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Abstract: In many areas of image processing, we deal with focused images. Indeed, the most
important object is focused and the background is smooth. Finding edges in such images is difficult,
since state-of-the-art edge detection methods assume that edges should be sharp. In this way, smooth
edges are not detected. Therefore, these methods can detect the main object edges that skip the
background. However, we are often also interested in detecting the background as well. Therefore,
in this paper, we propose an edge detection method that can efficiently detect the edges of both a
focused object and a smooth background alike. The proposed method is based on the local use of
the k-Means algorithm from Machine Learning (ML). The local use is introduced by the proposed
enhanced image filtering. The k-Means algorithm is applied within a sliding window in such a way
that, as a result of filtering, we obtain a given square image area instead of just a simple pixel like
in classical filtering. The results of the proposed edge detection method were compared with the
best represented methods of different approaches of edge detection like pointwise, geometrical, and
ML-based ones.

Keywords: edge detection; local k-Means; sliding window

1. Introduction

Edge detection methods are very commonly used in many areas of image and video
processing and computer vision. They are commonly used in object detection, classification,
and recognition. This is because edges are the most important objects, from the Human
Visual System point of view [1], that are present in images. There are many approaches
to edge detection. Starting from the simple image filtering methods, which are extremely
fast, through more advanced geometrical methods, which are used in shape representation,
up to machine learning-based methods, especially deep convolutional neural networks,
which need prior data training [2].

The main problem of efficient edge detection follows from the fact that all edge
detection methods work with a global assumption that the edge is defined as a step
edge—a sharp change of image intensity. In fact, in the case of still images, we deal with
edges of different levels of sharpness and smoothness. The most representative case is an
image that is focused—it has a sharp foreground and smooth background. So, treating all
edges in the same global way must be inefficient during edge detection of such an image.
Thus, to overcome this problem, a method that works locally has to be applied, according
to the known and very deep thought “Think globally, act locally”. By working locally,
such a method could adaptively adjust the definition of an edge depending on the local
background. It means that in the sharp region, this method can detect sharp edges, while
in smooth regions, it can detect smooth edges.

In this paper, we address the problem of edge detection in focused images. In such a
case, it is difficult to detect both kinds of edges simultaneously. The existing methods either
do not detect smooth edges in the background or detect too much noise in the foreground.
In this paper, we propose an approach that can detect all edges in focused images efficiently.
The efficiency follows from the fact that the proposed method works locally and adaptively
detects edges inside a sliding window. This method is based on the k-Means algorithm
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well known in Machine Learning. The use of the k-Means algorithm locally gives a good
balance between the speed of the pointwise methods and the efficiency of the CNN-based
methods. To use the k-Means algorithm locally, we proposed the enhanced version of image
filtering—we filter an image not pixel-by-pixel, but area-by-area. The proposed algorithm
of edge detection was compared to the state-of-the-art methods taken from different classes
of edge detection methods.

This paper is organized in the following way. In Section 2, the related work is presented.
In Section 3, the problem statement is posed. In Section 4, the new method is proposed.
In Section 5, the experimental results of edge detection are presented. Finally, Section 6
concludes this paper.

2. Related Work

Edge detection methods have a long history. The most commonly known class of edge
detection methods is based on the pointwise approach. The main known icons are the
Roberts algorithm [3], Prewitt operator [4,5], Sobel method [6,7], and the most commonly
used Canny algorithm [8]. These methods are mainly defined as filters based usually on
the first or the second derivative of the function representing an image. These derivatives
are often combined with the pre- or postprocessing methods or are improved in different
ways [9–13]. These algorithms are fast but are not noise resistant.

Another class of edge detection methods is the one represented by the geometrical
approach. The most known is the method based on the Hough transform [14]. Another
approach is based on moment computation [15,16]. More recently, a new method was
developed based on the multiresolution geometrical edge detection [17–19]. All the geo-
metrical methods treat edges as line or curve segments. From this follows that they are
rather slow in comparison to the pointwise methods, but they treat shapes in a geometrical
way and are noise resistant. Thanks to that, these methods can be used as feature extractors
in object recognition.

