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Abstract: Smart homes enhance energy efficiency without compromising residents’ comfort. To
support smart home deployment and services, an IoT network must be established, while energy-
management techniques must be applied to ensure energy efficiency. IoT networks must perpetually
operate to ensure constant energy and indoor environmental monitoring. In this paper, an advanced
sensor-agnostic plug-n-play prescriptive edge-to-edge IoT network management with micro-services
is proposed, supporting also the semantic interoperability of multiple smart edge devices operating
in the smart home network. Furthermore, IoT health-monitoring algorithms are applied to inspect
network anomalies taking proper healing actions/prescriptions without the need to visit the residency.
An autoencoder long short-term memory (AE-LSTM) is selected for detecting problematic situations,
improving error prediction to 99.4%. Finally, indicative evaluation results reveal the mitigation of the
IoT system breakdowns.

Keywords: IoT network; smart home; smart sensors; smart actuators; self-healing; prescriptive

1. Introduction

Nowadays, there has been a disruption of the world’s energy market, also due to
the recent Ukraine–Russia conflicting situation (REPowerEU) [1]. The quickest and most
affordable method to deal with the current energy crisis and lower costs is to save energy.
Therefore, based on the European (EU) Commission and the “EU Save Energy Commu-
nication”, outlining quick behavioral adjustments must be accomplished to reduce the
demand for energy by at least 5% [2]. Demand-side management by mitigating energy
consumption while increasing energy awareness may be achieved by building energy
management systems (BEMS) [3]. The BEMS core is a building automation and control
system (BACS) that transforms conventional buildings into smart buildings [4]. BACS
utilizes IoT networks and is exploited by many applications (Figure 1), such as smart
homes consisting of automated applications, connected and smart devices (e.g., smart
sensors, energy analyzers) to monitor energy and indoor conditions and control devices
(e.g., cooling systems: temperature control) [5].

Figure 1. IoT applications and “things”.
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IoT networks may be wired or wireless, and there is a plethora of IoT communication
protocols. There are widely used multi-channel power analyzers (e.g., Carlo Gavazzi EM340
MID [6]) utilizing a RS485 serial interface protocol, and supporting the MODBUS/JBUS
(RTU) protocol [7]. Wired connections are also provided by home security systems, such
as smoke and heat detectors, and hard-wired window contacts [8]. Furthermore, there is
an excess number of wireless and full IoT-ready solutions provided by various companies,
such as KNX, LONWorks, DALI, BUSing, BACNet, LoRa and others [9].

Heterogeneous technologies and protocols are utilized by widely used wireless IoT
systems. The near-field communication (NFC) protocol enables smartphones, tablets,
laptops, and other devices to interconnect and exchange data [10]. Bluetooth is also utilized
for data exchange, establishing a brief radio link among fixed or mobile devices [10].
ZigBee supports all types of networks, such as point-to-point and point-to-multipoint
mesh networks, covering homes of almost all sizes [10]. The Z-Wave protocol connects
automotive and/or automatic devices, sensors and appliances [10]. Wi-Fi is an IEEE
802.11-based protocol utilized in many types of networks addressing and routing data [10].

Each of the aforementioned protocols has a different way of communicating with
devices to facilitate data exchange. As a result, various problems might occur, others based
on the protocol itself, on the edge device, and on the type of the IoT network. Additionally,
connectivity issues may occur based on the way data are gathered [11]. The heterogeneity
of resources may result in problems, such as CPU, memory, and bandwidth issues or even
more serious issues, such as errors in radio channels [11]. Subsequently, IoT networks
suffer from short- or even long-term failures and drop downs, producing wide data gaps
and monitoring issues that prevent smooth IoT operation and exploitation.

Nonetheless, by 2026, the number of households expected to be “smart” and own
an IoT network is 126.8 million [12]. Considering also the technology revolution both in
hardware and software components, even more protocols and devices might be launched
in the IoT sector. Therefore, it is of ultimate importance to secure a perpetual and GDPR-
friendly operation of the IoT network while being able to integrate all types of protocols,
devices, and sensors, i.e., both old and new technology. Furthermore, considering the high
cost of energy consumption of the edge device hosting, the IoT network should be able to
use minimal resources (i.e., in terms of memory, power, and CPU), and therefore utilize
both lightweight and efficient services and applications.

Within this context, an innovative and Smart EDGE AI IoT system (SEDGE) is pro-
posed in this paper that is easily adaptable to new configurations, protocols, sensors and
devices, while being energy-efficient. The main contributions, and the novelties of the
system, are as follows:

• Easily configurable sensor and device addition to the IoT network, ensuring replicability;
• Constant monitoring of the edge and IoT network performance while considering

various automated self-healing actions;
• User notifications, alerts, along with specified prescriptions in case the IoT network

needs to be manually checked or restored;
• Edge AI-based lightweight, and efficient services ensuring that sensor raw data are

collected and processed locally.

The remainder of the paper is structured as follows: Section 1, introduces the subject,
literature gaps, and proposed novelties from our work, while the latest related works are
presented in Section 2. Section 3 addresses the methodology followed, highlighting all the
main aspects of an IoT network. Section 4 demonstrates a real-life setup of an IoT network
including different protocols, experiments, and IoT crash tests. Finally, conclusions are
drawn in the last section of the paper.

