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Abstract: Since the first introduction of a synthetic polyphenol called polydopamine, both it and
its derivatives have received significant attention from material scientists owing to their unique
functionality. In particular, synthetic polyphenols have been utilized as interfacial engineering tools;
many important review papers have been published regarding this topic. However, despite those
that have focused on the applicability of synthetic polyphenols, fundamental aspects of crosslinking
mechanisms and resultant characteristics have still been overlooked in the community. This review
covers the mechanisms for building synthetic polyphenols, which are dependent on the number of
hydroxyl groups of each phenolic building block. The inherent physicochemical properties of the de-
veloped polyphenolic materials are discussed in depth herein. This review can provide guidelines for
selecting appropriate phenolic building blocks when designing relevant polyphenolic biomaterials.
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1. Introduction

Optimized mechanisms within living organisms often provide invaluable inspiration
when designing functional materials from a chemical point of view. Among these, polyphe-
nols have received significant scientific attention owing to their diverse physiological roles
in nature [1–3]. A well-known characteristic of natural polyphenols—commonly found
in mussel-foot proteins with a high content of 3,4-dihydroxyphenyl-L-alanine (DOPA), a
phenolic amino acid, is their underwater adhesive ability [4]. The wet adhesiveness of the
mussel-foot protein is attributed to the catechol side chain of DOPA. Catechol can maintain
adhesion through various non-covalent and covalent bonds at the interface, in addition
to generating a strong cohesive force due to oxidative self-crosslinking [5]. Additionally,
polyphenols play an essential role in the hardening of the insect exoskeleton (i.e., cuticle) to
protect them from external attacks [6]. Specifically, the curing process begins with the action
of oxidases—such as phenoloxidase—on phenolic precursors such as N-acetyldopamine
and N-β-alanyldopamine [7]. Another polyphenolic material, i.e., melanin, is a major
component of the ink used by cephalopods to block the vision of predators. The oxidative
polymerization of the L-DOPA results in the formation of 5,6-dihydroxyindole-2-carboxylic
acid (DHICA), which is an intermediate that is involved in the formation of melanin [8]. In
short, natural polyphenols with diverse physiological roles can be developed by oxidative
crosslinking mechanisms.

Inspired by the mechanism, synthetic polyphenols developed from phenolic building
blocks have been introduced. Polydopamine [9–13], poly(L-DOPA) [14], poly(norepineph-
rine) [15–17], poly(gallic acid) [18], and poly(tannic acid) [19–21] are typical examples; the
materials showing similar physicochemical properties to the natural polyphenols have
been successfully used as adhesives, optical materials, sensors, and other bioinspired
applications [12–14]. Especially due to their excellent biocompatibility [22,23], biodegrad-
ability [24], and wet-adhesion abilities [25,26], the self-assembled phenolic building blocks
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have been successfully utilized as biomaterials, such as nanomedicine, antimicrobial coat-
ing, and tissue scaffold (Figure 1).
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Figure 1. Bioinspired approach for developing functional biomaterials by using phenolic
building blocks.

While their usability was confirmed in previous studies, the detailed assembly mech-
anisms of individual phenolic building blocks have been overlooked in the community.
In fact, each phenolic building block has a different number of hydroxyl groups in the
benzoic site. The structural dissimilarities influence the chemical interactions that integrate
into the building blocks. For example, quinone, which is the critical intermediate that can
initiate the oxidative chain reaction [27], can be developed in catechols and gallols but not
in phenols. Thus, the oxidative crosslinking kinetics is relatively slow when an aromatic
compound with a single hydroxyl group (i.e., phenol) is used; enzymes, oxidants, and
other catalysts are often required to induce the associated polyphenols [28]. On the other
hand, oxidation can be spontaneously achieved in catecholic molecules in the presence of
ambient oxygen. If there is an additional hydroxyl group in the catechol group (i.e., gallol),
the oxidative crosslinking reaction can be further facilitated [29,30]. The difference in
assembly kinetics significantly impacts their physicochemical properties. Thus, placing an
appropriate polyphenol in a suitable application is essential.

