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Abstract: Traditional collaborative filtering recommendation algorithms only consider the interaction
between users and items leading to low recommendation accuracy. Aiming to solve this problem,
a graph convolution collaborative filtering recommendation method integrating social relations
is proposed. Firstly, a social recommendation model based on graph convolution representation
learning and general collaborative filtering (SRGCF) is constructed; then, based on this model, a
social relationship recommendation algorithm (SRRA) is proposed; secondly, the algorithm learns the
representations of users and items by linear propagation on the user–item bipartite graph; then the
user representations are updated by learning the representations with social information through the
neighbor aggregation operation in the social network to form the final user representations. Finally,
the prediction scores are calculated, and the recommendation list is generated. The comparative
experimental results on four real-world datasets show that: the proposed SRRA algorithm performs
the best over existing baselines on Recall@10 and NDCG@10; specifically, SRRA improved by an
average of 4.40% and 9.62% compared to DICER and GraphRec, respectively, which validates that
the proposed SRGCF model and SRRA algorithm are reasonable and effective.

Keywords: social relations; collaborative filtering; graph convolutional network; recommendation system

1. Introduction
1.1. Background

During the age of information explosion, recommender systems have become widely
used and effective method to identify the most valuable one in a massive amount of data. A
recommender system (in short, RS) aims at estimating the likelihood of interactions between
target users and candidates based on interactive history [1,2]. RSs first learn the users’
and items’ representations (also called embeddings), and then use these representations to
predict how a target user will like a specific item.

The first successful algorithm to generate recommendations is Collaborative Filtering
(CF) which only on user provided ratings. Traditional CF methods suffer from data
sparsity. Matrix Factorization (in short MF) techniques are a viable method to alleviate
data-sparsity: specifically, MF methods decompose the (high-dimensional) user–rating
matrix into the product of two low-dimensional user–factor and item-factor matrices such
that the inner product of the vectors associated with a user and items explains observed
ratings. MF methods are also effective to cope with the cold-start problem (i.e., how to
generate predictions for new members of a recommender system for which historical data
are poor).

Graph Convolution Networks (GCN) have been successfully applied to improve the
accuracy of an RS. However, recent studies [3] prove that two common operations in the
design of GCNs (namely the task of transforming features and nonlinear activation) provide
a little contribution to the performance of an RS. He et al. proposed a new GCN model
for supporting CF tasks called LightGCN; the LightGCN architecture includes only the
neighborhood aggregation step and, thus, it learns user and item embeddings by linear
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propagation on the user–item graph. It finally computes the weighted sum of embeddings
at all layers to produce final embeddings.

Although LightGCN achieves high levels of accuracy, it only takes data about histori-
cal interactions between users and items; many RS can manage a wealth of data describing
user-to-user relationships (such as friendship or trust relationships) which are, de facto,
ignored by LightGCN. As a consequence, the semantics of information mined by LightGCN
is relatively simple and we ask if social data can be profitably integrated in the recommen-
dation task to increase the level of accuracy and, potentially, to make the recommendation
process more scalable. Motivated by theories from social science about influence and
homophily, many researchers suggested to integrate user–item ratings with information
describing social relationships (such as friendship or trust relationships); in fact, users’
preferences as well as the decisions they take are often influenced by the behaviors from
their peers and, thus, the predictive accuracy of an RS is magnified if social relationships
are somewhat taken into account.

An RS which considers social information is often called social recommender system.
Graph theory provide powerful tools to represent user interactions among users as well as
interactions between users and items. On one hand, in fact, we could define a user–user
interaction network (often called social graph), which maps user onto nodes and in which
edges cab represent friendship or trust relationships. On the other hand, we could use
a bipartite graph (often called user–item interaction graph) to model users and items as
nodes while edges are relevant to encode a variety of interactions such as purchases, clicks,
and comments. Several social recommender systems which jointly leverage social graph
and interactive graph have been proposed so far. The first is to extend matrix factorization
methods into the interactive graph and the social graph, and the second is to apply Graph
Neural Networks (in short, GNNs) to obtain meaningful representations.