2. Related Work

To enhance a building’s smartness by either upgrading houses where energy renova-
tion is not an option, or by just upgrading the capabilities of a newer home, residents install
sensors and/or actuators. Eventually, sensors and devices of a smart home will have to be



Appl. Sci. 2022, 12, 11650 3 of 25

integrated into a unique system to be exploited for further processing. BEMS will use all
the data streams deriving from the unified IoT system to monitor indoor conditions and in
more advanced systems, will take further control actions aiming at saving energy without
compromising users’ comfort. Smart homes use various types of sensors, actuators, devices,
protocols, applications, and methodologies, resulting in various IoT architectures, topolo-
gies, and management. In this section, some indicative IoT network solutions highlighting
the latest trends and technologies are provided.

Low power wide area networks (LPWA), such as LoRa [13], are used in applications
aiming in extending communication ranges while decreasing power consumption. In [14],
the authors proposed an IoT LoRA network utilizing an emulator to extend the coverage
range. As reported in this paper, all the IoT networks are based only on a single communi-
cation protocol between the IoT sensors (i.e., LoRA). The location of the LoRA sensors is
identified and assigned in different clusters based on both their location and predefined
use cases. Finally, each cluster is mapped to a gateway, and all the data coming from the
gateway are stored to a cloud server. The proposed system lacks the potentiality to be
easily integrated along with devices using other protocols; therefore, it is not feasible to
be replicated.

Data that are collected from an IoT network are sensitive and must be processed within
the IoT network, and therefore must be protected both for security potential breaches and
system breakdowns. In [15], a deep neural network is utilized to detect potential data
stream problems. If a traffic problem is detected, a notification is pushed to the network
administrator. The experiment was conducted using an open dataset (i.e., IoT-Botnet
2020 [16]), the sensors installed were all ZigBee-based [17], and data streams were saved
both locally at the edge and at a cloud database. This work does not take further healing
actions other than the notification alert.

Another major problem when handling an IoT network is the limited device resources
and computational processing. Amanlou et al. [18] proposed lightweight IoT data handling
based on fog computing [19]. IoT data require real-time processing and low latency, pre-
venting cloud processing. On the other hand, in [20], authors are exploring fog computing
out of the edge, while handling data with an anomaly-based intrusion-detection system.
Even though they integrate an IoT detection system, their data are stored in the cloud.
In [21], the design of an IoT-management system is addressed, utilizing an edge-computing
model. The SNMP protocol [22] is used for device management, along with the SOAP
protocol, to connect with the management process. Moreover, in [23], a combination of
SDN/NFV-based 5G IoT and machine-learning algorithms is provided, to deliver a stable
IoT network, but no further actions are supported to heal the IoT network.

To mitigate IoT breakdowns and failures, the IoT network must be checked and
maintained. In [24], to prevent IoT malfunctions of services and applications and broken
hardware, a platform is suggested. This platform monitors the IoT nodes, analyzes the
errors, and executes certain actions. Their platform concentrates mainly on errors produced
by the sensors, IoT middleware, and cloud communication. Dias, João Pedro et al. [25]
presented a model to add healing actions for the Node-RED [26] solution. Their model
extends Node-RED with new nodes to maintain health mechanisms for the IoT. This
model’s main objective is to discover the faulty node and replace it with a spare node (e.g.,
replace the sensor with another one).

In the same context, Aktas M. S., and Astekin M. [27] proposed a rule-based event
monitoring framework to detect faulty processes of the IoT devices. Their framework is
based on simulating the life cycle of an IoT event and performing certain actions if these
events exceed a predefined threshold value. In [28], a collection of IoT patterns were used
to provide error detection and recovery. Their work mainly focuses on designing normal
patterns when the sensor is operating properly (e.g., the motion sensor should detect
motion when someone enters a room). Finally, in [29], further extension for self-healing
extensions for Node-RED is considered, by testing with real devices.
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A summary of the above literature is provided in Table 1. Specifically, the literature is
compared to the main SEDGE services, applications, and healing actions. Initially, the type
of connection and the protocols utilized for an IoT network are checked (i.e., wired, wireless,
and type of connectivity protocols) highlighting that SEDGE has the ability to support
all connections and protocols. Furthermore, the IoT data-management plan utilized in
other approaches is compared to SEDGE, showcasing that both cloud and edge approaches
are utilized.

Table 1. Summary of related work and comparison with the SEDGE approach.

Work Wired Wireless Multi
Protocols

Semantically
Enriched

Edge Data
Saving

Network
Tracking

Healing
Actions

Real-Life
Scenario

Light
Weight
Models

Replicability

[14] X X

[15] X X X X X

[18] X X X X X

[20] X X X

[21] X X X X

[23] X X X

[24] X X

[25] X

[27] X X

[28] X

[29] X X

SEDGE X X X X X X X X X X

Furthermore, among the available healing solutions, most solely focus on specific
platforms, sensors, and middleware, hindering overall IoT network healing as depicted in
Table 2, whilst the most common error detection technique is the monitoring of selected
node values. To summarize, SEDGE offers a plethora of capabilities and healing actions of
the overall edge performance, and not only on the sensors while offering replicability.

Table 2. Summary of related work and comparison of healing parameters to SEDGE.

