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Abstract: Human respiration reflects meaningful information, such as one’s health and psychological
state. Rates of respiration are an important indicator in medicine because they are directly related
to life, death, and the onset of a serious disease. In this study, we propose a noncontact method to
measure respiration. Our proposed approach uses a standard RGB camera and does not require
any special equipment. Measurement is performed automatically by detecting body landmarks
to identify regions of interest (RoIs). We adopt a learning model trained to measure motion and
respiration by analyzing movement from RoI images for high robustness to background noise. We
collected a remote respiration measurement dataset to train the proposed method and compared
its measurement performance with that of representative existing methods. Experimentally, the
proposed method showed a performance similar to that of existing methods in a stable environment
with restricted motion. However, its performance was significantly improved compared to existing
methods owing to its robustness to motion noise. In an environment with partial occlusion and
small body movement, the error of the existing methods was 4–8 bpm, whereas the error of our
proposed method was around 0.1 bpm. In addition, by measuring the time required to perform
each step of the respiration measurement process, we confirmed that the proposed method can be
implemented in real time at over 30 FPS using only a standard CPU. Since the proposed approach
shows state-of-the-art accuracy with the error of 0.1 bpm in the wild, it can be expanded to various
applications, such as medicine, home healthcare, emotional marketing, forensic investigation, and
fitness in future research.

Keywords: noncontact monitoring; remote sensing; vital signs; respiratory rate estimation

1. Introduction

Respiration is a basic vital sign that can be used to intuitively evaluate human health
along with heart rate, blood pressure, and body temperature. It is widely used as a standard
indicator in medical, human–computer interaction, forensic investigation, and sports
research [1–6]. In addition, changes in respiration are important to understand changes in
the vital state of the body because levels of oxygen and carbon dioxide in the blood suitable
for life activities are maintained by controlling the rate of respiration [7]. Respiration can
be used as a good indicator to monitor vital signs, and monitoring respiration rates can
also help identify high-risk patients and prevent dangerous situations because physical
changes due to respiration exhibit greater variability compared to those caused by heart
rate and blood pressure [8,9]. Even in medical environments, increased rates of respiration
are effective in predicting various abnormal conditions, such as respiratory failure due to
muscle weakness, readmission to intensive care units, and cardiopulmonary arrest, and 21%
of patients with 25–29 breaths per minute die in the hospital [10,11]. Therefore, research and
development on vital sign monitoring systems that include respiratory rate measurement
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can be usefully utilized to prevent physical health risks by detecting deterioration in
patients’ heart conditions in advance [12,13]. Respiration is influenced not only by physical
health, but also by psychological conditions, including anxiety, depression, anger, and
stress, and is closely related to changes in levels of consciousness caused by drugs and
sleep [14–16]. Therefore, respiration is a very important indicator that can be applied to
observe changes in human physical and psychological health and other conditions, and
can be widely used in medicine, as well as various other fields. During human metabolism,
all cells in the body use the oxygen in the blood to metabolize energy and release carbon
dioxide through cellular respiration. As a result of cellular respiration, blood oxygen
concentration decreases and carbon dioxide concentration increases, and ventilation occurs;
that is, gas is exchanged in the alveoli of the lungs owing to the difference in partial pressure
of the gas with air introduced from the outside. To maintain an appropriate level of oxygen
concentration, the human body reduces the pressure in the chest cavity by contracting the
diaphragm to bring in external air (inhalation) or increases the pressure in the chest cavity
by relaxing the diaphragm to expel internal air from the body (exhalation). This process is
known as respiration. Thus, respiration can be defined as a complex interaction between the
central nervous system, respiratory-related motor neurons, and respiratory muscles [17].