1.2. Motivations

Despite it is useful to integrate social data into RS, we believe that there is still room to
enhance the accuracy of an RS. We introduce a new GCN architecture which integrates social
data in the recommendation process Our approach aims at solving the following problems:

(1) Heterogeneous data are difficult to use: the data used in social recommendation often
contain both user interaction data and user social data. Heterogeneity of data implies
that we are in charge of handling representations of different objects (items and users);
as a consequence, we deal with nodes which are not in the same embedded space,
and, thus, these nodes are hard to be fused.

(2) High-order semantic information is hard to extract: For instance, high-order semantics
describe relationships that users are indirectly connected to in the user–user social
network. It is thus crucial to capture complex long-term dependencies between
nodes. The more iteration layers of graph convolution architecture, the higher order
semantic information will be extracted. However, excessive iteration layers will cause
excessive smoothness.

(3) Difficulties in fusing multiple semantic information: Social recommender systems
manage both social network and interactive graph and it also has the task that effec-
tively integrate the information coming from both of these graphs is still open research.

1.3. Our Contributions

The following contributions have made:

(1) We innovatively integrate social relations into the training of graph convolution-based
collaborative filtering recommendation method. Specifically, we propose a graph
convolution collaborative filtering recommendation model integrating social relations
(called SRGCF). The SRGCF model learns node embeddings by integrating high-order
semantic information about social behaviors as well as interactions.

(2) We propose a recommender algorithm (called SRRA) running on top of the SRGCF
model. The SRRA algorithm models the high-order relations in interactive data and
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social data, respectively, fuses these two types of high-order semantic information
at the same layer and then forms the final embeddings. Generated embeddings are
finally used in recommendation task.

(3) We experimentally compared the SRRA algorithm with baselines on a range of real-life
and large datasets. Our experiments indicate the superiority of our model against
baselines.

2. Related Work
2.1. Traditional CF Recommendation Algorithm

In e-commerce industry, collaborative filtering (in short, CF) has been widely used,
and in the past two decades many CF algorithms have emerged in academia and industry.
Roughly speaking, CF algorithms is classified into two categories: neighborhood-based CF
algorithms [4] and model-based recommendation algorithms.

Neighborhood-based CF algorithms [5–8] can find potentially relevant items from user
past behaviors without any domain knowledge, and they can be further classified into two
specific types which are user-based CF and item-based CF. The key of neighborhood-based
CF methods is how to calculate similarity and sum up these scores.

The primary idea behind the model-based CF algorithms [9] is to embed users as
well as items into the same embedding space, and then make prediction through the
inner-product of their embeddings. Using data mining and machine learning techniques,
model-based approaches predict unknown scores by finding patterns in training data.

However, the accuracy of traditional CF recommendation method is limited because
they make only use of interactions between users and items to predict unknown ratings.

2.2. Social Recommendation Algorithm

Users in rating platforms are often allowed to create explicit relationships between
other users affiliated with the same platform. Examples of these relationships are friendship
and trust. Some researchers [10,11] suggest to incorporate social relations in the recom-
mendation process to better deal with data sparsity in the rating matrix. The resulting
recommendation algorithm is often called social recommender system while the user–user
social network is often called social graph.

Most traditional social recommender systems leverage CF technique. In Figure 1 we
report the general structure of a social recommender systems.

Figure 1. Social recommendation framework based on CF.

Figure 1 shows that a social recommender has two inputs, namely interactive informa-
tion and social information.

According to different fusion mechanisms of these two types of data, social recom-
mender systems can be classified into two categories: regularization-based and feature-
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sharing based methods. The regularization-based social recommendation algorithm has
the hypothesis that users trust friends in their social circle more than strangers and tend
to conform to their preferences. The regularization-based recommendation algorithm
projects social data and ratings into the same space and restricts each other so that users
can consider their social influence before making decisions. Two important examples of
regularization-based algorithms are SocialMF [12] and CUNE [13]. Regularized social
recommendation algorithms indirectly simulate social network, while, due to the indirect
modeling of social information, there is a low degree of overlap and correlation between
user–item interaction information and social information, which leads to a weak integration
of social information and ratings.

The basic assumption of feature sharing recommendation algorithms is that user
feature vectors in interactive space and social space can be projected into the same space.
TrustSVD [14] and SoRec [15] are two examples of feature-sharing social recommendation
algorithms. Feature sharing based recommendation algorithm can generate accurate pre-
diction. However, the current mainstream algorithms only use original social information,
it means they cannot make full use of social data.