Work Nodes (Sensors) Middleware Cloud Data Transfering Edge Error Detection Technique

[24] X X X Monitoring

[25] X X Monitoring

[27] X X X Rule based

[28] X Monitoring

[29] X X Monitoring

SEDGE X X X X X Monitoring, Threshold, AI anomally detection

3. SEDGE Proposed Methodology

This section presents the methodology followed to design and build the proposed
SEDGE architecture. To start with, the proposed architecture framework is briefly presented.
Moreover, each layer of the architecture, along with its components, is thoroughly explained.
Finally, the communication “out of the edge” is briefly described to clarify how the proposed
system could be integrated to a larger and even centralized (e.g., by a centralized BEMS)
system, if needed.

3.1. SEDGE Overall Architecture

The proposed bottom-up layered conceptual architecture is depicted in Figure 2.
The first layer consists of devices, sensors and actuators (“things”) composing the nodes of
the IoT network. The protocol layer delivers all communication protocols that are utilized
from the IoT network. “Climbing” the architecture stack, data analysis and applications are
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delivered. Furthermore, the middleware layer is used for interlinking and communication
both for the edge-to-edge and the edge-to-“outer” world. The final layer presents potential
communication with other “external” systems or even other edges, along with a semantic
layer to ensure interoperability between various edge devices and other devices/systems.
The different parts of the architecture are analyzed layer by layer in the following sections.

Figure 2. SEDGE conceptual architecture.

3.2. Iot (Things) Layer

A “thing” in the smart home IoT network could be a sensor, an actuator or an energy
analyzer. Nowadays, domesticating the IoT might even include other smart devices,
appliances and others (e.g., smart mirrors, smart windows, and robot vacuum cleaners) [30].
In a more general sense, a smart home is a sensed environment that is monitored and/or
controlled through automation. Monitoring concerns the utilization of a variety of sensors
and energy analyzers, whereas automation concerns the utilization of actuators.

Widely used sensors that are utilized in smart homes are temperature, humidity, mo-
tion, illuminace, CO2, smoke, occupancy, weather, water leak, freeze, and window/door
sensors [31]. Smart homes can include all or some of them, depending on the application,
cost, and use-case scenario. Energy/power analyzers, or smart meters, are exploited to
monitor electric qualities, such as power, energy, current, voltage, harmonics, and oth-
ers [32]. Smart meters are mandatory “things” for all building energy management systems
(BEMS), as they are used to monitor the energy consumed in a building. Actuators process
sensor information and send controls back to home automation or output based on BEMS
recommendations [31]. Actuators are able to perform requested actions on specific home
elements. Such actuators include actuated blinds, actuated pergolas, smart thermostats,
smart valves, and others [31].

3.3. Protocol Layer

Sensors, energy analyzers and actuators that communicate with each other and ex-
change information with the IoT network use a variety of communication protocols that
are wired or wireless. Those actions are performed by exchanging signals between devices.
The most popular protocols in smart homes are as follows [33]:

(i) Wired (they include protocols like the following):

• Ethernet: a wired communication protocol with susceptibility to electromag-
netic interference and range up to 100 m.
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• ModBus: it is used for transmitting information over serial lines.

(ii) Wireless (they include protocols such as the following):

• Infrared: offers one-way communication and is usually used for remote controls
(e.g., TV control).

• Wi-Fi: a protocol with a 25-m range based on the IEEE 802.11 standard.
• Bluetooth: it is a 10 m range protocol that is often used on mobile phones.
• Thread: devices with this protocol may communicate, even if the Wi-Fi goes down.
• Zigbee: it operates in a mesh network.
• Z-Wave: it operates in a mesh network.
• KNX: a protocol with a decentralized topology.
• NFC: it is a protocol that transmits data over short distances using radio waves.

3.4. Middleware

Middleware is a software extending the capabilities and common services that the
operating system offers to applications. It mostly handles application services, authen-
tication, API management and data management. In addition, it effectively facilitates
the creation of applications by developers and serves as the underlying framework that
interlinks users, data, and applications. MQTT is probably the most popular messaging
protocol for bidirectional communication between IoT components used as middleware. In
terms of IoT development, MQTT protocol is more suitable than others, e.g., HTTP, due
to ease of use, response time, throughput, lower battery and bandwidth usage. Using the
publish/subscribe messaging transport protocol and the use of messaging topics, a client
can publish data to a topic on the server where all interested parties can subscribe to receive
the data. The protocol specification can be found on the MQTT webpage [34].

The protocol uses a server which hosts the MQTT broker. All clients connect to
the broker to publish/subscribe. In the scope of this work, MQTT is used to connect
the system’s components locally and offline by taking advantage of its ability to enable
communication between different programming languages. The broker is installed as
a Linux system [35] service running locally on the edge controller, and binding to the
localhost IP. All of the system’s components, including the Z-Wave network manager,
energy analyzers, all sensor APIs, weather stations when available, and other occasional
entities, are programmed to communicate their data to the broker to ensure robustness and
easier addition of further components.

3.5. Analysis Layer

The analysis layer consists of all processes and application that are utilized to manage,
process and collect data and information coming from the sensors, devices and actuators.
The procedures followed are described in the following subsections.

3.5.1. Data Processing: Firmware Deployment

The edge firmware that establishes the system’s component interconnection is devel-
oped in Python 3 and installed and maintained in the test sites using Git. The firmware
is split into small components, each one assigned with a specific task to ensure system
robustness and easier updates.

The DevOps deployment methodology [36] is applied to the development of the set of
system components, including the edge firmware, hardware, overlay applications, etc. The
DevOps methodology offers continuous system delivery, integration, and deployment.

