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Abstract: Nd-doped CaWO4 single crystals with dopant concentrations of 0.1, 0.5, and 1% were synthe-
sized by the floating zone method. The transmission, photoluminescence, and scintillation properties
were evaluated from ultraviolet to near-infrared (NIR) ranges. An emission peak due to transitions
of the host was observed at 400 nm, and several sharp peaks originating from Nd3+ 4f–4f transitions
were confirmed at 900, 1060, and 1300 nm. The quantum yields of 0.1, 0.5, and 1% Nd-doped samples
were 70.7, 79.5, and 61.2%, respectively, when monitored, and excited wavelengths were 750–1500 nm
and 590 nm. Decay times consistent with typical Nd3+ transitions were obtained when NIR ranges
were monitored. Additionally, the energy transfer between the host and Nd3+ occurred according
to the decay measurement. The relationship between X-ray irradiated dose rate and intensity in the
range of NIR was investigated by combining the crystals with an InGaAs-photodiode. The lowest
detectable dose rate retaining the linearity of the present crystals was 0.3–0.06 Gy/h.

Keywords: scintillation; photoluminescence; 4f–4f transition; floating zone method

1. Introduction

Scintillators have a function to convert high-energy photons like X- and γ-rays into many
low-energy photons after absorbing the energy immediately. They have been practically
used for radiation detections combined with photodetectors [1]. The application fields are
widespread: medical [2], security [3], space exploration [4], high-energy physics [5], and
resource exploration [6]. Scintillators with ultraviolet (UV)–visible light emitting have been
mainly studied [7–10] because conventional detectors like photomultiplier tubes (PMTs) have
wavelength sensitivity at the corresponding regions [11,12]. However, photodetectors having
wavelength sensitivity at NIR ranges have been proposed, such as PbS [13], InSb [14], and
InGaAs-based detectors [15]. Hence, NIR photons became detected, and the development of
scintillators emitting NIR light (NIR-scintillators) has attracted much attention [16].

NIR scintillators are especially considered to be used in biological imaging and high-
dose field monitoring. They can realize the in vivo depth imaging [16] owing to the unique
characteristics of NIR light, such as high transparency for human soft tissues [17]. Ad-
ditionally, they have an advantage in high-dose monitoring inside and around nuclear
reactors compared with scintillators emitting UV–visible light [18]. Bluish-white Cherenkov
lights are usually generated in nuclear reactors, and the scintillation detector is used in
this environment. When conventional scintillators with visible emission wavelength are
used in this situation, true and background Cherenkov signals are difficult to distinguish.
On the contrary, NIR light can be easily distinguished from them because the intensity of
Cherenkov light is inverse proportion to ~λ2 [19]; hence, the signal-to-noise ratio of scintil-
lation light at the NIR range would be increased. Furthermore, a remote dose monitoring
system with optical fibers having resistance to radiation is suggested for monitoring the
environment [20]. NIR light produces low transmission losses in quartz fibers, while the
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degradation in the visible range is largely even in radiation-resistive optical fibers [21].
High interaction probabilities for X- and γ-rays and high radiation hardness are desired for
scintillators to use in the above applications where the dose rate is very high. A CaWO4
single crystal is a candidate for the host material. This material has a large effective atomic
number (Zeff, 62); thus, radiation detection efficiency can be improved as photoabsorption,
Compton scattering, and pair creations are relatively proportional to ~Zeff

4, ~Zeff, and
~Zeff

2 [22], respectively. Additionally, the transmittance of the material in NIR regions is
reported to change little after high-dose irradiation [23], although the transmittance of
UV-visible ranges degrades largely after a huge exposure. In terms of luminescence centers,
some rare-earth ions have a function to show NIR luminescence [24]. Nd3+ has especially
attracted interest as NIR luminescent centers. Typical main emissions of Nd3+ are confirmed
at ~1060 nm, and the emission is applied in laser fields such as Nd: Y3Al5O12 lasers [25].
Further, NIR-scintillation has been observed in some Nd-doped scintillators [26–28]. In the
study, Nd-doped CaWO4 single crystals were grown as NIR-scintillators, and we evaluated
the optical and scintillation properties.