2.3. Graph Embedding Based Recommendation

Network embedding, also referred to as graph embedding, is a process of mapping
graph data into a dense vector that is usually low-dimensional, so that the obtained
vectors can have representation and reasoning ability in vector space [16,17]. Network
embedding can be used as the input of machine learning model and then be applied to the
recommendation task.

Graph Embedding can retain the structure information of nodes in the graph, that is,
the more similar the structure is in the graph, the closer its position in the vector space will
be [18,19]. The principle of graph embedding is shown in Figure 2.

Figure 2. Illustration of graph embedding principle.

Figure 2 shows that node 1 and node 3 are similar in structure, so they maintain a
symmetric position in vector space; nodes 4, 5, 6, and 7 are structurally equivalent, so
they have the same position in vector space. Graph embedding based recommendation
algorithms has two categories: homogenous graph embedding based and heterogeneous
graph embedding based. A homogenous graph contains nodes and edges of only one
type, and it only needs to aggregate neighbors of a single type to update the node repre-
sentation. These algorithms are mostly based on random walk, such as Deepwalk [20],
which uses truncation random walk sequence to represent the node nearest neighbor, and
Node2vec [21], an improved version of Deepwalk. These algorithms only work on homoge-
nous networks. Unfortunately, most real-world datasets can be modeled as heterogeneous
graphs naturally. Thus, recommendation algorithms based on heterogeneous networks
attract more attention.

In recent years, many experts and scholars [22,23] have studied the transformation
of recommendation tasks into heterogeneous graph data mining tasks because real-world
datasets can often be abstracted into heterogeneous graphs. Heterogeneous information
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networks (HIN) include various types of nodes and edges. Figure 3 is an example diagram
based on HIN recommendation system.

Figure 3. Illustration of a HIN recommendation system.

Figure 3 shows that a HIN contains multiple (two or more) types of entities linked by
multiple (two or more) relationships.

In what follows we describe some HIN approaches which jointly consider social data
and user interactions with item to generate recommendations.

In the research of Fan et al. [24], interactions and opinions are captured jointly in the
interactive graph with GraphRec, which models two graphs (interactive graph and social
graph) and heterogeneous edges. Wu et al. [25] proposed a DiffNet for the analysis of how
the user in the social diffusion process is affected. DiffNet only modifies users’ latent vectors
while it does not update items’ latent vectors which are independent of social influence.
Yu et al. [26] present a social recommender system called MHCN, which uses hypergraphs
to capture high-order social information. Each motif is encoded by a dedicated channel of
a hypergraph convolutional network, and user embedding is calculated by aggregating the
embeddings learned by each channel. Huang et al. [27] propose KCGN. KCGN models
interdependencies between items as a triplet and it uses a coupled graph neural architecture
to learn embeddings. In addition, it can automatically learn the temporal evolution of the
interactive graph. Most traditional social recommenders learn embeddings in Euclidian
space. Such a choice, however, is not entirely satisfactory to capture latent structural
properties in graphs. In fact, both the interactive graph and the social graph display a tree-
like structure that is hard to embed into a Euclidian space. To this purpose, Wang et al. [28]
applied hyperbolic embeddings to represent users and items and they introduce a system,
called HyperSoRec. Zhao et al. [29] describe a framework called BFHAN, which is able
to improve node representations in graphs with a power-law degree distribution, and
to handle various relationships of nodes associated with users. Fu et al. [30] introduce
the DICER system. DICER first constructs an item-item and a user–user similarity in a
weighted undirected graph way. A relation-aware graph neural network (RGNN) module
is applied on the item-item graph (as well as user social network and user–user similarity
graph) to obtain better users and items representations. Zhang et al. [31] describe a social
recommender system called MG-HIF which constructs meta-paths and applies discrete
cross-correlation to learn representations of user–item pairs; MG-HIF applies generative
adversarial networks (GANs) on the social graph to learn latent friendship relationships.
In addition, it uses two attentions models to fuse information from both graphs.

3. Preliminaries
3.1. Social High-Order Connectivity

Social relationships have high-order connectivity, as shown in Figure 4c.
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Figure 4. Social relationships.

The target node u0 is marked with a double circle in the social graph.
Let us consider the path u0 ← u2 ← u1 , u0 and u1 are not directly connected, indicat-

ing that u1 may be a potential friend of u0. In all the pathways that can reach u0, the closer
a node is to u0, the more paths it occupies, and the greater the influence on u0.

