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Abstract: Investigating post-earthquake surface ruptures is important for understanding the tectonics
of seismogenic faults. The use of unmanned aerial vehicle (UAV) images to identify post-earthquake
surface ruptures has the advantages of low cost, fast data acquisition, and high data processing
efficiency. With the rapid development of deep learning in recent years, researchers have begun using
it for image crack detection. However, due to the complex background and diverse characteristics of
the surface ruptures, it remains challenging to quickly train an effective automatic earthquake surface
rupture recognition model on a limited number of samples. This study proposes a workflow that
applies an image segmentation algorithm based on convolutional neural networks (CNNs) to extract
cracks from post-earthquake UAV images. We selected the 16-layer visual geometry group (VGG16)
network as the primary network architecture. Then, we improved the VGG16 network and deleted
several convolutional layers to reduce computation and memory consumption. Moreover, we added
dilated convolution and atrous spatial pyramid pooling (ASPP) to make the network perform well in
the surface crack identification of post-earthquake UAV images. We trained the proposed method
using the data of the MS 7.4 Maduo earthquake and obtained a model that could automatically
identify and draw small and irregular surface ruptures from high-resolution UAV images.

Keywords: deep learning; earthquake surface ruptures; crack detection; image semantic segmentation

1. Introduction

Earthquakes directly manifest the latest activities of active faults, and strong earth-
quakes can produce tens to hundreds of kilometers of surface ruptures and various fault-
displaced landforms [1]. Coseismic surface rupture zones refer to the surface rupture and
deformation of the epicenter fault, which is characterized by a narrow band along the
seismogenic fault [2]. The spatial distribution and deformation characteristics of coseismic
rupture zones are the intuitive geomorphological manifestations of deep fault activity on
the surface of the earth. They record earthquake ruptures and fault movements and reflect
regional stress and crustal movement [3]. Therefore, investigating post-earthquake surface
rupture zones is important for understanding the tectonics of seismogenic faults.

Sub-meter optical remote-sensing images (Quickbird, WorldView-2/3, aerial remote-
sensing images, and unmanned aerial vehicle (UAV) images) can be used to identify
the linear traces of steep seismic sills, most surface rupture basic units, and the plane
combination characteristics of strike-slip earthquakes, making them an ideal information
source for the rapid identification of post-earthquake surface ruptures [4]. In particular,
UAV images with a centimeter-level spatial resolution can identify all types of surface
ruptures at a centimeter scale. Furthermore, UAV photogrammetry technology applied
in terrain surveys is low cost, highly safe, and easy to operate. The UAV data are easy to
obtain and process. The structure from motion (SFM) algorithm of PhotoScan software can
quickly process UAV photos into centimeter-level digital elevation models and orthophoto
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images. The results can meet the needs of the quantitative parameter extraction of coseismic
surface ruptures and structure research in an earthquake emergency. Relevant scholars
have used high-resolution UAV data to analyze giant coseismic surface rupture zones [5,6].
Their analysis results provide direct evidence for ascertaining the geometric, kinematic, and
dynamic characteristics of the seismogenic fault. However, artificial visual interpretation
and traditional image processing are the primary methods for finely interpreting high-
precision UAV photos of earthquake surface ruptures. Manual visual interpretation is
time-consuming and labor-intensive, and its recognition accuracy is highly dependent
on the ability of experts. Ideally, traditional image processing methods, such as edge
detection [7] and Gabor filtering [8], only have high detection accuracy if the crack has good
continuity and high contrast. However, external disturbances can easily affect the results of
traditional methods [9]. Unfortunately, the distribution of cracks and noise interference are
complex and diverse, which leads to poor results in traditional crack detection algorithms.

The crack identification method based on deep learning does not require the pre-
definition of crack features or image preprocessing but learns and automatically extracts
features through samples to identify and extract cracks. Recently, deep learning has
achieved great success in image processing and other fields, and several results have been
achieved in combination with deep learning for crack identification (such as road crack de-
tection [10], bridge inspection [11], house crack detection [12], and fault identification [13]).
Hsieh and Tsai [14] divided the current crack identification and extraction algorithms
into three categories based on deep learning: (1) image classification [15,16], (2) target
detection [17], and (3) image segmentation [18]. However, neither the image classification
algorithm nor the target detection algorithm can directly extract cracks from the image at
the pixel level. The two methods must combine traditional image segmentation techniques,
such as edge detection, to complete the pixel-level extraction of cracks. However, com-
pared with traditional digital image processing technologies, these algorithms can remove
most background noise in the image for better crack identification results. The image
segmentation algorithm can directly extract cracks from the original image. In addition,
this algorithm can generate pixel-level predictions of cracks in the image. In other words,
each pixel in the image is classified as cracked or non-cracked.