2. Materials and Methods

CaWO4 single crystals doped with various concentrations of Nd (0.1, 0.5, and 1 at%) were
grown with the floating zone (FZ) method. First, starting materials: CaO (Furuuchi Chemical,
99.99%), WO2 (Rare Metallic, 99.9%), and Nd2O3 (Rare Metallic, 99.99%) were mixed and
sintered at 600 ◦C for 8 h. After that, they molded into rod-shaped and sintered at 1200 ◦C for
8 h. And then, polycrystalline rods were obtained. By using the rods, we conducted the crystal
growth with the FZ furnace (Canon Machinery, FZD0192) having dual Halogen lamps. The
condition of the rotation rate and the pulling-down rate were 14 rpm and 5 mm/h. To confirm
the crystalline phases of the present crystals, powder X-ray diffraction (XRD) measurements
were conducted with a diffractometer (Rigaku, MiniFlex600).

The measurement of diffuse transmission spectra was performed with a spectropho-
tometer (Shimadzu, SolidSpec-3700) as a basic optical property. The tested ranges were
270–1600 nm. Both a PMT and an InGaAs-based detector were mounted in the spectropho-
tometer, and they respectively monitored at 270–870 nm and 870–1600 nm by different
photodetectors. In the evaluation of photoluminescence (PL) properties, PL excitation and
emission contour maps were measured with a Quantaurus-QY Plus (Hamamatsu, C11367).
The excitation and monitored wavelengths were 250–850 nm and 195–1675 nm, respectively.
PL decay curves were measured with a Quantaurus-τ (Hamamatsu, C13534).

As radiation-induced luminescence properties, X-ray-induced scintillation spectra,
decay curves, afterglow curves, and dose rate response properties were evaluated by
our original setups [29–31]. In the measurement of dose rate response properties, the
NIR-scintillation light from the samples was detected by an InGaAs-photodiode (PD)
(Hamamatsu, G12180-250A). The light was carried via a fiber (Thorlabs, FP600ERT) of 5 m
in length and 600 µm ϕ, and it simulated actual applications. The signals from the PD were
analyzed as currents using a picoammeter (Keysight, B2985A).

3. Results and Discussion

After the crystal growth, rods with ~20 mm length and ~5 mm ϕ were obtained.
They were cut and polished for the evaluation of optical and scintillation characteristics.
Figure 1 shows the appearance of the prepared crystals. The length and thickness were
~3 mm and ~1 mm. All the crystals were transparent, and appeared pale blue as the dopant
concentration increased.

Some of the remained parts of as-grown rods after the single crystal growth were
crushed, and the crashed powders were used for the XRD measurement. The obtained
patterns and a reference from the Crystallography Open Database (COD: 9009627) are
indicated in Figure 2. All the patterns matched that of the reference. Impurity phases such
as CaO, WO2, and WO3 were not confirmed.
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Figure 1. Photograph of Nd-doped CaWO4.
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Figure 2. XRD patterns of Nd-doped CaWO4 with reference.

The diffuse transmission spectra of the crystals are shown in Figure 3. The transmission
spectra at 850–900 nm were not described because noise due to a detector switching
from a PMT to an InGaAs-based detector was dominant in the range. The transmittance
was ~70–90% in the range from 330 to 1600 nm, although signals at 900–1000 nm were
especially unstable owing to noise from a detector switching. Absorption was observed at
270 nm, originating from the transition from the 2p states of O2− to the 5d states of W6+ in
(WO4)2− [32,33]. Additionally, some absorption bands were confirmed at 350, 520, 590, 750,
and 800 nm. They originated from the transitions from the 4I9/2 level to the 2I11/2, 2G9/2,
2G7/2, 4S3/2, and 4F5/2 levels of Nd3+ [34].