3.2. Interactive High-Order Connectivity

Interaction relationships also have high-order connectivity, as shown in Figure 5c. Let
us concentrate on a target user, say u0, marked with a double circle in the left subgraph of
the user–projected interaction diagram.

Figure 5. User–item interaction.

The subgraph on the right shows the tree structure expanded obtained by running a
BFS search from u0. High-order connectivity indicates the existence of a path to u0 of length
l greater than 1. This high-order connectivity contains rich semantic information with
collaborative signals. For example, path u0 ← i6 ← u4 represents the behavioral similarity
between u0 and u4 because the longer path u0 ← i6 ← u4 ← i2 indicates that u0 is likely
to adopt i2 because its similar user u4 has previously interacted with i2. Moreover, from
the path of l = 3, u0 is more likely to be interested in i2 than i5, because < i2, u0 > has two
paths connected, while < i5, u0 > has only one.

4. Proposed Recommendation Method
4.1. Recommendation Model Design

For the purpose of extracting the higher-order relationships in interactive data and
social data and fully integrate them to learn high-quality representations, we propose the
SRGCF (Social Recommendation Graph Collaborative Filtering) model. Figure 6 shows the
overall architecture of SRGCF.
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Figure 6. The overall frame structure of the proposed SRGCF model.

The SRGCF model first initializes node embeddings by using the initialization em-
bedding layer. Second, semantic aggregation operations are carried out on the social
embedding propagation layer and the interactive embedding propagation layer in the
semantic aggregation layer to refine the embedding of users and items, derived from both
graphs are fused in the semantic fusion layer. Then weighted sum the user and item em-
beddings of every layer, respectively, to form the final embeddings. Finally, the prediction
layer is applied for producing recommendations.

4.1.1. Embedding Initialization Layer

Embedding matrix of the nodes are randomly initialized and the initial embeddings
e(0)u ∈ Rd and e(0)i ∈ Rd of user u and item i and they can be queried, where d is the
dimension of nodes’ embeddings.

4.1.2. Semantic Aggregation Layer

We propose a semantic aggregation layer in order to aggregate and update the nodes’
embeddings, as a result, it is a good way to keep high-level semantic information. We first
introduce the concept of first-order semantic aggregation in semantic aggregation layer, and
then extend it to high-level semantic aggregation to realize high-level semantic aggregation.

(1) First-order Semantic Aggregation

By iteratively aggregating the neighbor’s features, GCN generates new representa-
tion of the target node. In SRGCF model, the interactive embedding propagation layer
aggregates the embeddings of interacted items to refine the embedding of users. First-order
semantic aggregation is reported in (1) and (2).

eu = AGG
i∈Hu

(ei) (1)

ei = AGG
u∈Hi

(eu) (2)

where AGG(·) denotes aggregation function; Hi represents the set of first-order neighbors of
item i, that is, the set of users that have interacted with item i. Similarly, Hu represents the
set of first-order neighbors of item u. Equations (1) and (2) indicate that in the interaction,
eu derived from an embedded set of its immediate neighbors, as is ei.
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The social embedding propagation layer refines user embedding by aggregating
information from users’ friends. The first-order semantic aggregation process is shown
in (3).

eu = AGG
v∈Fu

(ev) (3)

where Fu represents the friends’ collection of user u. It indicates that in social interaction, the
embedded eu of user u is generated through the aggregation of embedded ev of first-order
neighbor (social interaction).

(2) High-order Semantic Aggregation

The semantic aggregation layer achieves the aggregation of higher-order semantics by
stacking multiple first-order semantic aggregation layers. It includes semantic aggregation
for social embedding propagation layer (SEPL) and interactive embeddings propagation
layer (IEPL).

(a) Semantic Aggregation for SEPL

According to social high-order connectivity, stacking l layers can fuse the information
from each of l-order neighbors. Semantic aggregation for social embedding propagation
layer captures higher-order friend signals by stacking multiple social embedding propaga-
tion layers to enhance user embeddings. The mathematical expression of this process is
shown in (4) and (5).

c(l+1)
u = ∑

v∈Fu

1√
|Fu|

√
|Fv|

c(l)v (4)

c(l+1)
v = ∑

u∈Fv

1√
|Fv|
√
|Fu|

c(l)u (5)

where c(l)u denotes the embedding of u at the l-th layer from GS, and Fu denotes the set of
friends of u.