The edge devices utilize work with Linux-based operating systems. A common
example device is a Raspberry Pi 3/4, which was used in test sites. To ensure that the
system is perpetually working without faults, all required actions, errors, and updates must
be automatically handled and resolved. For the installation of the firmware components,
two techniques are currently used. Components that are standard are installed using docker-
compose , which creates dockerized containers in the system. An example configuration file
can be seen in Figure 3.
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Figure 3. zwavetomqttjs docker compose configuration file.

The components, which are currently developed, are installed using the Linux service
manager (systemctl) as system services. This way, it is easier to monitor the code for errors
and warnings and continuously develop. An example service configuration file can be seen
in Figure 4.

Figure 4. systemctl service file example.

3.5.2. Data Collection—System Entities

Every sensor, energy meter, edge device, and any other devices that produces data, is
considered an entity of the system. The data handler service uses a configuration file that
includes, among other variables, a map of the entities of the specific system instance, using
this map to automatically produce the data format.

In order to facilitate the future addition of system entities in the firmware, each entity
is accompanied by a data format template, which is used by the data handler, in addition
to the map. The template needs to be manually created the first time a new entity is
encountered, and includes predefined information about the entity. Two examples of
templates can be seen in Figures 5 and 6. The templates include all information that the
system keeps from a Z-Wave smart plug and a Z-Wave multi-sensor.
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Figure 5. Z-Wave smart plug.

3.5.3. Data Management and Format

Various sensors in the system produce large amounts of data that need to be formatted
and stored in order to facilitate their use by the applications that run on the edge device.
The main component used to manage the data is the local MQTT broker, which is installed
as a Linux service. The main advantage of MQTT in the scope of data management is
that many different services in various programming languages can publish their data
in the broker and it acts as an abstraction layer. All data-related services are language-
agnostic as long as they publish and retrieve data from the broker. The topic, in which
every bit of information is published, is predefined in order to facilitate the parallel devel-
opment of applications that communicate back and forth. For example, Z-Wave sensors
will post on the topic /zwave/nodeID/commandClass/endpoint/variableName. Specifi-
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cally a Z-Wave smart plug with nodeID = 5 will publish the power variable in the topic
/zwave/5/49/0/Power.

Figure 6. Z-Wave multi-sensor.

One of the installed services is responsible for the data handling. It uses an MQTT
client, which subscribes to the topics, where all the system entities publish data, gathers all
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new data periodically, formats them to a predefined JSON structure and posts them to a
dedicated database.

3.6. Application Layer

This layer consists of all applications, tools, and services that have been developed
to manage the edge resources. Edge-to-edge resource management ensures smaller time
latency, lower consumption, and the direct detection of potential malfunctions. This layer
comprises basic and crucial processes to monitor the IoT network operation and status,
the edge status, taking further actions, such as killing a process that is a waste of memory.
Moreover, it alerts the user (or a software agent) to take further actions if needed, such as
checking the Wi-Fi signal.

The IoT network is constantly monitored by two main applications, the “IoT monitor-
ing” and the “error analysis” one. Those applications run in parallel and detect various
and different problems. The “IoT monitoring” is an instant direct process that detects fatal
errors by the real-time monitoring edge performance status (e.g., RAM and CPU usage).
The “error analysis” is an indirect machine learning process that utilizes all available edge
performance data and information (e.g., edge temperature and number of running pro-
cesses) to detect potential errors. The overall procedure followed by the application layer is
depicted in Figure 7.

Figure 7. Application layer workflow.

3.6.1. Iot System Common Problems/Malfunctions and Healing Actions

Considering the integrated overall IoT system, problems may be detected on either
the edge device (PC, Rpi, etc.) and/or the IoT entities (sensors, actuators, and devices).
The detected problems or malfunctions may be categorized into two main types: those
to which certain remote actions (RA) may be applied, and those that require a physical
intervention (PI). Common IoT system problems/malfunctions [37,38] and respective error
types are summarized in Table 3:
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Table 3. Common problems/malfunctions and healing actions.

Number Resource Error Draft Description Type

Ed1 Edge General Slowdown Most of the applications take
longer time to execute RA

Ed2 Edge Keeps Disconnecting from Wi-Fi The edge is disconnecting from
the WiFI at least twice a day PI

Ed3 Edge Slow Internet The internet response is slow PI

Ed4 Edge High Temperature The edge is overheating RA

Ed5 Edge Abnormal CPU Usage The CPU usage is more than 90%
for more than 10 min RA

Ed6 Edge Abnormal RAM usage RAM usage is more than 90% for
more than 10 min RA

En1 Entities Low battery The battery is less than 10% PI

En2 Entities No values The sensor does not push data
over a day PI

En3 Entities Stack The sensor sends a constant value RA

EdEn1 Edge/Entities Error analysis Detected error by the error
analysis process RA

3.6.2. Iot Monitoring

The “IoT monitoring” application is used to monitor edge performance by exploiting
certain built-in functions. Based on the most common errors (Section 3.6.1) and available
functions, the operational status of the edge can be monitored non-stop 24/7, showcasing
the edge performance. The procedures selected to monitor performance are as follows:

• cpu_temperature. The CPU temperature refers to the temperature of the core, which
is considered a crucial aspect of the edge’s performance. An edge operating with an
increased heat range will not only slow its performance, but will eventually cause the
system to shut down. The CPU temperature is considered abnormal if it exceeds the
normal levels for more than 2 min.