In this review, we classified representative building blocks that can develop synthetic
polyphenols into three categories based on the number of hydroxyl groups (i.e., phenol,
catechol, gallol, see Figure 2). Additionally, the relevant self-assembly mechanisms and
resulting biomaterials have been described. The information presented in this review will
be beneficial when designing a new polyphenol-based functional biomaterial.
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Figure 2. Classification of phenolic building blocks that can be used for developing synthetic
polyphenols. The numbers indicate the number of hydroxyl group in each phenolic molecule.

2. Hydroxybenzene-Based Building Blocks (Phenol)

The simplest building blocks that contribute to the development of synthetic polyphe-
nols are hydroxybenzene-based (phenolic) molecules that have one hydroxyl group in
their benzoic residue. Tyrosine is the representative phenolic molecule. In general, the
phenolic group in tyrosine plays an important role in stabilizing the assembled polyphe-
nolic structures by inducing the formation of non-covalent bonds (e.g., hydrogen bonds
and π–bonds) [31] and biphenol bridges, resulting in dityrosine formation [32] (Figure 3).
Dityrosine formation can specifically contribute to increasing the elasticity and structural
solidity of synthetic polyphenols while also reducing the fatigue of self-assembled ma-
terials [33]. For example, resilin, an insect-derived elastic protein found in the wings of
dragonflies and the legs of cockroaches, contains dityrosine or trityrosine, thereby enabling
their fast movement [34,35]. Studies have been performed to mimic the aforementioned
systems to reinforce the mechanical properties of artificial functional materials. For instance,
redox enzymes [36,37], Fenton reactions using hydrogen peroxide and iron ions [38], and
ruthenium-based photoinitiators [39] have been used to induce the formation of biphe-
nol crosslinking, which contributes to nanoscale or larger-scale assembly processes and
increases the structural stability of synthetic polyphenols.
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Figure 3. Representative self-assembly mechanisms of phenolic building blocks: phenol vs. catechol
vs. gallol.
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3. Dihydroxybenzene-Based Building Blocks (Catechol)

The self-assembly mechanism of dihydroxybenzene (catechol)-based phenolic building
blocks has been actively studied in the past few years. Quinone is first formed from catechol,
after which the electrophilic quinone can be reactively conjugated with a nucleophile
(e.g., amine or thiol) through Michael-type addition or Schiff base formation [5]. As a result,
catecholamine-based building blocks (e.g., dopamine, norepinephrine) generally form
dihydroxyindole (DHI) intermediates that strongly facilitate self-assembly [14,40]. This
paper examines the detailed self-assembly mechanisms of these molecules for developing
synthetic polyphenol-based biomaterials.

3.1. Dopamine

Polydopamine was introduced in 2007 and is the first reported synthetic polyphenol-
based material [4]. Dopamine is a basic building block that has both catechol and amine
groups in its molecular structure and exhibits a self-assembly mechanism similar to that of
eumelanin [14,41]. The oxidation of dopamine results in the production of DHI through
a quinone structure (Figure 3). DHI formation mainly contributes to the production of
self-assembled polydopamine in two ways, (1) assembly with additional covalent bonds
(e.g., DHI–DHI dimer formation) and (2) assembly with non-covalent bonds [42]. In
addition to DHI, other intermediates can also be involved in the self-assembly mechanism;
however, the complete polydopamine structure has not yet been fully elucidated due to
its complexity.

Polydopamine has been widely adopted for biomaterials, as it can provide catechol
functionality to virtually any kind of target substrate upon employing the simple dip-
coating process [43,44]. Moreover, polydopamine has a high potential to contribute to
cellular responses. Thus, it has been utilized as a novel tissue scaffold coating material
that brings successful transplants. For example, polydopamine can stimulate osteogenic
cell differentiation, which consequently promotes osseointegration [45]. This process can
be achieved due to the enhanced hydrophilicity of the scaffold materials via polyphenol
coatings, which increase the adsorption of biomacromolecules from the extracellular ma-
trix, thereby enhancing cell adhesion, proliferation, and differentiation; recently, in vivo
studies on polydopamine-assisted bone regeneration have been actively conducted [46–49].
Moreover, polydopamine can be beneficial for extending the blood circulation time of
benzoic drugs. Here, π–π stacking plays a crucial role in chemically stabilizing drug
agents. For example, two antitumor drugs (gossypol and doxorubicin) are highly stabilized
by a polydopamine-based nanocarrier, which can significantly extend blood circulation
time with two orders of magnitude difference compared to that of free gossypol and/or
doxorubicin [50].