The excitation and emission contour maps of the 1% Nd-doped CaWO4 crystal are
exhibited in Figure 4a,b as a representative. No significant change was observed in the
spectral shapes of the other two crystals. The vertical axis presents the excitation wave-
length, and the horizontal axis presents the emission wavelength. A broad emission band
was confirmed at 350–500 nm under excitation wavelength at 250–300 nm. It would be
derived from the host (CaWO4) [35]. In the NIR range, some emissions were confirmed
at 900, 1060, and 1300 nm, and they were ascribed to the typical emissions derived from
the 4f–4f transitions of Nd3+ [34,35]. The quantum yields (QY) of the crystals accumulated
750–1500 nm under excitation at 590 nm of 0.1, 0.5, and 1% doped samples were 70.7, 79.5,
and 61.2%, respectively.
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Figure 3. Diffuse transmission spectra of Nd-doped CaWO4.
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Figure 4. PL excitation and emission contour maps of 1% Nd-doped CaWO4 monitored
(a) 195–950 nm and (b) 895–1675 nm.

The PL decay curves were measured to confirm the origin of the emissions. Figure 5a
exhibits the PL decay curves monitored at 420 nm. The excitation wavelength was selected
to 280 nm. The decay curves were composed of the sum of two exponential functions. The
fast components were attributed to the Instrumental response function (IRF) due to the
excitation source. The slow components with decay times of ~7–9 µs would be derived from
the charge transfer transition in (WO4)2− anion complex [36]. The decay curves monitored
at 880 nm are exhibited in Figure 5b. The excitation wavelength was set to 575–625 nm. The
curves were agreed with an exponential function with decay times of ~160 µs. The decay
times were consistent with the reasonable values as the 4F3/2–4I9/2 transition of Nd3+ was
reported in other phosphors doped with Nd [37,38].
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Figure 5. PL decay curves of Nd-doped CaWO4 (a) monitored at 420 nm under excitation at 280 nm
and (b) monitored at 880 nm under excitation at 575–625 nm.

Figure 6a,b show the X-ray-induced scintillation spectra of the crystals when monitored
at 300–600 nm and 700–1500 nm, respectively. A broad emission with the peak top at 420 nm
was observed at 300–600 nm. The emission is composed of double peaks derived from the
charge transfer transition in (WO4)2− anion complex and some defects such as oxygen and
lattice defects [39]. In the NIR range, some sharp emission lines were confirmed at 900,
1060, and 1300 nm. Almost the same spectral features due to Nd3+ were observed in other
materials doped with Nd [40–42]; hence the emissions would originate from the Nd3+.
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Figure 6. X-ray-induced scintillation spectra of Nd-doped CaWO4 monitored (a) 300–600 nm and
(b) 700–1500 nm.

The X-ray-induced scintillation decay curves monitored at the range from UV to visible
light are exhibited in Figure 7a. They were well agreed with a sum of two exponential
functions. The origin of the fast (~1 µs) and slow (~5–7 µs) components were respectively
considered to be the WO3–VO complex defects and the charge transfer transitions in
(WO4)2− anion complex because the confirmed decay times were comparable with the
scintillation decay times of CaWO4, reported in the past study [43]. The slow components
became fast as the Nd concentration increased. It presented that the energy transfer
from the host to Nd3+ happened because the emission due to the host partially matched
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with the excitation bands of Nd3+, as shown in Figure 4. Figure 7b shows the decay
curves monitored at visible–NIR ranges. The obtained curves were well-matched with two
exponential functions. The fast components (~5–7 µs) were derived from the WO3–VO
complex defects according to the decay times since the PMT for the NIR range also had
a sensitivity down to ~500 nm. The slow components had decay times of ~160–220 µs.
They are typical values as Nd3+ 4f–4f transitions reported in some materials doped with
Nd [44,45]. The scintillation decay times of the emissions at 1060 and 1300 nm could not be
measured in the study owing to the limitation of sensitivity of the PMT. However, the decay
times of the transitions at 1060 and 1300 nm can be respectively estimated to ~370 and
~580 µs according to the relationship between decay times and wavelength of scintillation
(τ~λ2.2, where τ means the scintillation decay time and λ means emission wavelength) [46].
In the assumed applications, signal accumulation time is from several seconds to minutes,
and the decay times observed here are acceptable enough for these applications.
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Figure 7. X-ray-induced scintillation decay curves of Nd-doped CaWO4 monitored (a) UV–visible
ranges and (b) visible–NIR ranges.