(b) Semantic Aggregation for IEPL

It can be seen from interaction high-order connectivity that stacking even layers (i.e.,
from the user, the length of path is even) can capture the similarity information of user
behavior, while stacking odd layers can capture the potential interaction information
of users to items. Semantic aggregation for interaction embedding propagation layer
captures collaborative signals of high-order connectivity in interaction data by stacking
each interaction embedding propagation layer, thus enhancing embeddings. Expression of
this process is shown in (6) and (7).

e(l+1)
i = ∑

u∈Ni

1√
|Hi|

√
|Hu|

e(l)u (6)

e(l+1)
u = ∑

i∈Nu

1√
|Hu|

√
|Hi|

e(l)i (7)

where e(l)u and e(l)i represent u’s and i’s embedding at l-th layer from GR, respectively.

4.1.3. Semantic Fusion Layer

User embeddings can be enhanced by integrating social embedding propagation layer
and interactive embedding propagation layer with certain social information.

After obtaining the social semantic aggregation embedding and interactive semantic
aggregation embedding, respectively, the user embeddings of each layer are fused, and the
fusion process is shown in (8).

ẽ(l)u = g(e(l)u , c(l)u ) (8)
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where ẽ(l)u denotes the l-th layer embedding of u from GR and GS, and we let e(0)u = c(0)u . g(·) is
a fusion function, which can be implemented in many ways, and we adopt (9) to fuse:

ẽ(l)u = norm(sum(e(l)u , c(l)u )) (9)

where sum(·) denotes element-wise summation. Intuitively, it is an operation to enhance
the signal representation, and also can keep the feature space unchanged; norm(·) denotes
row-regularization operation that normalizes user vectors.

Then, the final user embedding e∗u and item embedding e∗i is obtained by fusing
embeddings of all layers:

e∗u =
L

∑
l=0

αl ẽ
(l)
u ; e∗i =

L

∑
l=0

βle
(l)
i (10)

where e∗u denotes u’s final embedding, e∗i denotes the i’s final embedding, and L denotes
total number of layers. In line with LightGCN, set α and β as 1/(L + 1). The settings of
these two parameters are flexible, and attention mechanism can be applied to learn them.

4.1.4. Prediction Layer

The last part of the model recommends products to users according to the embedding
of items. We use the inner-product form for prediction:

ŷui = e∗u
Te∗i (11)

Then BPR loss [32] was calculated and model parameters were optimized as shown in
Equation (12).

J = ∑
(u,i,j)∈O

− ln σ(ŷui − ŷuj) + λ‖Θ‖2
2 (12)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} represents pair-wised training data, R+ ex-
presses interactions that exist in history, and R− denotes interaction that does not. Θ are
model parameters, where the model parameters only include the initial embedding vectors
e(0)u and e(0)i . λ is used to prevent overfitting.

4.2. The Proposed SRRA Recommendation Algorithm

In order to facilitate implementation, SRRA algorithm is proposed under the frame-
work of SRGCF model, which is implemented in the form of matrix (see Algorithm 1
for details).

The interactive matrix is denoted as R ∈ RM×N , M are the numbers of user and N are
the numbers of item, Rui equals to 1 if u have interaction with i, if not Rui equals to 0. Then
the adjacency matrix A of GR is:

A =

 0 R
RT 0

 (13)

Let the embedding matrix of layer 0 be E(0) ∈ R(M+N)×d, where d is the dimension of
embedding vector, and the (l + 1)-th layer matrix can be computed as:

E(l+1) = (D−
1
2 AD−

1
2 )E(l) (14)

where D is the degree matrix of A, which is a diagonal matrix and its dimension is (M +
N) × (M + N). Each element Dii represents the number of non-zero values of the i-th row
vector in A.
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Algorithm 1: Social Relationship Recommendation Algorithm (SRRA).