This study applies the image segmentation algorithm based on deep learning to extract
cracks from post-earthquake remote-sensing images. The fully convolutional network
(FCN) model [19] is the most commonly used model for crack segmentation. FCN converts
the fully connected layer into a convolutional layer on the basis of the VGG network, and
an upsampling operation is performed on the feature map by transposed convolution.
Then, the feature map is restored to the original size so that each pixel of the image is
predicted and the crack image segmentation is realized. Liu et al. [20] applied the U-
Net network to concrete crack detection; compared with the FCN network, the U-Net
network can achieve higher accuracy through a smaller training set. U-net is an improved
image segmentation network based on FCN. The network adopts a symmetric structure
of encoding–decoding and uses skip connections to fuse low-level semantic features and
high-level semantic features. U-Net greatly improves the segmentation accuracy of the
model and is widely used in medical image segmentation [21]. DeepCrack [22] is a new
model that utilizes a deep hierarchical neural network for crack segmentation at the pixel
level. The DeepCrack model uses the first 13 layers, which correspond to the first 13 layers
in VGG-16, but the fully connected layers and fifth pooling layer are removed to achieve
meaningful side-output with different scales and decreased memory requirements and
computation time.

Earthquake surface rupture identification based on deep learning is a challenging issue.

(1) Compared with crack identification in roads, houses, and concrete buildings, the
background of post-surface earthquake surface rupture images is more complex.
The surface ruptures of the Maduo MS 7.4 earthquake are distributed in different
geographic regions, such as mountains, grasslands, swamps, alluvial fans, and dunes.
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(2) The characteristics of post-earthquake surface ruptures have complex shapes and
changeable directions, which commonly have oblique, arc-shaped, and cluster-shaped
distributions. In addition, post-earthquake surface ruptures can appear in any position
and direction, making them difficult to distinguish.

This study applies the deep learning semantic segmentation method to segment the
remote-sensing images of earthquake surface ruptures. In addition, we create a series of
improvements to the VGG16 model [23] based on the characteristics of post-earthquake
surface rupture images to improve the extraction accuracy of surface ruptures in the remote-
sensing images. Based on the proposed deep learning method, we could automatically
identify and draw small and irregular surface ruptures from high-resolution UAV images
to achieve the high-efficiency, high-precision, and intelligent detection of post-earthquake
surface rupture damage.

2. Data
2.1. Study Area

An MS 7.4 earthquake occurred in Maduo County, Guoluo Tibetan Autonomous
Prefecture, Qinghai Province, on 22 May 2021. This earthquake ruptured along the southern
branch of the known East Kunlun Fault Zone and the Jiangcuo fault [24].

The coseismic surface ruptures were an oblique combination of tension, tension-shear,
shear, compression, bulge, extrusion ridges, and goose-shaped tension fissures (Figure 1).
These ruptures were distributed in mountainous areas, grasslands, swamps, alluvial fans,
and several dunes at an altitude of 4200–4600 m (Figure 2).
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2.2. UAV Images and Digital Orthophoto Map (DOM)

After the Maduo MS 7.4 earthquake on 22 May 2021, our research team used medium-
sized hybrid-wing and small multi-rotor UAVs to conduct photogrammetry of the post-
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earthquake surface rupture (Figure 1). We took the aerial photos using a CW-15 DAPENG
UAV, which carries a 61-megapixel CA103 ortho camera. CWCommander application
software is used for flight planning and monitoring. In order to improve data accuracy,
we set up the RTK ground base station to calibrate the UAV Pos attitude data. Using
PhotoScan software, we obtained DOMs by quickly stitching the UAV photogrammetry.
The quality of UAV photography images depends on external conditions, such as the
terrain of the photography area, wind directions, flight altitudes, the overlap of adjacent
photos, and the number of photos in a specific area. These factors result in different
resolutions of UAV images, especially on a high plateau with undulating and complex
terrain and changeable weather [25]. Furthermore, we chose the densest processing for
point cloud generation to obtain high-accuracy DOMs. As a result, the final DOM resolution
of the entire ruptured segment was 2–7 cm/pix, and the resolution of most images was
3–5 cm/pix. The centimeter-level high-resolution DOM could clearly show the spatial
distribution of the coseismic surface rupture zone, based on which the surface rupture can
be accurately interpreted. Figure 3 shows the image interpretation and its corresponding
field situation.
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2.3. Machine Learning Samples

Machine learning samples are the basis of the deep learning model, and their quantity
and quality can directly affect the training of the deep learning model. The model learns
the target features through input samples and adjusts parameters in real-time to match
the input samples during the training process. How well the model learns the features is
directly related to its overall performance. There are currently no relevant public datasets
for identifying earthquake surface rupture targets; therefore, collecting relevant samples
and making sample sets of earthquake surface ruptures before detection is necessary.