Afterglow curves after 2 ms X-ray exposure of the crystals are exhibited in Figure 8.
Afterglow demonstrates a relaxation process of electrons trapped at ~25meV from the bottom
of the conduction band by thermal stimulation. The afterglow levels (A) were calculated as
follows: A = (I20 − Ibg)/(Imax − Ibg). Here, I20, Imax, and Ibg were intensity at 20 ms after
irradiation of X-ray, intensity during irradiation of X-ray, and intensity before irradiation
of X-ray. The As of 0.1, 0.5, and 1% Nd-doped crystals were respectively estimated to be
1330, 1080, and 390 ppm. The As were much higher than that of CdWO4 (~10 ppm [31]).
However, the value of the 1% Nd-doped crystal was comparable to that of Tl-doped CsI
(~300 ppm [47]), one of the representative commercial scintillators for X-ray detection.

Relationships between the X-ray irradiated dose rate and the signal intensity in NIR
ranges were investigated. In Figure 9, the vertical and horizontal axes present the averaged
currents during X-ray exposure subtracted by averaged currents before X-ray exposure
(background level) and X-ray exposure dose rate, respectively. The 0.5% Nd-doped crys-
tal showed a response with retaining the linearity from 0.06 to 60 Gy/h with retaining
the linearity whereas that of 0.1 and 1% Nd-doped crystals were 0.3–60 Gy/h. In the
conventional model [48], the scintillation light yields (LYs) depend on the QY; thus, the
0.5%Nd-doped crystal is considered to show the highest LY among the present crystals,
although the quantitative evaluation of the LYs in NIR ranges could not be done owing to
the decay times with several hundred µs of Nd3+. The difference in LY would result in the
difference in dynamic ranges among the crystals. In the past study, some of the Nd-doped
materials were evaluated as NIR-scintillators by using the same detector form: SrY2O4
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(0.06–60 Gy/h [49]), Bi4Ge3O12 (0.01–60 Gy/h [38]), and LuVO4 (0.006–60 Gy/h [50]). The
present results were inferior to the lowest dose rate retaining the linearity (0.006 Gy/h)
reported in the past studies; however, they were comparable with the second-best dose rate
(~0.01 Gy/h). When compared with other red or NIR-scintillators combined with Si-based
detectors, the detection limit in the present result was superior to that of Cs2HfI6 (2 Gy/h)
and commercial Pr-doped Gd2O2S (GOS) (0.8 Gy/h) [20,51]. Additionally, we compared
the present results with previous ones of visible-scintillation detectors such as CdWO4 com-
bined with a PMT and Tb-doped GOS, which coated to a polymethyl methacrylate-based
fiber combined with a Si-CCD. The lowest detectable dose rates of CdWO4 and Tb-doped
GOS-based detectors were ~0.05 and ~60 Gy/h [52,53], and the present results surpassed
these widely used commercial scintillators. The dose rate response of the CdWO4 and
Tb-doped GOS could not be measured in this research since their emission wavelength
(~500 nm) was out of the wavelength sensitivity of the InGaAs-PD (>900 nm).
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4. Conclusions

CaWO4 single crystals doped with Nd (0.1, 0.5, and 1%) were grown by the FZ method.
The optical and scintillation characteristics were investigated. Typical luminescence and
decay times due to the Nd3+ transitions were confirmed when monitored at NIR ranges. To
confirm the performance of NIR scintillation detectors, X-ray irradiated dose rate response
properties were evaluated by using the crystals and an InGaAs-PD. The 0.5% Nd-doped
crystal indicated the widest dynamic range (0.06–60 Gy/h) in all the present crystals. The
result was comparable to the measurable ranges of other Nd-doped phosphors combined
with an InGaAs-PD, such as Nd-doped SrY2O4 and Nd-doped Bi4Ge3O12, and it was
superior to that of other scintillators emitting red light combined with Si-based detectors:
Cs2HfI6 and commercial Pr-doped Gd2O2S. From the study, Nd-doped CaWO4 crystals
were suggested to have the potential as NIR-scintillators used in high-dose field monitoring.
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