• cpu_usage_percent. It refers to the percentage of CPU that is used by running pro-
cesses, both system and user processes. Normally, the CPU generates about 30% of
usage. The CPU usage is considered abnormal if it exceeds the normal levels by more
than 10 min.

• virtual_memory_usage. Virtual memory utilizes software and hardware, enabling the
edge to balance physical memory shortages, temporarily transferring data from (RAM) to
disk storage. High virtual memory usage will eventually slow down edge performance.

• disk_usage. It indicates how much the edge hard disk is utilizing to perform all
processes. A high disk usage may cause serious problems (e.g., higher load times,
stuttering, and low frame rate (FPS)) and even completely damage the hard-drive if it
is constant.

• network_usage. Monitors the network bandwidth and measures data usage in megabytes
between time intervals. In edge devices with limited network usage plans, the mea-
surement can help reduce the usage to prevent reaching the monthly plan limit.

• number_o f _processes. It refers to all the processes that utilize the resource CPU (i.e.,
into the “RUNNING” scv tate). This procedure is mainly an insight of the resource
CPU utilization.

For all the above procedures, values within the predefined levels are considered
normal, while values outside this range are considered fatal errors. The selected procedures
to monitor the performance are summarized in Table 4. The IoT monitoring automatically
performs all the actions (Section 3.6.4) when the monitored procedures exceed normal levels.
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Table 4. Procedures to monitor edge performance.

Procedure Normal Limits

cpu_temperature
−40 ◦C to 85 ◦C (Rpi)
40–65 ◦C (Desktop)
40–60 ◦C (Laptop)

cpu_usage_percent 20–70%

virtual_memory_usage 10–75%

disk_usage 0–85%

network_usage N/A

number_of_processes N/A

3.6.3. Error Analysis

In this sub-section, a review of the long short-term memory networks (LSTM) and the
autoencoder network are presented. Additionally, the proposed algorithm developed for
anomaly detection is illustrated.

Long short-term memory networks (LSTM)

LSTM is a type of recurrent neural network (RNN) which is capable of handling long
memory problems. It takes the shape of a series of repeated modules of neural networks,
with three control gates in each module: memory cells, memory blocks, and gate units [39].
The different modules of an LSTM are illustrated in Figure 8. LSTM has better long-term
information memory than RNN, can learn long-term dependence information, and does
not contain the vanishing gradient problem that plagues traditional RNN networks [40].

Figure 8. A module of LSTM network [34].

Like RNN, LSTM reads a series of input vectors x = {x1, x2, . . . , xt, . . . }, where xt ∈ Rm

represents an m-dimensional vector of readings for m variables at time instance t. The first
step of an LSTM module is to decide what information will be discarded from the cell
state by generating a number within [0, 1]. The procedure is described by the following
formula [41]:

ft = σ1(W f ∗ [ht−1, xt] + b f ), (1)

where σ1 represents the sigmoid function, W f is the weight matrices, b f the bias of the
forget gate and ht−1 is the output in state t.

The next step of an LSTM is to decide which information is going to be stored in
the cell state. The process is split into two parts. The first part includes a sigmoid layer
called the “input gate layer”, it, which decides which values are to be updated. The second
includes a tanh layer, which is used to create a vector of new candidate values, C̃t, that
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could be added to the state. The two parts are combined to create an update to the state.
The process is described by formulas [41]

it = σ2(Wi ∗ [ht−1, xt] + bi), (2)

C̃t = tahn(Wc ∗ [ht−1, xt] + bc) (3)

and
Ct = ft ∗ Ct−1 + it ∗ C̃t, (4)

where Wi, bi and Wc, bc are the weight matrices and the biases of the input gate and the
state of the memory cell, respectively. Finally, the output gate is defined [41]:

ot = σ3(Wo ∗ [ht−1, xt] + bo), (5)

ht = ot ∗ tahn(Ct), (6)

where Wo and bo are the weight matrix and the bias of the output gate.

Autoencoder Network

Autoencoder is a neural network that aims to learn a compressed representation from
input data. It is an unsupervised method, although it is trained using supervised learning
methods, referred to as self-supervised. It consists of input and output layers, encoder and
decoder neural networks, and a latent space [42]. The encoder network receives data from
the input layer and compresses them into the latent space, whereas the decoder network
decompresses them and transmits them to the output layer.

The main objective of the autoencoder is to reduce the data dimensions of inputs while
maintaining the main information of the data structure. Specifically, using as input x ∈ Rm,
the encoder compresses x to an encoded representation of z = e(x) ∈ Rn. The decoder recon-
structs this representation into an output x̂ = d(z) ∈ Rm. Additionally, the autoencoder is
trained by minimizing the reconstruction error as described in the following equation [42]:

L =
1
2 ∑

x
‖x− x̂‖2. (7)

There are several different types of autoencoders that have been proposed in the litera-
ture, including the LSTM autoencoder, convolutional autoencoder, and vanilla autoencoder.
The LSTM autoencoder consists of LSTM modules in both the encoder and decoder mod-
ules. LSTMs are well-suited for time series forecasting or anomaly detection due to their
ability to learn patterns in data over long sequences [43]. Generally, as mentioned in [44],
an encoder–decoder model in anomaly detection applications learns the representation of
the data using only the normal sequences and then uses the trained model to reconstruct
them. When the model is fed with an abnormal sequence, it might not be reconstructed
well, leading to a high error. Several studies [45,46] have demonstrated the use of the LSTM
autoencoder for anomaly detection in time series data.