3.2. Dopamine Derivatives

Neurotransmitters derived from dopamine can also be self-assembled into polyphe-
nols; for example, norepinephrine can be assembled into poly-norepinephrine [51]. Nore-
pinephrine shares a molecular structure similar to that of dopamine and can also form DHI
or its analogs to greatly contribute to the oxidative polymerization process [51]. When
quinone (i.e., the oxidized form of catechol) is formed, 3,4-dihydroxybenzaldehyde (DHBA)
is also formed by tautomerization; thus, the DHBA intermediate can be spontaneously
formed [16]. This intermediate has an extra hydroxyl group compared to DHI and has
been reported to play a vital role in reducing the roughness of coated polyphenols [16].
When the nucleophilic amine group is protected by a methyl group (i.e., epinephrine), the
homogeneity of synthetic polyphenols can be further improved [52]. The aforementioned
results indicate that the physicochemical properties of the developed synthetic polyphenols
can be fine-tuned by corresponding to the molecular structure of the building blocks, which
requires further research.
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3.3. Catechin

Catechin is a representative flavonoid that is found in plants and has been overlooked
during functional polyphenolic coating as a potential building block. In general, there are
two methods to form polyphenols by self-assembling catechins in aqueous conditions. The
first involves utilizing sodium salts that enhance the cation–π interaction [53], while the
other involves generating radicals from catechins by irradiating with UV light for polymer-
ization [54]. There are significant differences in the assembly mechanisms between these
two methods. In general, catechol-based phenolic components (especially catecholamines)
are more likely to self-polymerize under weak alkaline conditions. However, the mass
spectrometry data corresponding to the poly-catechin formed in a saline buffer with a
slightly basic pH [55] demonstrated that physically stacked catechins were the majority
instead of covalently conjugated catechins such as dimers (or trimers). This indicates that
catechin cannot be solely crosslinked under basic conditions, which is a phenomenon
that may be attributed to the relatively high pKa values of catechins [56], which induce
hydroxyl group protonation to inhibit quinone formation in the catechol groups. According
to an existing study, the successful poly-catechin formation can be achieved by inducing
the formation of non-covalent cation–π interactions between the catechin and sodium
ions [57]. As the polyphenolic layer is non-covalently crosslinked, the mechanical stability
of the poly-catechin is assumed to be weak. Unfortunately, no fundamental studies on the
mechanical stability of the catechin coating have yet been performed. UV irradiation is
another technique that can be used for developing self-assembled catechin. Unlike sodium-
mediated non-covalent self-assembly, UV irradiation-induced self-assembly involves the
generation of free radicals in the molecular structure to trigger covalent cross-linking [54].
After UV irradiation, a strong signal in the higher wavelength region was observed in the
UV-vis spectrum due to pigmentation, which is strong evidence of catechin polymerization.

Catechin-derived polyphenols have been adopted as therapeutic carriers (e.g., drug
delivery systems) since they have the advantage of grafting medical agents. In detail, the
chemical conjugation between catechols in poly-catechin and nucleophilic functional groups
in therapeutic agents can be achieved by a simple one-step functionalization process similar
to other catechol-based polyphenols. However, the issue of this approach relies on the
irreversible binding between the polyphenolic carriers and therapeutic agents, which may
reduce or even inactivate their biological activity. Numerous studies have been performed
to solve the problem; grafting target biomolecules to polyphenols through reversible dy-
namic bonding (catechol–boronic acid interactions) is a typical breakthrough strategy [58].
As the developed system showed minimal cytotoxicity, and the therapeutic agents can
be released intact, the bioactivities can be successfully conserved. Similarly, a boronate
proteasome inhibitor (bortezomib) encapsulated by a poly-catechin-based nanocarrier was
developed, which allowed the controlled release of undamaged bortezomib at the targeted
cancer site [59].