A quite different class of methods is based on the Machine Learning approach. The most
known algorithms are the random forests [20–22] and the k-Means algorithm [23–25]. There
are also different variations of such methods [26,27]. These methods are efficient and are
relatively not time-consuming. They are more sophisticated than pure filtering methods
since they analyze the image content.

Finally, these days, many algorithms are based on Deep Learning of convolutional
neural networks (CNN). The first attempt to change the classical approach from bottom-
up to top-down multiscale edge detection was proposed with the use of DeepEdge [28].
Another known algorithm is HED [29], which is also multiscale. Then a number of dif-
ferent approaches were proposed based on CNN [30–34]. Recently, a simple, lightweight,
and efficient algorithm was proposed based on the Pixel Difference Network [35]. All
CNN methods are based on feature detection. Thus, they can detect edges in a more
intelligent way than simple pointwise algorithms. However, these methods require a priori
a huge amount of learning data to be further trained and used. Additionally, the training
is time-consuming.

3. Edge Detection

The efficient state-of-the-art edge detection methods assume that one deals with well-
defined edges in an image and try to detect them. However, sometimes we deal with
images that are highly focused, like the example presented in Figure 1. In such images,
we are still interested in the detection of both the foreground object and the background
smooth edges, as the focus was made artificially by a photographer, usually, for artistic
reasons. According to our knowledge, there are no efficient methods that can deal with
sharp and smooth edges at the same time.



Appl. Sci. 2022, 12, 11668 3 of 11

Figure 1. The example of a focused image.

3.1. Limitations of the Existing Models

We can observe the above-mentioned problem in more detail in Figure 2. We used the
well-known Canny edge detector [8] for edge detection in the sample image from Figure 1.
In Figure 2a, we can see the edges detected in such a way as to catch the smooth edges
together with the sharp ones (the low threshold was fixed as 50 and the high threshold
as 100 to catch the smooth edges). However, we can see the noise in the foreground as
well. In fact, we do not want to see it. On the other hand, we can see another example
of edge detection in Figure 2b. This time, the thresholds were fixed to remove the noise
from the foreground (the low threshold was fixed at 150 and the high threshold at 200 to
remove the noise). However, some of the background edges were removed as well. This
holds for all edge detectors proposed so far. So, in fact, we are looking for a compromise:
detect edges without noise in the foreground and to preserve correctly the background
edges. To do this, we propose an algorithm that is based on the local k-Means method from
Machine Learning.

(a) lowTh = 50, highTh = 100 (b) lowTh = 150, highTh = 200

Figure 2. Edge detection by the Canny method for the low and high thresholds that are equal to:
(a) 50 and 100 (b) 150 and 200, respectively.

3.2. k-Means Algorithm

The k-Means algorithm [36] is the Machine Learning method that is used for partition-
ing n observations into k clusters in such a way that each observation belongs to the cluster
with the nearest mean. This method is also applied in image segmentation. An image is
segmented into k segments assuring the smallest Mean Square Error (MSE). The examples
of k-Means segmentation are presented in Figure 3 for different numbers of segments k
together with the edges between segments.

One can observe from Figure 3 that the k-Means algorithm can detect edges of any
smoothness, since it is based on image segmentation and not on edge detection. However,
to get satisfactory results, one first has to fix the number of segments first. However, direct
application of the k-Means algorithm for edge detection in focused images is not efficient
since the same drawback is presented as in the case of e.g., Canny’s algorithm. Indeed,
the more segments we fix, the better detection of background edges we obtain, but the
more noise in the foreground appears as well (see image Figure 3d).
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(a) segments, k = 3 (b) segments, k = 8 (c) edges, k = 3 (d) edges, k = 8

Figure 3. Edge detection by the k-Means algorithm. The upper row: k-Means segmentation for
(a) k = 3, (b) k = 8 segments. The lower row: the edges of k-Means segmentation for (c) k = 3,
(d) k = 8 segments.

4. Edge Detection by the Local k-Means

In this section, we propose an efficient method for edge detection in focused im-
ages, which is based on the proposed use of the k-Means algorithm locally. Though the
idea of local use of the k-Means algorithm through the sliding window was already pro-
posed [37], it was performed quite differently and was dedicated to specific tasks like text
document analysis.