Contact-based methods to measure respiration can be classified into four approaches,
including manual measurements [18,19], measuring changes in impedance using elec-
trodes [20–23], measuring pressure using belt-type sensors [24–26], and measuring airflow
from the nose and mouth [27–29]. First, a conventional method of manually counting the
rate of respiration by eye is widely used. Table 1 summarizes the advantages and disadvan-
tages of each method. These approaches share several limitations in common. Separate sets
of special equipment are necessary for each, which are not usually available. In addition,
for accurate measurement, the equipment must be in close contact with the patient; the
process of preparing to perform the measurement is long and complex, and tends to be
inconvenient for the subject, such as by imposing strong pressure or limiting their freedom
of movement. Discomfort felt by users may cause inaccurate measurement results owing
to changes in on respiration rate occurring for that reason. Although this limitation can
be used to understand various human conditions, it limits the application of measuring
respiration in various fields. However, changes in the human body due to respiration
may not necessarily be observable with contact methods. The movement of the human
body due to respiration can be detected by observing the amount of change in the pixels
of a video based on optical analysis of motion using motion detection technology, such as
optical flow and object detection, performed by applying technology such as frequency
analysis based on radar. Changes in temperature due to respiration can also be measured
and can be observed by quantitatively measuring changes in temperature in images taken
using a thermal imaging camera. In addition, respiration can also be measured based
on optical pulse waves through the change in blood flow caused by the change in chest
pressure due to respiration [30]. These noncontact methods can overcome some limita-
tions on patients’ freedom and enable respiration to be measured more conveniently than
with contact methods. Thermal imaging cameras and radar-based methods also involve
significant limitations owing to the necessity of using expensive and bulky equipment.
However, vision-based technologies using standard, commonly available RGB cameras,
such as smartphones and laptops, can also overcome these limitations. Therefore, in this
study, we limit the scope of our investigation to remote measurements of respiration using
RGB cameras only. Compared with contact respiration measurement methods, noncontact
measurements involve several important advantages.

First, owing to the noncontact measurement environment, the existing problems of
limited freedom of movement or discomfort can be solved. This provides a more relaxed
measurement environment and prevents the occurrence of unnatural breathing patterns by
minimizing patients’ discomfort.
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Table 1. Pros and cons of existing respiration measurement approaches.

Approach Pros Cons

Manual measurement [18,19] No device required High possibility of human error when
monitoring for long periods

Impedance change
measurement [20–23]

Various physiological signals can be measured
Long-term monitoring possible

Sensitive to posture and movement
Special device required

Pressure change
measurement [24–26]

Allows for more freedom of movement
Relatively strong in movement
Long-term monitoring possible

Discomfort caused by physical pressure
Special device required

Airflow measurement [27–29] Accurate measurement
Long-term monitoring possible

Restricted environment
Special device required

Second, there is no need for specialized equipment to measure respiration only. Exist-
ing devices for contact respiration measurement are designed for respiration measurement;
therefore, they are not used routinely and are difficult to utilize for other purposes. In
contrast, the RGB camera-based respiration measurement method uses technology that
is commonly encountered daily and can be used for various purposes; this can improve
accessibility because of the specificity of the device.

Third, a cumbersome preparation process for measurement is not required. For the
contact respiration measurement methods, a process must be performed to prepare to attach
the sensor to the body for measurement, and some basic knowledge is required to attach
the sensor correctly. Because the camera-based noncontact respiration measurement device
does not require a separate sensor attachment, the preparation process for the measurement
can be greatly simplified.

Finally, it can be used as an alternative to contact sensors for patients with skin diseases,
children, people with difficulty communicating, and patients with immune disorders who
may encounter difficulty attaching sensors to their body. Existing noncontact respiration
measurement methods perform image capture in highly controlled situations to achieve
sufficient performance, which enables stable measurement of respiration without major
impacts on region of interest (RoI) detection performance or signal quality degradation due
to noise in the detected RoIs. However, these methods have the disadvantages of being
semi-automated and require an environment in which patients’ motion is restricted. It
is natural for various noise elements to occur in an uncontrolled environment, and thus
these methods should be adapted to be used without any additional restrictions to allow
stable respiration measurement from the images of the environment that contain noise
elements. Therefore, in this study, we propose an RGB camera-based noncontact respiration
measurement method that satisfies the following conditions to mitigate the limitations of
existing methods and to apply noncontact respiration measurement universally.