3.4. Alkylcatechols

Alkylcatechols, such as urushiol and its analogs, are found in lacquer trees. These are
amphiphilic molecules that consist of two parts: a relatively hydrophilic head (i.e., catechol)
and a hydrophobic tail (i.e., alkyl chain) [60], which can be assembled into polyphenolic
materials. Assembled polyphenols have been adopted as protective coating materials for
furniture and industrial equipment owing to their strong shear strength, as well as their
chemical resistance to heat and moisture [61]. The advantage of alkylcatechols is that they
can be prepared as an emulsion due to their amphiphilicity, which allows the lacquer to be
extremely concentrated in low amounts of water. Concentrated catecholic extracts allow
direct surface coating with simple painting because of their sticky nature. Subsequently,
oxidative polymerization between urushiol and its analogs continues, resulting in a stable
polyphenolic layer similar to that produced through the self-assembly mechanisms of the
previously described catecholic building blocks. An important aspect to note is that an
oxygen source that involves oxidative polymerization is mainly provided from the ambient
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air in alkylcatechol-based extraction rather than the solution. Moreover, the quinone forma-
tion that promotes polyphenol development can be accelerated by a naturally occurring
oxidase (e.g., laccase) that exists in the lacquer tree [62]. Catechol–metal complexation or
additional crosslinking reactions at high temperatures could also promote and stabilize the
self-assembly of urushiol [63]. Moreover, the oxidative crosslinking of urushiol can also be
activated through UV-induced photocuring, similar to the mechanism underlying catechin
assembly [64].

4. 1,2,3-Trihydroxybenzene (Gallol)

Gallic molecules also act as phenolic building blocks in oxidative polymerization when
developing synthetic polyphenols. Naturally occurring gallol-based molecules include
pyrogallol, gallic acid, catechin derivatives (e.g., epigallocatechin gallate), and tannic acid,
all of which are found in various organisms, including plants. Gallic polyphenols share
a molecular backbone with catecholic polyphenols, thus exhibiting similar characteris-
tics. For example, gallol-based polyphenols are involved in enhancing the mechanical
properties of plant cell walls [65] and act as antimicrobial agents [66]. A distinctive char-
acteristic of gallol-based building blocks is that their self-assembly proceeds very quickly
compared to that of catechols owing to the presence of additional hydroxyl groups. More-
over, the chemical interactions with neighboring substrates can be relatively reversible
owing to the high potential of forming non-covalent bonds (e.g., hydrogen bonds) and
metal–ligand complexation. This highlights another feature of gallol-based polyphenols,
i.e., self-healing; the utilization of this mechanism by tunicates to self-heal internal dam-
age is well known [67,68]. We will discuss the formation of representative gallol-based
polyphenols in further detail in the following sections.

4.1. Pyrogallol and Gallic Acid

Pyrogallol is the simplest form of a gallol-based building block; gallic acid is a rep-
resentative derivative of the same [18]. Both molecules are abundant in plants, and they
can be easily produced by extracting natural products or biosynthesis using microbial
organisms [69]. These molecules are thus highly accessible and can be successfully utilized
for the synthesis of polyphenol materials on a large scale. The self-assembly mechanism of
gallol-based building blocks is more complicated than that of catechol-based ones, which
serve as a bottleneck during the application of gallol-based polyphenols. Similar to cate-
chols, gallols also have the potential to produce quinone derivatives during the oxidation
process (Figure 3). As a result, a variety of crosslinks, such as galloquinone dimers that are
further transformed into purpurogallin, can be generated [29]. Oxidizing agents such as
NaIO4 can accelerate this crosslinking process [30]. UV irradiation is another trigger that fa-
cilitates crosslinking [70]. If additional nucleophilic molecules or metal ions are present, the
crosslinking can be further accelerated owing to the formation of covalent bonds between
the nucleophilic functional groups (e.g., -NH2, -SH) and the electrophilic quinone [29,71]
and metal coordination between the gallol and a metal ion [72]. The aforementioned
crosslinking mechanisms are comparable to those of catechol. One critical difference in the
polymerization process is that crosslinking can be achieved very quickly in gallol-based
building blocks, but the process takes longer for catechol. For example, the free-standing
film formation of pyrogallol at the water/air interface via oxidative polymerization in an
amine-rich polymer solution can be achieved in 2 min, which, in the case of pyrocatechol,
is 2 h [29,73]. This difference shows the effect of an additional hydroxyl group (-OH) on the
kinetics of cross-linking.