Step1: calculate the embeddings of users and items
Input: R, S, M, N, d, l
Initialize: E(0) = C(0), K, α = β = 1/(l + 1)
calculate A and B by R, S, respectively
calculate D and P by A, B, respectively
EU

(0), EI
(0) ← E(0) , · · · CU

(0) ← C(0)

ẼU ← EU
(0), CU

(0) ,
set EI

∗ = EI
(0)

For l ∈ L:
calculate E(l+1) and C(l+1) by E(l), C(l), respectively
get EU

(l+1), EI
(l+1), CU

(l+1) by split E(l+1), C(l+1), respectively
ẼU

(l+1) ← EU
(l+1), CU

(l+1)

EU
∗+ = ẼU

(l+1), EU
∗+ = EI

(l+1)

End For
EU
∗ = αEU

∗, EI
∗ = βEU

∗

Step2: calculate the loss of SRRA
set LBPR = 0
For u ∈ U:

eu
(0) = lookup(EU

(0), u) // find the initial vector of user u from EU
(0)

LBPR+ =
∥∥∥eu

(0)
∥∥∥2

// add the regularization item into loss

For i ∈ Ru
+: // iterate over the positive example item set for user u

ei
∗ = lookup(EI

∗, i) // find the vector of item i from EI
∗

ŷui = eu
∗Tei

∗ // calculate the score of positive samples
For j ∈ R−u : // iterate over the negative example item set for user u

ej
∗ = lookup(EI

∗, j)
ŷuj = eu

∗Tej
∗

LBPR+ = (− ln σ(ŷui − ŷuj))// calculate the BPR loss
End For

End For
Step3: generate recommendations

Train the algorithm until it converges
According to the predicted score, select Top 10 items for recommendation

Return Recall, NDCG

Similarly, the social matrix is denoted as S ∈ RM×M, where Suv is 0 if u and v are
friends, otherwise Suv is 1. The adjacency matrix B of GS is:

B =

 0 S
ST 0

 (15)

Let the embedding matrix of layer 0 be C(0) ∈ R(M+M)×d, and the user matrix of layer
l + 1 can be obtained as shown in (16).

C(l+1) = (P−
1
2 BP−

1
2 )C(l) (16)

where P is the degree matrix of matrix B.
Then, due to E(l) = stack(EU

(l), EI
(l)), E(l) can be divided into user’s and item’s ma-

trices, denoted as EU
(l) and EI

(l), respectively. Similarly, due to C(l) = stack(CU
(l), CU

(l)),
C(l) can be divided into two parts, both of which are user embedding matrix, where
CU

(l), EU
(l) ∈ RM×d and EI

(k) ∈ RN×d.
Finally, the l-th layer user representation is calculated as:

ẼU
(l) = norm(sum(EU

(l), CU
(l))) (17)
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The final representations can be obtained through integrating the representation of
each layer:

EU
∗ =

L

∑
l=0

αl ẼU
(l), EI

∗ =
L

∑
l=0

βlEI
(l) (18)

We use inner-product to compute score:

Ŷ = EU
∗TEI

∗ (19)

4.3. Model Training

The loss function calculated by BPR is shown in (20).

LBPR = −
M

∑
u=1

∑
i∈Hu

∑
j/∈Hu

ln σ(ŷui − ŷuj) + λ
∥∥∥E(0)

∥∥∥2
(20)

Adam [33] is used as the optimizer of loss function. Its primary characteristic is that it
can self-adapt learning rates.

5. Experiment
5.1. Experiment Setup
5.1.1. Datasets

We used four datasets in this paper. The following is an introduction to these datasets,
and their statistical details are summarized in Table 1.

• Brightkite. A position sharing platform with social networking platform where users
share their locations through check-ins. It includes check-in data as well as social data.

• Gowalla. A position sharing platform similar to Brightkite. This dataset includes
check-in data and user social data.

• Epinions. A consumer review website which allows users to clicked items and add
trust users. This dataset contains users’ rating data and trust network data.

• LastFM. A social music platform for music sharing. This dataset includes data about
users’ listening to music and users’ relationships.

Table 1. Statistical details of four datasets.

Dataset Brightkite Gowalla Epinions LastFM

#User 6310 14,923 12,392 1860
#Item 317,448 756,595 112,267 17,583

#Interaction 1,392,069 2,825,857 742,682 92,601
#Connection 27,754 82,112 198,264 24,800

R-Density 6.9495 × 10−4 2.5028 × 10−4 5.3384 × 10−4 2.8315 × 10−4

S-Density 6.9705 × 10−4 3.6872 × 10−4 1.2911 × 10−3 7.1685 × 10−3

5.1.2. Baselines

For the purpose of illustrating how effective our model is, we compared SRRA with
three types of approaches: one social recommendation model based on deep learning (DL),
three social recommendation models based on DL and GNN, and one recommendation
model based on GCN, which is shown in Table 2.