1. Noncontact methods can be used to measure respiration without any attached device.
2. We apply stable RoI detection technology to automate the entire respiration measure-

ment process.
3. A breathing signal that is strong against noise elements, such as movement and occlu-

sion noise, can be obtained. The proposed method shows a state-of-the-art accuracy
of 0.1 bpm even in the noise environment, which is a noticeable improvement, consid-
ering that the existing methods have an error of 4~8 bpm in the noise environment.
These improvements can be confirmed through the experimental results in Section 4.

4. The proposed method can operate in real time to immediately detect changes in
patients’ states. In addition, even in a CPU environment, if there is an RGB camera,
it has a measurement speed of 30 FPS or more and is a robust measurement method
against motion and occlusion noise, so it can be applied to various fields, such as
medicine, home healthcare, emotional marketing, forensic investigation, and fitness.
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2. Related Works
2.1. Photoplethysmography-Based Respiration Measurement Method

Both respiration and pulse signals can be observed or extracted from photoplethys-
mography signals. The decrease in intrathoracic pressure that occurs during inspiration
affects venous blood pressure and ventricular volume, which promotes venous blood
return and changes cardiac output [31]. In addition, increased intrathoracic pressure due
to respiration stimulates the vagus nerve and the sinus node that controls the heart rate,
causing respiratory sinus arrhythmia, a phenomenon that lowers the heart rate [32]. Photo-
plethysmography (PPG) is based on the optical property that the circulation changes the
amount of hemoglobin molecules and proteins in the blood, thereby changing the degree
of light absorption and scattering across the light spectrum. Therefore, PPG technology can
be used to measure the degree of changes in capillary blood due to heartbeat through an
optical sensor attached to the surface of the skin [33]. Even without using a sensor attached
to the skin surface, these pulse changes can be measured in a noncontact approach using an
optical sensor, such as an RGB webcam [34,35]. The acquired remote PPG signal includes
amplitude and period changes due to respiration, and respiration can be measured using
a noncontact method by analyzing changes in heart rate components due to respiration.
Cases and previous studies verified that information on respiration can be estimated using
this method [36,37]. In 2010, Poh et al. separated PPG signal and noise components using
independent component analysis (ICA) of the average change in brightness of the signal of
each RGB channel in the face region and extracted respiration from the power spectrum of
the heart rate variability, which is the change in the interval between heartbeats [38–40].
However, although the method of estimating respiration rate using heart rate variability
may be effective for young and healthy subjects, it is difficult to apply to older patients
or those with chronic disease [41]. In 2011, Yu et al. demonstrated measuring respiration
rate in a sports situation by applying a change in the reflected light component of the
forehead and blind source separation (BSS) for continuous monitoring of respiration [42].
In addition, Wei et al. obtained the average of each component of the face and each RGB
component of the neck region and evaluated the performance of a BSS-based respiration
measurement method of the signal of the changes in the average of eight subjects [43].
Tarassenko et al. detected a face region from video and classified the face, upper body,
and background using a nonparametric Bayesian image segmentation algorithm and then
used an autoregressive model to recognize RGB changes in the face region to estimate
respiration information from the corresponding signal [44]. In 2019, Ghodratigohar applied
independent component analysis (ICA) to each RGB component of face images to separate
the noise and PPG components and decomposed the signal into intrinsic mode functions
through complete ensemble empirical mode decomposition with adaptive noise, as well
as considerably improved the performance of respiration measurement by selecting the
signal that best represented the true respiration [45]. In addition, Sanyal et al. reviewed
a method to convert a detected face image into an HSV color model to measure respira-
tion with robustness of changes in light and measured respiration using changes in the
color component of a color model. They conducted an experiment on 25 adult subjects
(15 men and 10 women) and showed that their approach may be considered promising
for application in telemedicine [46]. In 2016, Gastel et al. tracked feature points in an
image of the face to improve measurement performance in visible light, as well as infrared
environments, by observing changes in the components of light reflected by the skin and
estimating signals through the weighted sum of the changes. They proposed a method to
measure respiration by applying frequency analysis technology and demonstrated notable
performance in visible and infrared environments [47]. PPG-based noncontact respiration
measurement methods were also studied. These promising methods can stabilize skin area
tracking and continuously measure respiration through a combination of techniques for
detecting the facial RoI as a representative skin area. Previous studies showed the useful-
ness of PPG-based respiration measurement techniques using camera systems. However,
these methods still involve some limitations. First, they are difficult to apply in actual