As we could see in the previous section, the application of the k-Means algorithm to the
whole image does not lead to satisfactory results of edge detection. Therefore, we propose to
apply k-Means locally via a filtering window, which goes through the image, like a typical
filter, and compute k-Means in this local window. However, unlike in the classical filtering
process, we compute here a subimage within the filter instead of a single pixel. It means that,
unlike in the state-of-the-art methods, we obtain as a result a subimage instead of a pixel.

In more detail, to compute the convolution of an image with the typical filter of size
5× 5 pixels, see Figure 4a, we apply the filtered pixel by pixel to the image (in the horizontal
and then the vertical direction) and compute the new pixel’s value each time taking into
account the values within this 5× 5 pixels window. However, in our case, we apply the
filter to the given square area, see Figure 4b. In other words, we divide the given image
into subimages of size e.g., 4× 4 pixels and for each subimage we apply the area mask
(of size, e.g., 8× 8 pixels) and compute the k-Means algorithm, within this 8× 8 pixels
window. Then we draw the result within just the 4× 4 pixels area, which is the considered
subimage. Similarly, as in classical filtering, in the proposed method, we deal with edge
pixels that go beyond the image during filtering. We solve this problem by reducing the
mask’s size to the area size in border squares.

The proposed method is summarized in Algorithm 1. We fix the initial values of
the segments and means on lines 1–2. In lines 4–12, the classical k-Means algorithm is
presented. We iterate the segmentation according to the means (lines 6–7). In each step,
the means are updated (lines 8–9). The algorithm stops when the assumed error measured
as the Mean Square Error (MSE) between the original image and the segmented one (line 11)
is small enough. Next, the local application of this algorithm is defined in lines 13–17.
The image is divided into adjacent subsquares of size areaSize (lines 13–14). Then, for each
such subsquare, the accompanying mask is defined of size maskSize (line 15). Next, the k-
Means algorithm is computed for such an image within the mask (line 16). Finally, just the
small subimage of size areaSize is drawn as segmented (line 17). Note that, depending on
an image, we can adjust the sizes of the filtering window and the considered area. Note
that when we fix these sizes as the same, we deal with a simple application of the k-Means
algorithm in squared subimages of the considered image.
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(a) point mask 5× 5 (b) area mask 8× 8

Figure 4. The sample filter masks: (a) a point mask of size 5× 5 pixels, used for i.e., Canny algorithm,
(b) an area mask of size 8× 8 pixels, with the area size of 4× 4 pixels, used for the proposed local
k-Means.

Algorithm 1: The local k-Means edge detection.
Input: img – image; k – number of segments; areaSize – size of the considered area; maskSize – size of

the filtering mask.
Output: An image with detected edges.

1 fix k, areaSize, maskSize

2 fix w(0)
i , i ∈ {1, . . . , k}

3 t = 0

4 function kMeans(img):
5 while error < ε do
6 for i = 1 to k do
7 Vi = {img(x, y) : |img(x, y)− w(t)

i | ≤ |img(x, y)− w(t)
j |, j ∈ {1, . . . , k}}

8 for i = 1 to k do
9 w(t+1)

i = mean of all elements of Vi

10 t=t+1
11 error = MSE(img, allSegmentsVi)

12 return segmented img

13 for i = 0 step areaSize to n do
14 for j = 0 step areaSize to m do
15 subImg(maskSize) = img(i, j, maskSize)
16 kMeans(subImg(maskSize))
17 draw subImg(areaSize)

5. Experimental Results

In this section, we present the experimental results of edge detection. In Figure 5, the
tested benchmark images [38] are presented. These images were resized to 256× 256 pixels
to make the computations easier. However, the proposed algorithm can be applied to
images of any size.

To fix the optimal parameters used in the proposed method (i.e., the number of
segments, the size of the area window, and the size of the mask window), a number of
experiments were performed. We show them for a sample image “Ladybird”.