Anomaly Detection Method

Figure 9 presents the method implemented for anomaly detection application. It
consists of two LSTM nodes for the encoder and two for the decoder (AE-LSTM). The train-
ing phase of the method includes data with normal points which are scaled using the
standardization method. On the other hand, the test phase includes data with normal and
anomaly points. Ten days from twelve different Rpi devices were used for the training,
with measurements every 10 s. The used dataset for the training and test procedures had
the form of (samples × time steps × variables).

The input data are split into smaller parts using a sliding window algorithm, and each
part is fed to the encoder layer. For the sliding window, the number 3 was selected as the
optimal value. The encoder of the proposed method includes two LSTM nodes with 256
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and 64 neurons, respectively. The output from the encoder is passed through the latent
space representation, which is operated as a dimension reduction method. Additionally,
two LSTM nodes were used for the decoder layer with 64 and 256 neurons, respectively.
The ReLU activation function was used for both the encoder and decoder layers [47]. Finally,
the reconstructed output is available from the decoder layer.

Figure 9. Anomaly detection method based on reconstruction errors (AE-LSTM).

The proposed method was trained using the Adam optimizer for 200 epochs with
learning rate 1e−2. Subsequently, the dropout regularization with a value of 0.2 was applied
after the output of the encoder and the decoder to improve its accuracy and to avoid over-
fitting.

The detection process is held in the final step, and it includes the calculation of the
error between the actual and predicted time series as well as a threshold value, which is
used to classify the data as normal or anomaly points. The error is calculated using the
mean absolute error (MAE), the predicted value x̂, and the true one x [42]:

MAE =
D

∑
i=1
|x− x̂|. (8)

Finally, based on the three-sigma statistic rule, a threshold value was selected to
determine whether the prediction errors represent anomalies of the system [48]:

Threshold_value = mean(squared_error) + 3 ∗ std(squared_error) (9)

Evaluation Metrics

In order to evaluate the performance of the anomaly detection method, the measures
of precision, accuracy, recall, and f-score were used. The precision and recall of a classifier
are combined into one metric called the F-score. Sensitivity is a metric that measures the
ability of the model to predict the true positives of each class.

The formulas of the previous metrics are displayed in the equations below. TP (true
positive) implies that an anomaly is detected and that the anomaly exists in the actual time
series, FP (false positive) means that anomalies are detected when there is no anomaly
in the actual time series, and FN (false negatives) means that no anomalies are detected,
although anomalies exist in the actual time series:

accuracy =
TP + TN

TP + TN + FP + FN
(10)
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precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

f − score =
2 ∗ precision ∗ recall

precision + recall
(13)

3.6.4. Iot Actions

Based on the error and the type (Section 3.6.1), certain healing actions are concerned.
For all the PI errors, corresponding messages are sent to the end-users to inform them for
the reported problem while urging them to take further steps. On the other hand, for all
the RA errors, remote actions are immediately applied to update and heal the IoT network
status. Moreover, it was foreseen to take periodic actions (PeriodicNo) even when an error
was not reported or detected to prevent system brake-downs. All actions are summarized
in Table 5.

Table 5. Respective actions per IoT error.

Number Action

Ed1 Kill all Python processes
Ed2 User alert
Ed3 User alert
Ed4 Restart the system
Ed5 Restart the system
Ed6 Restart the system
En1 User alert
En2 Kill all Python processes, auto-restart processes
En3 Kill all Python processes, autorestart processes

EdEn1 Kill all Python processes, autorestart processes
Periodic1 Autorestart every 24 h
Periodic2 Autoupdate every 1 week
Periodic3 Autoupgrade every 1 month

3.6.5. User Alerts

If the reported error is PI, the selected messages are sent to the user. The suggested
actions are summarized in Table 6. The most feasible way to alert a user is by sending
messages using a process to push automatic mails to the end-user with a certain context.
Otherwise, pop-up alerts may be pushed to the end-users’ mobile phone.

Table 6. Respective messages per IoT error.

Number Message Context

Ed2 Please check your WiFi. Trying restart your router. Else, contact
your internet provider.

Ed3 Please check your internet. Trying restart your router.
Else, contact your internet provider.

En1 Low battery level on XX sensor. Please change the battery.
Else, contact your building manager.

3.7. Semantics Layer and Data Center
3.7.1. Semantics: Web of Things (WoT) Thing Description

In order to reduce ambiguity and facilitate interoperability between various edge
devices and other external systems (Figure 10), the SEDGE architecture follows the web of
things (WoT) architecture guidelines [49]. WoT refers to the W3C standards of REST, RDF,
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and HTTP, which facilitate the efficient interaction and usability of components existing
in an IoT network. Edge devices are semantically described in a human-readable and
machine-understandable representation, which includes semantic metadata about them,
serialized in JSON-LD format. The descriptions are based on standardized vocabularies and
ontologies that allow external systems to interpret the capabilities of several interoperating
and collaborating edge devices in a unified manner. Edge devices are exposed and open
to the web through a WoT scripting API that makes accessible the available interactions
provided in the description.

Figure 10. WoT to digital twin architecture.

The following example of the description of SEDGE devices in JSON-LD format
demonstrates the available properties of the edge devices monitored, the events that can be
recognized, and the actions that can be executed for healing the malfunctioning devices
(Figure 11). The example uses the SAREF core ontology for the semantic description of
the edge device (currently, an edge device is not specifically represented in any of the
well-known related ontologies; thus, saref:Device is used).