• LightGCN [3]: It is effective to extract the collaborative signal explicitly in the embed-
ding process by modeling high-order connectivity in interactive graphs.

• DSCF [34]: It utilizes information provided by distant neighbors and explicitly captures
the neighbor’s different opinions towards items.

• DiffNet [25]: It is a GNN model which analyzes how users make their decisions based
on recursive social diffusion.
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• GraphRec [24]: It captures interactions and opinions in GR and it also models two
graphs (e.g., GR and GS) and the strength of heterogeneity in a coherent way.

• DICER [30]: It models user and item by introducing high-order neighbor information,
and draws the most relevant interactive information based on deep context.

Table 2. Comparison of the model’s characteristics.

Methods Social Recommendation DL
Graph-Based

GNN GCN

LightGCN
√

DSCF
√ √

DiffNet
√ √ √

GraphRec
√ √ √

DICER
√ √ √

SRRA
√ √

5.1.3. Evaluation Metrics

We utilize two widely adopted metrics Recall@K and NDCG@K in comparisons, since
we try to recommend the Top-K list items for each user. Specifically, Recall measures the
percentage of the test data that users actually like from the Top-K list. In addition, NDCG
is a position-aware ranking metric that measures how the hit items are placed and gives a
higher score if they are at the top of the list.

5.1.4. Experiments Details

We use 80% of Brightkite, Gowalla, Epinions and LastFM for training, 10% for tuning
hyper-parameters, and 10% for testing final performance. Parameters for all methods are
randomly initialized with standard normal distribution. In addition, initialization and
tuning of parameters for the baseline algorithms followed the procedures described in the
corresponding papers. With batch size 1024, we tested each value in {8, 16, 32, 64, 128, 256}
for embedding size d, and we also find the proper value for learning rate and L2 regular-
ization factor in {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and

{
1× 10−6, 1× 10−5, . . . , 1× 10−2},

respectively. The aggregation factors αl and βl of each layer were set as 1/(L + 1), where L
represents the total number of layers.

5.2. Overall Comparison

We compare all methods in this subsection. In Table 3, we show performance compari-
son between SRRA and baselines. The following conclusions can be drawn:

First, methods that incorporate social relations outperform that does not. In Table 3,
for example, DSCF, DiffNet, GraphRec, DICER, and SRRA outperform LightGCN. This
demonstrates that social information is effective and helpful by being incorporated into
recommender systems.

Second, our method SRRA achieves the best performance on these four datasets.
Specifically, in comparison to DICER, a GNN and DL-based social recommendation model,
SRRA scores better by an average improvement of 2.27%, 2.85%, 5.58%, and 6.90%; and
to GraphRec, a very expressive GNN-based social recommendation model, SRRA scores
better by an average improvement of 5.55%, 6.44%, 13.42% and 13.08% on the four datasets,
respectively. We guess a possible reason is that, for Brightkite and Gowalla, as they are
social networks related to location, the activities and consumption preferences for users
in this type of social platform is not easy to be affected; and for Epinions and LastFM,
people strongly rely on social relations to acquire correct review of goods and lists of music
they will listen to. It is possible to attribute our improved model over the baseline to two
factors: (1) our model use GCN architecture to extract the social ties and interactive ties in
a high-order way, which can leverage the relative information from multi-hop neighbors
and high-order collaborative information propagated over the user interaction graph;



Appl. Sci. 2022, 12, 11653 13 of 17

(2) we fuse all-order social and collaborative information when modeling user and item
representation which generates improved user and item representation.

Table 3. Performance comparison between SRRA and baselines.