Based on the high-resolution UAV images and field survey data, we used ArcGIS
software to mark the fractured area manually. Unfortunately, directly loading images to the
deep learning network would cause memory overflow; thus, the image must be cropped
into patches before inputting them into the network. The repetition rate of the cropping
sliding window was 0.1, and the final image block size was 256 × 256.

Manually labeled samples are limited, and the post-earthquake rupture targets of the
image are small compared to unbroken areas. As a result, we could only acquire a limited
number of labeled rupture samples. For deep learning models, too few training samples
can lead to model overfitting. Therefore, increasing the number of samples through sample
enhancement is necessary to avoid such situations. We applied methods to augment the
data, such as image rotation, image flip, color transformation, and image stretching [26].
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3. Methods
3.1. Deep Learning Network Model

After preparing the sample data, a suitable deep learning network must be built for
identifying surface cracks in high-resolution UAV images. The purpose is to identify tiny
linear targets, indicating surface cracks, using the trained deep learning model in the
UAV image.

Therefore, the receptive field should be increased to obtain more image features and
combine multi-scale information to achieve better segmentation results when designing the
network. A good network structure can achieve qualified results with a small number of
samples if we balance the cost of manual interpretation of the samples and the timeliness
of the post-earthquake disaster assessment.

This study selected the 16-layer visual geometry group (VGG16) network as the
primary network architecture. Then, we improved and optimized the network, constructing
a deep learning semantic segmentation network that can directly realize the end-to-end
recognition of surface cracks in high-resolution UAV images. The VGG network series is a
very mature network structure that has shown outstanding results in image classification
and object detection tasks [27].

We improved the VGG16 network and deleted several convolutional layers to reduce
computation and memory consumption. Moreover, we added dilated convolution and
spatial pyramid pooling (ASPP) to make the network perform well in surface crack identifi-
cation. The network architecture is shown in Figure 4. The comparison of the number of
parameters and Giga Floating Point Operations (GFLOPs) is shown in Table 1. After the
improvement, our network only contained about 2.54 million parameters and performed
6.4 GFLOPs.
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Table 1. Parameters and GFLOPs for common models and our network.

Model Parameters (Million) GFLOPs

AlexNet 60.97 0.7

VGG-16 138.36 15.5

VGG-19 143.67 19.6

ResNET50 25.61 3.9

ResNET101 44.66 7.6

Our Net 2.54 6.4

The following improvements were made based on the VGG16 network architecture.
First, the network was transformed into an FCN to achieve end-to-end semantic segmen-
tation. Then, the step of the 3 × 3 convolution kernel was set as 1 in the front part of the
entire network. The next convolutional layer consisted of convolution kernels with a size
of 1 × 1 and a step of 1.

The filter size of the pooling layer was 2 × 2, and the step of the Pool1 layer was 2.
However, to achieve dilated convolution, we set layers Pool2 and Pool3 (step of 1) and
adopt the rectified linear activation function (ReLU). The first and second layers of the
entire network still used standard convolution.

For a larger receptive field in the extracted feature map, the third convolutional
layer used dilated convolution. In addition, to alleviate the grid effect caused by dilated
convolution, the network adopted a hybrid dilated convolution (HDC) design [28].

To identify small and large objects in the crack identification process, we designed the
dilation rate to increase from low to high and follow the rules proposed by Wang et al. [28].
Therefore, we set dilation rates of [1,3,5] for each layer. Then, to implement an FCN, we
applied the convolution kernels with a size of 1 × 1 and convolutions with a step size of
1 for the fourth, fifth, and sixth layers of the original fully connected layer.

We used an atrous spatial pyramid pooling (ASPP) module to achieve multi-scale
fusion and obtain more information [29] (Figure 5). In the FC4 layer, four sets of different
dilated convolutions with dilation rates of 6, 12, 18, and 24 were used, respectively, the FC5
layers and FC6 layers were connected, and the fusion of pixel addition was performed.
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Finally, the SoftMax function was applied to obtain the predicted probability label
map. Good results can be obtained by direct bilinear upsampling on the probability map.
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The label class determines the segmentation results of cracks in high-resolution drone
images with the highest SoftMax probability at each pixel.