4.2. Tannic Acid

Tannic acid is another gallol-based building block that is found in plants. The physi-
ological roles of tannic acid include antimicrobial and antioxidant properties [74]. These
abilities are maintained even when tannic acid is polymerized to form polyphenols. For
example, the antibacterial ability of tannic acid can be successfully transferred to the poly-
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tannic acid-deposited substrate [19]. In this regard, tannic-acid-containing spray-based
coating techniques were introduced [75,76], which enabled rapid polyphenol coating on the
bulk substrates. However, it is difficult to completely prevent the adhesion of bacteria to the
modified polyphenol surface, and the inherent antimicrobial ability of tannic acid can be
easily inactivated and blocked by the formation of an additional layer composed of killed
bacteria [77]. The insertion of supplementary antibiotics and antifouling agents in polyphe-
nol coatings can ameliorate this problem. For example, antimicrobial peptides deposited
with poly-tannic acid showed both resistance and killing effects on the bacteria [78].

The difference between tannic acid and other phenolic building blocks is that tannic
acid has a relatively high molecular weight. Due to this, the Van der Waals forces in
tannic acid are relatively stronger than those in other phenolic molecules; this enables the
stable physical stacking of tannic acid, while the occurrence of covalent crosslinking is
relatively low. Thus, tannic acid-based synthetic polyphenols are comparatively colorless
compared to other polyphenol-based materials such as polydopamine. Poly-tannic acid can
thus be a substitute for other polyphenolic coating materials where the substrates require
transparency (e.g., contact lenses and dental implants). In addition, tannic acid-based
nanocarriers allow targeted therapeutic delivery to the heart, which is one of the most
difficult target sites due to the dynamic movement of body fluids [79]; it is possible since
the tannic acid shows a strong binding affinity to the myocardium of cardiac tissue [79].

5. Conclusions and Discussion

As discussed previously, polyphenols developed through the self-assembly of phenolic
building blocks have the potential for use in numerous biomedical applications. Specifically,
it is encouraging that their applications can be further expanded through nanotechnology.
However, there are different kinds of biocompatibility issues in nanoscale biomaterials
compared to those of bulk scale. For example, polyphenol nanoparticles injected for
therapeutic purposes circulate through the blood vessels, which can lead to unexpected
accumulation or side reactions with adjacent biomacromolecules. Some studies have
recently suggested the possibility that quinones, i.e., derivatives of catechol groups and
other intermediates, may act as an allergen site as they generate antigens by forming
covalent bonds between membrane proteins. Urushiol is known as a potent allergen that
causes skin allergic reactions. Polyphenols and related building blocks may interfere with
the physiological systems that employ chemically resembled small molecules such as
neurotransmitters (i.e., dopamine, epinephrine, and norepinephrine). In this respect, few
studies have been conducted to investigate the cytotoxicity of polyphenol nanoparticles.
To address this, both immunological and metabolic studies on polyphenolic materials
should be performed. In addition, despite active research on synthetic polyphenols for the
past several decades, their exact molecular structures have not yet been elucidated clearly.
The uncertainty of the molecular structure is the main reason for the rejection of clinical
approval. Thus, a new approach to interpreting the complex self-assembly mechanisms of
phenolic building blocks is required. Interactions between various intermediates involved
in the self-assembly process should be interpreted computationally. If a specific self-
assembly mechanism is fully elucidated, it will greatly contribute to the commercialization
of polyphenol nanoparticles for biomedical applications in the future.
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