Recall@10

Datasets
Methods

LightGCN DSCF DiffNet GraphRec DICER SRRA
Brightkite 0.1642 0.1895 0.1962 0.2172 0.2235 0.2293

Gowalla 0.2083 0.2253 0.2399 0.2779 0.2886 0.3011

Epinions 0.2269 0.2613 0.2874 0.2845 0.3155 0.3341

LastFM 0.2519 0.2742 0.2932 0.2876 0.3059 0.3272

NDCG@10

Datasets
Methods

LightGCN DSCF DiffNet GraphRec DICER SRRA
Brightkite 0.1321 0.1393 0.1539 0.1612 0.1672 0.1701

Gowalla 0.1355 0.1482 0.1667 0.1724 0.1744 0.1782

Epinions 0.1425 0.1598 0.1642 0.1709 0.1737 0.1824

LastFM 0.1431 0.1563 0.1628 0.1862 0.1953 0.2086

5.3. Parameter Analysis

For the proposed model, there are two crucial parameters: the number of layers l and
the embedding size d. In this section, we first change only one parameter and fix the others,
and then observe how the performance changes.

Effect of the number of layers l. Take Gowalla and Epinions for example, we set
the l from 1 to 5 to measure the impact of different layers, and then we can obtain the
performance with the different number of layers that showed in Figure 7. We observed that
performance increases and then decreases as the number of layers grows. When the number
of layers grows from 1 to 4, performance of SRRA is improved. However, performance
starts to become worse when the number of layers is 5. It demonstrates that too many
layers may cause over smoothness that is a common problem existing in graph convolution
methods. Thus, in order to prevent this, we need to use the proper number of layers.

Figure 7. Effect of #layers l on Gowalla and Epinions.

Effect of embedding size d. In this subsection, take Gowalla and Epinions for exam-
ple, we analyze how the embedding size of eu and ei affect proposed model. On these
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two datasets, Figure 8 compares the performance of our proposed model when varying its
embedding size d.

Figure 8. Effect of embedding size d on Gowalla and Epinions.

Accordingly, as embedding size increases, performance first become better, then
worse. If the size grows from 8 to 64, the performance improves obviously. However, the
performance of SRRA starts to deteriorate when the embedding size is 128. It demonstrates
that a large embedding size is likely to produce powerful representations. Nevertheless,
if the length of embeddings is too long, our model will become more complex. Thus, we
must find an appropriate embedding size to make a trade-off, and we find that 64 is the
optimal value.

6. Conclusions

In this work, we proposed a new social recommendation method which leverages
graph convolution technique and integrates social relations. Firstly, we construct the archi-
tecture of a general collaborative filtering social recommendation model based on graph
convolution (SRGCF), which consists of four parts, which are initialization embedding
layer, semantic aggregation layer, semantic fusion layer and prediction layer, respectively.
The semantic aggregation layer and semantic fusion layer are the core of SRGCF, which
play the role of extracting high-order semantic information and integrating various seman-
tic information, respectively. Then, we propose a feasible SRRA algorithm on top of the
architecture, which can model interactions as well as social relations. It can use richer social
information to mine the potential relationship, so as to improve the performance of recom-
mendations. Comparative experiments on four datasets have proven the effectiveness of
the proposed model.

Different from previous work, we try to explore how to use graph neural network
method and introduce social auxiliary information to construct recommendation model in
order to learn better representation. The graph-based model is superior to the traditional
recommendation model because it can learn not only the representation of entities but also
the relationships between them. However, limited by the shortcomings of graph neural
network itself, such as excessive smoothing after several iterations, entity representation
may not be fully learned, which requires some optimization in model design. In the
future, we plan to optimize the model architecture by increasing the coupling between
social modeling and interactive modeling, so that the representation learning is more
adequate. We will also try to explore the advantages of other graphical representation
learning techniques to improve the learning ability of the model.
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Nomenclature

U the set of users
I the set of items
GR user–item interaction graph
Gs user–user social graph
d the dimension of node embedding
Hi neighbors of item i on GR
Hu neighbors of user u on Gs
l #layer
L total number of layers
Fu the friends of user u
e(l)u the embedding of user u at the l-th layer from GR

c(l)u the embedding of user u at the l-th layer from Gs
ẽ(l)u the l-th layer embedding of user u from GR and Gs
e∗u final embedding of user u
e∗i final embedding of item i
M the numbers of users
N the numbers of items
R user–item interaction matrix
S social matrix
A adjacency matrix of GR
B adjacency matrix of Gs
D degree matrix of matrix A
P degree matrix of matrix B
R+ observable interactions
R− unobserved interactions
Θ model parameters
E(l) the l-th layer matrix of GCN on GR
C(l) the l-th layer matrix of GCN on Gs
EU
∗ final embedding matrix of users

EI
∗ final embedding matrix of items
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