3.2. Training Methods of Models

After building the model architecture, we set the model initialization method, activa-
tion function, loss function, and parameter update method. During the training process,
the Xavier method was applied to initialize all the training values; downsampling was
performed by max pooling for the pooling layer, and the ReLU activation function was used.

In addition, the dropout method was used to reduce overfitting in the neural network.
Each class of the SoftMax loss function can output a normalized probability in the last layer
of the network. Therefore, we classified the classes by their probabilities and restored the
classification results to the original image size through bilinear upsampling. We used the
adaptive moment estimation (Adam) optimizer to train our network.

For each pixel in the input image of the high-resolution UAV image, the output of the
corresponding training model is expressed as the posterior probability that the pixel belongs
to the crack. Our crack identification was a pixel binary classification task performed on
high-resolution UAV images. Typically, the binary segmentation task for common images
is to use a binary cross-entropy loss function, as shown in Equation (1), where N denotes
the number of pixels in the input image. The term yi represents the true binary labels and
pi represents the prediction probabilities computed from the SoftMax function.

L = −∑i=N
i=0 yilog(pi)− ∑i=N

i=0 (1 − yi)log(1 − pi) (1)

For most classification problems, the deep learning samples have a balanced distri-
bution and apply regular cross-entropy loss functions. However, crack identification in
high-resolution UAV images is a binary classification issue, and the number of cracks and
non-cracks is highly unbalanced, i.e., there are significantly more non-crack samples than
crack samples. Zero prediction is a good solution for loss function convergence in crack
segmentation problems. Therefore, by applying the regular cross-entropy loss function, the
network would quickly converge in the wrong direction and make many zero predictions.
To solve the problem of unbalanced samples, we weighted the loss function and used the
weighted cross-entropy loss [30] function, which can be expressed as:

LW = −α ∑i=N
i=0 yilog(pi)− (1 − α)∑i=N

i=0 (1 − yi)log(1 − pi) (2)

where α is the ratio of non-cracks to the samples in the training data; the network model
can converge accurately by adjusting the weights in the loss function.

4. Results and Analysis

After determining the deep learning network and training method, we used the data
from the study area to train and test the network. The experimental test platform was
a Dell Precision T3610 motherboard with Intel(R) Xeon(R) CPU E5-1660 v2@3.70 GHz
(12 CPUs), ~3.7 GHz, and an NVIDIA Quadro K600 graphics card. The environment
for deep learning was built using the Google deep learning framework TensorFlow with
a primary programming language, Python. In addition, GPU acceleration was used to
perform high-performance computing.

The experimental data of two regions, maduoDom1 and maduoDom2, were used
for testing. As shown in Figure 6, the red lines are artificially marked surface cracks. In
the maduoDom1 data, we cropped 1155 high-resolution UAV images and removed the
data without cracks. Finally, we extracted 507 images with cracks, randomly selected
480 UAV images with crack labels for training, and used the remaining 27 UAV images for
testing. Similarly, for the maduoDom2 data, we extracted 176 images with cracks from the
cropped 348 high-resolution UAV images and randomly selected 150 and 26 UAV images
and their crack labels to train and test the model. While training the crack recognition
model with two datasets, we set the learning rate to 0.001. For the maduoDom1 array,
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12 blocks were selected as a batch, and the entire training data set was trained for 26 epochs.
For the maduoDom2 data, ten blocks were selected as a batch, and 18 training epochs were
performed. The entire model training process randomly selected training images to test the
results after several epochs.
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The training process of the maduoDom1 data is shown in Figure 7. Each row depicts
a high-resolution UAV image, a label, the current prediction crack probability, and the
prediction results. Figure 7a is a comparison of the predicted results after all learning
parameters are initialized by Xavier. Figure 7b shows the crack identification result after
the eighth epoch training. Here, the crack location has been identified, but many parts are
still missing in the result. Figure 7c shows the crack identification results after 16 epochs.
Most cracks could be identified, and the missing parts gradually became smaller. Figure 7d
shows the crack identification result after the 26 epochs, which could accurately identify
the crack location and is similar to the actual situation.