Appl. Sci. 2022, 12, 11603 5 of 26

environments because most of the research results reported were recorded in environments
such as laboratories and hospitals, where both movement and illumination are extremely
limited. In fact, techniques such as BSS and frequency analysis methods used to purify
respiration information from signals are extremely sensitive to noise; therefore, they cannot
estimate respiration rate accurately in the presence of movement and optical noise unre-
lated to respiration [48]. In addition, Nam et al. and Karlen et al. found that respiratory
and heart rate signals were similar to PPG signals when respiratory rates were measured
at high respiration rates greater than 20 bpm (bpm). They found that the accuracy was
reduced because respiratory rate extraction was impossible owing to the overlapping peri-
odicity [49,50]. Considering that these studies were conducted based on relatively stable
PPG signals acquired with a finger in contact with a camera lens and that breathing rates
as high as 40 bpm are generally considered normal, the probability of noise is very high.
Thus, noncontact PPG-based respiration measurement methods still involve some notable
limitations on their application as a general respiration measurement technology [47].

2.2. Motion-Based Respiration Measurement Method

Respiration can also be measured using a noncontact method in which an RGB camera
is used to quantitatively detect minute movements of the human body, such as expansion
and contraction of the chest caused by respiration. As shown in Figure 1, changes such as
the diaphragm moving up and down during breathing, the external intercostal muscles
pulling up the ribs and expanding, and the volume of the chest cavity increasing, cause
the upper body to move overall [51]. Studies were conducted to measure respiration
in a noncontact manner by quantitatively measuring such changes in chest movement.
Zhao et al. detected the approximate position of the upper body using the Haar-like feature-
based object detection method [52] proposed by Lienhart and Maydt in 2013, and defined
body regions as RoIs based on the position of the face to estimate respiration rate by
applying frequency analysis techniques to the average change in brightness of a time-series
signal within the RoI [53]. Similarly, in 2016, Reyes et al. captured images of the abdomen
of the human body using a camera on an Android smartphone and estimated respiration
information using the average changes in the pixels of the images [54,55]. Prathosh et al.
proposed a method to measure respiration by tracking changes in reflected light using
the principle that changes caused by respiratory movement change the light reflected
from the chest wall [56]. Massaroni et al. conducted a study to compare the respiration
information measured by the average pixel change obtained from RoIs with a reference
by selecting the boundary region of the RoI [57]. Although these studies showed that
movement caused by respiration can be optically observed, several challenges remain to be
solved before these methods can be universally adopted. Estimating motion information
by simply using the amount of pixel change is simple to implement, and the computational
cost is very low. Figure 2 shows examples of different pixel variation signals that can
be observed with the same respiration periods. The scale of the pixel value also varies
greatly depending on color changes, and Figure 2 shows that the normalized signal clearly
confirms these trends. As may be observed from Figure 2, the pixel variation signal may
have a different phase from the actual respiration signal owing to numerous factors, such
as the subject’s clothes, background, and lighting. In addition, this change may exhibit a
completely different periodicity from breathing movement in some cases. These factors can
significantly degrade the performance of respiration motion estimation methods based on
the amount of change in pixels, and act as a limit that renders detecting the exact timing
of inspiration and expiration through motion information impossible. Al-Naji et al. and
Antognoli et al. used Eulerian video magnification [58], a technique for amplifying small
movements with periodicity, to amplify movement by respiration and then to amplify
the difference between adjacent frames [59,60]. However, these methods also perform
amplification based on the amount of pixel change; therefore, they are subject to the
limitations of pixel change-based methods. To quantitatively measure movement driven by