Figure 11. Example of the description of SEDGE devices in JSON-LD.
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3.7.2. Data Center: Communication with Other Components

As described in Section 3.7.1, each of the SEDGEs may communicate with other
components, such as digital twins and BEMS. All the information of a SEDGE may be
saved in a cloud database and processed by a cloud server. Furthermore, BEMS will exploit
this information to make decisions and send controls back to the SEDGE utilizing the WoT.
Likewise, the SEDGE WoT may be used to push data to a digital twin for sensors’ real-time
data visualization.

4. Experimental Results

The experiments took place in a desk office in Thessaloniki, Greece. An IoT network
was configured including different protocols (Figure 12). The network was set up following
the methodology described above and certain tests and experiments were conducted.
In this section, the selected underlying hardware components are presented, along with the
protocols and sensors utilized. Furthermore, the results from the monitoring cycle, error
analysis, and experiments are addressed.

Figure 12. Sensors and devices installation points.

4.1. Underlying Hardware Components
4.1.1. Edge Device

The edge utilized is a Raspberry Pi (Rpi) 3 Model B+ (Table 7). A Rpi offers many
advantages and also ensures that the final system is lightweight and therefore operates on
it. The Rpi is low-cost, has big processing power, and supports Linux and Python, offering
many possibilities to build embedded applications.

To support various protocols, most of the sensors and devices use a dongle stick that
allows the communication between them and the edge as depicted in Figure 13.

4.1.2. Devices, Sensors, and Protocols

The devices and sensors used are presented in Table 8. The IoT devices consist of
three different protocols (i.e., ZigBee, Z-Wave, and ModBus), and they are either wired
or wireless. The objective is to test that the proposed SEDGE methodology may support
heterogeneous sources.
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Table 7. Raspberry Pi 3 technical specifications.

Microprocessor Broadcom BCM2837 64bit Quad Core Processor

Processor Operating Voltage 3.3 V

Raw Voltage input 5 V, 2 A power source

Maximum current through
each I/O pin 16 mA

Maximum total current
drawn from all I/O pins 54 mA

Flash Memory
(Operating System) 16 Gbytes SSD memory card

Internal RAM 4 Gbytes DDR2

Clock Frequency 1.2 GHz

GPU

Dual Core Video Core IV® Multimedia Co-Processor.
Provides Open GLES 2.0, hardware-accelerated
Open VG, and 1080p30 H.264 high- profile decode.

Capable of 1Gpixel/s, 1.5Gtexel/s or 24GFLOPs
with texture filtering and DMA infrastructure.

Ethernet 10/100 Ethernet

Wireless Connectivity BCM43143 (802.11 b/g/n Wireless LAN
and Bluetooth 4.1)

Operating Temperature −40 ◦C to +85 ◦C

Figure 13. Edge: Raspberry Pi with dongle sticks.

Table 8. Sensors and devices information.

Type of Sensor Number Model Protocol Type

Door/window 3 Fibaro FGDW-002 Z-Wave Wireless

Motion sensor 1 Motion Sensor
(FGBHMS-001) Z-Wave Wireless

Temperature/Humidity 1 SONOFF SNZB-02 ZigBee Wireless

Smart meter 1 Carlo Gavazzi EM341 ModBus Wired

Smart Plug 3 Fibaro FGWPF-102 ZW5 Z-Wave Wireless
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4.2. Data Set Description for Edge Monitoring Status

A set of data was collected using measurements from 12 different Rpi devices. The raw
data that describe the normal and anomaly events were acquired at regular 10-s intervals.
The experiment took place in different working and residential areas. In total, 103,680 data
points were collected, including information of CPU temperature (◦C), CPU usage (%), disk
usage (%), and virtual memory usage (%). Table 9 presents the necessary statistics for the
used variables.

Table 9. Dataset statistics.

Stats CPU Usage CPU
Temperature Disk Usage Virtual Memory

Usage

Count 103,680 103,680 103,680 103,680
Mean 1.457 54.249 5.526 13.325
Std. 0.5150 1.606 0.044 0.416
Min. 0.70 48.686 5.50 12.30
25% 1.20 53.556 5.50 13.10
50% 1.40 54.043 5.50 13.40
75% 1.60 55.017 5.60 13.60
Max. 42.10 63.783 5.70 15.60

As the proposed autoencoder (AE) used a gradient descent method as an optimization
technique, the input data had to be scaled. A standardization method was used, shifting
the distribution of each attribute to have a mean of 0 and a standard deviation of 1.

4.3. SEDGE Real-Time Data Retrieval Test

To ensure and test that real-time data are retrieved, they are pushed through an API to a
cloud database [50], following the methodology described in Section 3.5. An example of the
response is shown in Figure 14. The response is evaluated based on the received timestamp
that must be the current, and also a check from the Z-Wave network that the value posted
is also the current. It may be observed that the variables are named in a similar way as in
Section 3.5.3. Each variable indicates roomNumber_nodeID_typeO f Sensor_Variable_Unit.

Figure 14. Example of JSON response.
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4.4. SEDGE Real-Time Monitoring Test

TensorFlow Lite (TFL) [51] is an open-source machine learning inference framework,
which is the lightweight version of TensorFlow that is specifically designed for mobile/IoT
devices and embedded platforms. TFL models are converted into micro models using
the TensorFlow Lite converter Python API [52]. The proposed model was developed in
the TensorFlow framework and was subsequently converted to a TFL model before being
loaded to the RPi.