The edges detected by the proposed local k-Means algorithm for different sizes of the
area window (i.e., subimage) are presented in Figure 6. In this example, the number of
segments were fixed at k = 3. From these images, one can see that the best visual results
one obtains for the size equal to 32× 32 pixels. Smaller areas (especially 8× 8) cause the
noise effect. So, for all our experiments, we fixed the area size as 32× 32 pixels.
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(a) Ladybird (b) Monarch (c) Parrots

(d) Bee (e) Soup (f) Balls

Figure 5. The benchmark images used in the experiments.

The edges detected by the proposed algorithm for different numbers of segments k
are shown in Figure 7. From these images, one can see that the best results are obtained for
three or four segments. In further experiments, we use three segments.

(a) size = 8× 8 (b) size = 16× 16 (c) size = 32× 32 (d) size = 64× 64

Figure 6. Edges detected by the local k-Means algorithm with different area (subimage) size.

(a) k = 2 (b) k = 3 (c) k = 4 (d) k = 5

Figure 7. Edges detected by the local k-Means algorithm with different numbers of segments.

The final test was made to check the optimal size of the mask. Therefore, the edges
detected by the proposed algorithm for different sizes of the masks are shown in Figure 8.
The size of the area was fixed as 32× 32 pixels. From these images, one can observe that
the optimal results are obtained for the mask’s size 48× 48 or 64× 64 pixels.
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(a) k = 3, 32× 32 (b) k = 3, 48× 48 (c) k = 3, 64× 64 (d) k = 3, 96× 96

(e) k = 4, 32× 32 (f) k = 4, 48× 48 (g) k = 4, 64× 64 (h) k = 4, 96× 96

Figure 8. Edges detected by the local k-Means algorithm with a different number of segments (rows:
k = 3, k = 4) and different sizes of the mask (columns: 32× 32, 48× 48, 64× 64, and 96× 96 pixels).

From the experiments performed, one can conclude that the optimal size of the
subimage and the optimal number of segments can be fixed globally for all tested images.
However, in the case of the mask’s size, we can observe that, depending on the image,
the best results are obtained by the sizes oscillating somewhere between 48 × 48 and
64× 64 pixels. However, fixing this parameter for all images give also good results.

Usually, when we deal with edge detection methods, the noise resistance is tested.
However, in our case, it can be skipped. The reasons are twofold. Firstly, we are interested
in focused images. This kind of image is noise-free by definition. Secondly, even if we
would like to consider noised images, there is a number of methods to remove noise from
k-Means clustering efficiently, e.g., [39], that can be applied.

Finally, we compared the proposed method to the state-of-the-art ones. The refer-
ence methods are Canny, wedgelets2 [19], and global k-Means. The Canny and k-Means
algorithms are classical and work globally and pointwise (however, the latter method
works in a more intelligent way than the former one). However, the wedgelets2-based
method was proposed as the geometrical method that can be used for object detection or
recognition. This method is local and is based on the local window mechanism. These
reference algorithms were chosen as the best methods representing different approaches
(i.e., pointwise, geometrical, and ML-based). We excluded CNN-based methods from the
experiments since they need a huge training dataset and time-consuming training.

In all the methods tested, the optimal parameters were fixed. In the Canny case,
the thresholds were fixed as 100 and 150 as this is the best compromise between the lack
of noise in the foreground and the accuracy of the background edges. In the case of
wedgelets2, the second-order wedgelets were used. This method works in a geometrical
way, so it can better detect background edges than the Canny method. In the case of the
k-Means algorithm, the number of segments was used as 8 to find the compromise between
the accuracy of the background and the foreground edges detection.

To show the advantages of the proposed method we first show a simple artificial
example from Figure 5f. In this example, one of the balls is in motion, so it is not focused.
In Figure 9 the results of edge detection for this image by different methods are presented.
From these results we can see that: (1) the Canny method cannot detect the object in motion
properly (the edges are too smooth to be caught by this method); (2) the wedgelets2-based
method produces the edges in a manner of small lines or curves, not necessarily connected;
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(3) the k-Means algorithm detects the shadows on the table and this cannot be avoided
without significant degradation of the balls, it follows from its global working; (4) the
proposed method seems to overcome all the drawbacks of the former methods. Indeed, it
can detect smooth edges as well as sharp ones, it produces nearly continuous edges, and
thanks to the locality, it avoids detecting unexisting edges like shadows.