respiration, an optical flow method was used to calculate the movement speed of a specific
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pixel pattern in an image [61]. Because optical flow estimates a motion vector owing to
movement, it can mitigate some problems of methods that simply measure the amount
of change in the pixels. In 2016, Lin et al. estimated the relative position of body regions
through face detection and measured respiration by calculating the movement of the body
regions as an optical flow [62]. In 2018, Tran et al. estimated body RoIs using a depth
camera, mapped the image acquired with an RGB camera, and then applied optical flow to
the RoI to measure respiration [63]. Janssen et al. obtained a motion matrix by applying
optical flow to a video taken in 2015 and considered the respiration characteristics needed to
detect RoIs related to respiration in units of pixels by assigning a score, and then estimated
respiration information by fusing motion information [64]. They also showed that the
distance from the camera or the generation of noise caused by the lighting environment
can reduce measurement performance. In addition, Massaroni et al. in 2019 confirmed
that the optical flow-based method showed better performance by comparing the pixel
change-based and optical flow-based methods [65]. In addition, after manually selecting the
shoulder boundary region as the RoI, Shao et al. [66] detected the movement of the region
by calculating the differential in the longitudinal direction. A multi-task learning method
for skin region segmentation was studied by Jorge et al., who refined various features
extracted from a learning convolutional neural network (CNN) with BSS techniques, such
as principal component analysis and ICA [67]. Brieva et al. also measured respiration
through motion analysis, and other studies along these lines were conducted [68]. Although
these motion analysis-based respiration measurement methods showed promise through
experiments, they still involve two problems. The first is that no automated technology
was applied to reliably detect RoIs to measure respiration. Failure to automatically detect a
stable RoI not only implies a need to manually assign the RoI, but also requires extremely
restricted movement so that the subject cannot deviate from the RoI. These methods are
exceedingly difficult to apply to general-purpose measurement scenarios because the RoI
must be periodically designated for continuous measurements when a subject moves.
Although some studies estimated the area where movement due to respiration occurs as
an RoI using the characteristics of respiration movement, this method is very vulnerable
to motion noise, and its detection performance is thus unstable in environments with few
motions, such as mobile and kiosk settings. In addition, Lin et al.’s approach was also
used to estimate a chest RoI based on the face area, but the exact area may not always be
detected depending on the subject’s posture [69,70]. An inaccurate RoI causes noise in
the background to be included in the analysis target, and thus degrades the respiration
measurement performance, which makes the respiration measurement technology difficult
to apply without accurate RoI detection technology, which tends to be available only in
limited environments. Second, while most studies demonstrated promising performance,
most of these experiments did not consider real-world situations with considerable noise
elements [71]. The movement of the hand covering the RoI is larger and stronger than the
fine movements of breathing, and distinguishing between these movements and breathing
movements by means of pixel variation or optical flow is challenging. Therefore, such noise
may cause large deformations in the estimation of the respiratory signal process and may
significantly reduce the accuracy of the respiration measurement. To enable respiration
measurement technology to be widely adopted, the respiration measurement process must
be automated, and the respiration measurement performance must be guaranteed even
in a general environment. Therefore, in this study, we overcome these two limitations by
automating RoI detection through the application of deep learning-based techniques and
analyzing respiratory movements using CNN models trained to be robust to noise.
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pixel value that are opposite to the reference breathing signal, and (c) pixel value if the changes in the
reference respiratory signal are not similar.