As mentioned in Section 3.6.3, datasets with normal [53] and anomaly points were
used for the test phase. Normal monitored edge values are depicted in Figure 15. As it may
be observed in this figure, different periods are added for each of the monitored values
to observe the sensitivity patterns of all the reported data. As it was difficult to detect
anomalies in a normal operation of an RPi, different types of anomalies were simulated
based on Table 4. Thus, anomalies in time series were identified based on CPU temperature
with values greater than 85°C, CPU usage with values greater than 70%, virtual memory
usage with values greater than 75%, and disk usage with values greater than 85% as well
as previous values before the measurements exceeded the defined threshold. Examples of
normal and simulated anomalies points are illustrated in Figure 16.

Table 10 presents the performance of the proposed model in terms of accuracy, preci-
sion, and recall as well as F-score. Additionally, a comparison with state-of-the-art models,
including AE-LSTM with one layer in the encoder and decoder layer, isolation-forest
(IF) [54], one-class SVM (OCSVM) [55], local outlier factor (LOF) [56] and the DBSCAN
method [57] are presented. As it can be observed, the model selected in this paper had
an accuracy of 0.994 with an F-score of 0.849, a precision of 0.939, and a recall of 0.775,
among the highest among the six presented models. Additionally, the execution time was
237 ms, and the total model size was 2.8 Mb.

One critical parameter which needs to be considered is the threshold value for the
AE-LSTM method and the contamination for the IF, OCSVM and LOF [58]. To determine
the threshold value of signals as normal or anomalous, the reconstruction error values were
used for the AE-LSTM. As mentioned in Section 3.6.3, the MAE was used in order to detect
the anomaly points. The results for each variable (CPU temperature, CPU, usage, disk usage,
and virtual memory usage) are presented in Figure 17. The red lines depict the predicted
values that are the reconstructed values for each variable, as described in the methodology
(Section 3.6.3). In Figure 17, the nearly horizontal lines represent how the Rpi would
operate under normal conditions. As it may be observed, the reconstructed/predicted
values illustrate accurately the normal Pi conditions. The blue lines illustrate the real
values, which were collected from the Rpi (simulated error). Any deviation between those
two lines indicates that the retrieved values are an anomaly point, and therefore, they are
considered malfunctions. The black marker indicates the real anomaly points, while the red
illustrates the predicted anomaly points. Additionally, there are bar plots for each variable,
which present the reconstruction error using the MAE metrics as well as lines with the
threshold value, which is selected using the three-sigma statistic rule. As it can be observed,
the proposed method is able to identify the majority of anomaly points at the beginning
of the error phase. Therefore, the selected algorithm is efficient for error detection in an
IoT network.
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Figure 15. Examples of normal edge monitored data.

Figure 16. Examples of normal-simulated/anomalous data.

Table 10. Comparison of the proposed model with state-of-the-art methods.

Model Accuracy Precision Recall f-Score Parameters

AE-LSTM (1 Layer on
the Encoder and the

Decoder)
0.983 0.913 0.756 0.829 Threshold = 8.628

AE-LSTM 0.994 0.939 0.775 0.849 Threshold = 10.628

Isolation Forest (IF) 0.965 0.881 0.751 0.822 Contam. = 0.001

One-Class SVM
(OCSVM) 0.975 0.922 0.678 0.792 Contam. = 0.005

Local Outlier Factor
(LOF) 0.967 0.912 0.732 0.781 Contam. = 0.001

DBSCAN 0.963 0.873 0.750 0.812 eps = 0.05,
metric = “euclidean”
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Figure 17. The real and reconstructed or predicted time series of the proposed model with real and
predicted anomaly points.

5. Conclusions

There is not a unique, established IoT network architecture; therefore, the complexity,
number of layers, number of sensors, and use cases of each architecture vary. Nevertheless,
it is fundamental that the IoT architecture must support several protocols, maintain inter-
operability and ensure perpetual monitoring. Within this context, this study presents a
suggestion for an IoT edge-to-edge (SEDGE) architecture that can link multiple communica-
tion technologies, establish interoperability with other systems and edges while supporting
auto-healing actions for monitoring stability.

The main objective of SEDGE is to integrate all necessary features into an autonomous
gateway and make it simple to link any gateway to the BMS systems. To allow future
SEDGE expansion and modification to incorporate new technologies and/or protocols,
each gateway’s network is robustly integrated with several sensor technologies. Moreover,
interoperability is provided via an extra semantically enriched layer, providing the capabil-
ity for the SEDGE to communicate with heterogeneous systems and sources. Moreover,
specific healing actions are applied at the edge depending on the type of the error.
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SEDGE healing actions are of two types, those for which automated actions may be
applied (e.g., kill processes) and those for which the end user must take further actions (e.g.,
the Wi-Fi network is unstable). Furthermore, continuous monitoring of SEDGE is applied,
and an AE-LSTM algorithm detects all the problematic situations. The selected algorithm
is 99.4% efficient and is more accurate than other tested algorithms. Finally, to ensure that
fatal errors will not affect the SEDGE, automated actions are performed if the monitored
SEDGE processes exceed the predefined limits.

Future actions include the integration of new connectivity protocols, such as an M-bus
protocol and weather stations that usually communicate with a Wi-Fi protocol. Additionally,
the semantics layer will be enriched with more information. Finally, extensive experiments
will be made on more SEDGEs, and more auto-healing actions will be provided.
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