(a) Canny (b) wedgelets2 (c) k-Means (d) proposed

Figure 9. The results of edge detection by different methods: (a) Canny, (b) wedgelets2, (c) k-Means,
(d) local k-Means (proposed).

In Figure 10 the results of edge detection by different methods for natural still images
are shown. From the presented results, one can see that the proposed local k-Means
algorithm definitely works better than the reference algorithms. For this method, all edges
are just edges, no matter how smooth they are.

In the above comparisons, we have limited to the visual assessment of the edge
detection accuracy. It follows from the fact that we compared here the methods from
different classes of edge detection techniques. Each class has specific characteristics and
needs a different approach in the objective evaluation of edge detection efficiency. This
is because of the different edge definitions used. Let us note that in the case of pointwise
methods, a detected edge is a pure set of points, whereas, in the case of geometrical
methods, a detected edge is a segment of a line or curve. The second point is that when
we deal with sharp edges, it is relatively easy to decide what is an edge and what is not.
When introducing smooth edges, it is hard to clearly state whether we still deal with an
edge or a texture, or something else. It depends on the application and the user’s needs.
However, to show that the introduction of the local k-Means really improves edge detection
numerically, we present here the comparison of the image segmentation results between
the original global k-Means algorithm and the proposed local use of it. As one can see
from Table 1, the proposed method gives better-quality image segmentation in the Peak-
Signal-to-Noise-Ratio (PSNR) sense. So, we can conclude that since the proposed method
segments images more accurately than the k-Means algorithm, it also better represents the
detected edges than the original method.

Table 1. Image segmentation quality for global (original) and local (proposed) use of the k-Means
algorithm in the means of PSNR.

PSNR Global k-Means Local k-Means

Ladybird 30.26 31.68
Monarch 29.38 30.16
Parrots 29.13 30.81

Bee 29.13 30.2
Soup 28.84 30.12
Balls 31.40 35.51
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Figure 10. The results of edge detection by different methods: first column—Canny, second
column—wedgelets2, third column—k-Means, fourth column—local k-Means (proposed).

Let us note that the time complexity of the regular k-Means algorithm for an image
of size N × N pixels is O(kN2), where k is the number of segments. When we perform
the local k-Means algorithm, we do the same as in the k-Means but for image subsquares
with added margins. When we fix the margin’s size as 0, the computation time for the
local k-Means is the same as for the k-Means method with the same number of segments.
Therefore, the proposed version is faster because we use only 3 segments instead of 8 ones.
On the other hand, when we fix the margin’s size as large as the square size, we obtain the
mask of size 9 times larger than this square. So, the computation time is 9kN2 and the time
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complexity is O(kN2), the same as for the k-Means algorithm. In practical applications,
the computation times are comparable between these two methods.

6. Summary

Unlike real images, for which edge detection is relatively well implemented these
days, focused images can be troublesome. And it applies not only to really focused images
but also to images with different levels of sharp edges. This also can take place in cases
when one or a few objects are in motion. In this paper, we presented a new algorithm that
can efficiently detect both sharp and smooth edges in focused images alike. The commonly
used methods are defined just to use step edges and usually cannot cope with smooth
edges properly. The proposed method was defined to overcome the limitations of the
existing methods. This improvement was achieved by applying the k-Means algorithm
locally. This action causes the algorithm to adapt to the image content so it can correctly
detect the edge, no matter if it is sharp or smooth. The proposed method was compared
to the reference methods that were chosen as quite different: the classical pointwise one,
the modern geometrical one, and the intelligent ML-based one. In all cases, this method
gave better results of edge detection than the existing ones.

It is worth mentioning that, although there are plenty of edge detection methods in use,
it is not so important which methods we compare our results, since all of them are defined
on the assumption that an edge is a step discontinuity. In this paper, we assumed that an
edge can also be smooth and has to be detected as well. Thus, this is the main strength of
the proposed method. However, this approach raises a number of open problems with the
definition of edges with varying smoothness and the proper evaluation of the detection
of such edges. Therefore, our future work is to build a model of an edge with varying
smoothness and find a way to evaluate such edge detection objectively.

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.
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