After training, we used the trained models to predict cracks in the two datasets and test
the crack identification effect of the model. In addition, we randomly selected two image
identification results from the prediction results for comparison (Figure 8). Unfortunately,
the crack details were still lacking, and the results were not entirely consistent with the
original labels. The trained model can, however, accurately determine the location of the
cracks, and the required computational time is very short (a high-resolution crack prediction
could be made within 1 s). In addition, we quantitatively evaluated the recognition results
of the two datasets (Table 2). The commonly used evaluation indicators for deep learning
semantic segmentation, such as evaluation index accuracy rate, F1 value, and average
intersection ratio, were calculated. Compared with the original labels in the test data, the
trained model had a reasonable accuracy rate of more than 97%. Furthermore, the F1 value
exceeded 0.51, and the mIoU value exceeded 0.50. These evaluation results showed that
the deep learning model obtained by training could perform well in the crack identification
problem. In order to compare the differences in the recognition results of different network
structures, we constructed a model where the HDC and ASPP structures were removed,
the Conv3 layer and FC4 layer were replaced by ordinary convolution, and other structures
remained unchanged. The model was trained to identify cracks under the same conditions.
The comparison results are shown in Figure 8, where it can be seen that our network can
predict more effective crack information than the network without HDC and ASPP. We also
drew the ROC curves of the two models in the maduoDom1 and maduoDom2 training sets
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and test sets, respectively, as shown in Figure 9. We can see that our network performance
is better.
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Table 2. Quantitative evaluation results of crack identification in the four datasets.

Data Accuracy F1 mIoU

maduoDom1 with fine labels 0.9817 0.5193 0.5031

maduoDom2 with fine labels 0.9780 0.5211 0.5027

maduoDom1 with bold labels 0.8644 0.7616 0.6412

maduoDom2 with bold labels 0.8785 0.6326 0.5369

Deep learning can accurately identify the crack areas in high-resolution UAV data.
Nevertheless, small cracks remain difficult to identify. Therefore, we attempted to study
whether the size of the crack area impacts the identification ability of the model. We marked
the cracks with bold lines to increase the crack area and trained the deep learning model
with new samples. For maduoDom1 and maduoDom2, the processing results using the
bold-marked cracks are shown in Figure 10.
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First, we obtained 533 and 187 UAV high-resolution aerial images with bold labels
in the maduoDom1 and maduoDom2 data, respectively. Then, we randomly selected
500 samples from the bold-labeled maduoDom1 data for training and 33 images for testing.
We also randomly selected 160 samples for training and 27 images for testing in the bold-
labeled maduoDom2 data.

After the labels were changed to bold labels, the constructed semantic segmentation
network was trained with the two processed datasets, and the optimal prediction model
was obtained based on the loss value. The model converged faster during training with
bold crack labels than without. After obtaining the optimal model, we performed crack
identification and prediction for the two models in the two datasets. One of the identifi-
cation results is shown in Figure 11. The recognition effect was significantly improved:
both the crack position and the fitness were extremely accurate. Furthermore, the cracks
predicted by the model were similar to the labels, indicating that the bold labeling of crack
samples is conducive to improving the crack identification ability of the model. Similarly,
we quantitatively evaluated the prediction effect of the two datasets (Table 2). The accuracy
of the evaluation results in the test set exceeded 0.86. Compared with the original model
trained with non-bold labels, the model trained with the bold crack labels displayed lower
accuracy but better fitness of the cracks. In addition, the F1 and mIoU values in the test set
were greatly improved because the crack area increases with the bold labels and the model
can identify more cracks. Similarly, for the bold-labeled data, we also trained the model
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that removed HDC and ASPP structures from the network we improved. The prediction
results of the different networks are shown in Figure 11. Our network structure trained on
bold-labeled data still has good crack recognition results.
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5. Conclusions

Identifying and analyzing coseismic surface ruptures based on UAV images will
have problems such as high calculation costs, heavy workloads, intense subjectivity, and
sensitivity to noise. Taking the data of the MS 7.4 Maduo earthquake as an example,
we proposed a deep learning method to identify cracks and constructed a deep learning
semantic segmentation network. We trained the deep learning model using the data from
the study area and obtained a model that could identify cracks in UAV images, with an
excellent recognition effect in the test experiments.

Based on our results, we concluded that:

(1) Our deep learning method could accurately and quickly identify cracks in high-
precision UAV images. Although there were a number of false and missed identi-
fications, it efficiently mapped the major surface ruptures produced by the Maduo
earthquake using a relatively small number of labeled samples.

(2) The expansion processing of cracks could improve the crack identification effect of
the deep learning method.

(3) The deep learning method has great potential in identifying cracks from high-precision
UAV aerial surveys and can give accurate results of crack identification from sufficient
data after appropriate training.
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