side are three rounds. In Algorithm 2, four rounds of communication are carried out. Table 2 shows the specific comparison.




6.4. Experimental Simulation


We use Python language to simulate Algorithm 2 and references [29,30], and the consistency of the universal set’s potential and input information is maintained. For the above three protocols, 1000 experiments were performed based on different data lengths, and the average value of 10 execution times was randomly taken.



As shown in Figure 3, the computational complexity of reference [29] is slightly lower than that of Algorithm 2. In Dou [30], the proposed protocol is designed based on invoking the MPC protocol that takes the absolute value of the difference between two numbers, which greatly increases the amount of calculation, so its computational complexity is higher than Algorithm 2.



Compared with references [29,30], the protocols have little difference in the number of communication rounds, but only Algorithm 2 proposed in this paper can resist malicious attacks. Although the efficiency of Algorithm 2 is not the highest, its complexity mainly comes from steps such as zero-knowledge proof, and this part of the calculation can be outsourced to improve efficiency.





7. Applications


The applications of Manhattan distance permeate many aspects of real life. Moreover, the research on MPC of Manhattan distance also has important practical application value, such as privacy computation, computer graphics, data mining, and machine learning. The following are some specific application scenarios.




	
Computing distance is a measurement method. Manhattan distance is often used to measure the length of the path in many scientific studies. For example, in the study of biological cryptography, it is often necessary to judge whether the two biological templates are the same or similar. In data mining and machine learning, we often judge the analogy and similarity of individuals. When consuming products, it will also judge the similarity of consumers. Therefore, the similarity of different individuals can be deduced by calculating the distance value of individual feature vectors, that is, the protocol for MPC of Manhattan distance is the basic module for constructing the secret calculation vector similarity protocol.



	
The Manhattan distance between two points can better protect personal privacy and solve the constrained optimization problem. As shown in Figure 4, both military sides select military bases in an area, and neither side wants the other party to know where their military bases are located. At the same time, the military exchanges between the two sides are close, and the driving distance between the two military bases should be moderate, that is, the distance should be appropriate. In such an actual scene, the range size of the specified area is equivalent to the given complete set. Both parties just select the appropriate coordinate system in the area, and the location of the military bases of both parties is selected within the range of the complete set. For the suitability of the distance, both parties can jointly calculate the Manhattan distance between two points to make appropriate adjustments.








There are many similar scenarios, and there will be many constrained optimization problems in engineering practice, scientific research, and other fields. Therefore, to better solve the optimization constraint problem, it is particularly important to calculate the Manhattan distance between two points.




	3.

	
Today, with the development of information, information search and matching have practical application value. The location relationship between the security decision vector and the vector interval is the solution to solve the secure searching and matching. The problem of the relationship between the security decision vector and the vector set can also be solved by computing the Manhattan distance securely.










8. Conclusions


Securely computing Manhattan distance is a basic module for designing other MPC geometric protocols, so it has important theoretical significance and application value to study this problem. Given the shortcomings of existing protocols, combining Paillier’s algorithm with additive homomorphism and GM encryption algorithm with Xor homomorphism, this paper takes the lead in designing a protocol with high-security performance under the premise of resisting malicious participant attacks. Algorithm 2 used tools such as the cut-choose method to prevent deception. The real/ideal model paradigm method is used to prove the security of the malicious model protocol. Compared with existing protocols, the experimental simulation shows that only Algorithm 2 can resist malicious participants’ attacks while maintaining high efficiency. The protocol is close to the reality of the existence of malicious participants and has more practical value. The next step is to improve Algorithm 2, using the homogeneous secret sharing to pass the ciphertext, to improve the protocol efficiency.
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Abbreviations




	  N  
	  N = p q  , Both  p  and  q  are large primes



	  m  
	Plaintext



	  c  
	Ciphertext



	   p k ( A ) / s k ( A )   
	The public and private keys of Alice’s GM encryption system



	   p k ( B ) / s k ( B )   
	The public and private keys of Bob’s GM encryption system



	   (  g a  ,  N a  )   
	The public key of Alice’s Paillier encryption system



	   (  g b  ,  N b  )   
	The public key of Bob’s Paillier encryption system



	    λ a    
	The private key of Alice’s Paillier encryption system



	    λ b    
	The public key of Bob’s Paillier encryption system



	   E (   )   
	The process of converting encrypted plaintext into ciphertext



	   D (   )   
	The process of decrypting ciphertext into plaintext



	    r i    
	Random numbers



	    R ^  (   )   
	Results for a random permutation of the ciphertext



	    E  p k ( A )     
	Encrypted calculation with A’s public key



	    E  p k ( B )     
	Encrypted calculation with B’s public key



	   I D E A  L  F ,  B —    ( x , y )   
	The function calculation results of  x  and  y  in the ideal case



	   R E A  L  Π ,  A —    ( x , y )   
	The function calculation results of  x  and  y  in the practical case



	   F (   )   
	Function calculation results
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Figure 1. Manhattan distance. 
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Figure 2. Example of malicious attacks in Algorithm 1. 
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Figure 3. Time of executing protocols in Fang [29], Dou [30], and Algorithm 2. 
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Figure 4. Site selection diagram of military base. 
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Table 1. Protocol’s performance analysis.






Table 1. Protocol’s performance analysis.





	Protocol
	Fairness
	Cryptography Tools
	Resist Malicious Attacks





	Fang [29]
	unfair
	GM
	×



	Dou [30]
	unfair
	Paillier
	×



	Liu [31]
	unfair
	Symmetric cryptography
	×



	Algorithm 2
	fair
	GM, Paillier
	√










[image: Table] 





Table 2. Efficiency comparison (based on modular multiplication).






Table 2. Efficiency comparison (based on modular multiplication).





	Protocol
	Computational Complexity
	Rounds of Communication
	Resist Malicious Attacks





	Fang [29]
	   10 n + 2 n log N   
	2
	No



	Dou [30]
	   ( 2 m n + 2 ) log N   
	3
	No



	Liu [31]
	   O ( m n )   
	3
	No



	Algorithm 2
	   20 n + ( 4 n + 10 m ) log N + 2   
	4
	Yes







Note: the computational complexity of most MPC protocols is relatively high, due to the use of some cryptographic tools, such as the cut-choose method and zero-knowledge proof. These calculations do not reveal private data and can therefore be outsourced to improve the efficiency of the protocol.
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