3. Materials and Methods

The entire process of the proposed method is illustrated in Figure 3. The RoI is detected
in video frames using deep learning, and noise-robust breathing movements are detected
from the detected RoI region. The detected motion information is accumulated for a prede-
termined time, and a respiratory signal is detected by purifying the accumulated signals
to estimate a subject’s rate of respiration. Figure 3a is described in detail in Section 3.1,
Figure 3b in Section 3.2, Figure 3c in Section 3.4, and Figure 3d in Section 3.5.
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3.1. RoI Detection

In the proposed approach, we adopt a method to detect the location of specific body
parts (face, torso, etc.) within an image where changes caused by respiration can be ob-
served in order to automatically detect RoIs. In this section, we discuss the existing methods
and their limitations in detail, along with some directions to improve their performance.
In this section, we describe the proposed methods to improve existing RoI detection tech-
niques by focusing on stably detecting the chest region as the RoI, because movement
caused by respiration is most visible in the rising and falling of the chest [72]. To perform
stable detection, a distinct feature is needed to identify the difference between the object to
be detected and other objects. Face detection is relatively easy owing to the biologically dis-
tinct characteristics of human facial features [73], but few studies considered this approach
because the characteristics of the chest area can vary depending on the pattern of clothing
worn. Previous studies attempted to detect RoI by simply assuming the area below the face
to be the chest area after detecting the face, but this is highly likely to select an incorrect
area owing to factors such as the subject’s posture. Hence, estimating respiratory motion
information properly is difficult if only a portion of the chest region is included in the RoI,
and stable measurement may not be possible due to background noise. To overcome these
limitations to achieve continuous and stable chest region detection, we adopt a technique
to estimate the main landmark location of the human body to detect RoIs.

Recently, technology to detect landmarks in the human body made significant
progress [74]; in particular, Google announced BlazePose as a lightweight landmark de-
tection technology that enables real-time operation even in mobile environments [75].
BlazePose detects the area of the face, which has the most distinctive characteristics in the
human body, but little change in shape; then, it determines the area to detect landmark
points based on the area of the face. Compared with existing body landmark detection tech-
nologies, BlazePose is designed to remove heatmap branches during inference and enables
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points to be directly predicted. Therefore, our proposed approach exhibits extremely fast
performance in landmark detection on single objects and achieves a computational speed
that enables real-time computation even in mobile environments with limited computing
power. In addition, the proposed approach shows robust performance even with some
points missing, such as when only the upper body appears in an image, by adding visibility
to the inference results of the model. Considering that no significant difference in accuracy
is observed compared to conventional methods, our proposed method uses landmark
points detected on the human body through BlazePose to estimate RoIs. Because the chest
area can be defined as the area between both shoulders and between the shoulder and
pelvis, the chest RoI for respiration measurements can be defined in terms of a bounding
box determined by the shoulder and pelvic points, as shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 28 
 

 

Recently, technology to detect landmarks in the human body made significant pro-
gress [74]; in particular, Google announced BlazePose as a lightweight landmark detection 
technology that enables real-time operation even in mobile environments [75]. BlazePose 
detects the area of the face, which has the most distinctive characteristics in the human 
body, but little change in shape; then, it determines the area to detect landmark points 
based on the area of the face. Compared with existing body landmark detection technol-
ogies, BlazePose is designed to remove heatmap branches during inference and enables 
points to be directly predicted. Therefore, our proposed approach exhibits extremely fast 
performance in landmark detection on single objects and achieves a computational speed 
that enables real-time computation even in mobile environments with limited computing 
power. In addition, the proposed approach shows robust performance even with some 
points missing, such as when only the upper body appears in an image, by adding visi-
bility to the inference results of the model. Considering that no significant difference in 
accuracy is observed compared to conventional methods, our proposed method uses 
landmark points detected on the human body through BlazePose to estimate RoIs. Be-
cause the chest area can be defined as the area between both shoulders and between the 
shoulder and pelvis, the chest RoI for respiration measurements can be defined in terms 
of a bounding box determined by the shoulder and pelvic points, as shown in Figure 4. 

 
Figure 4. Example of chest RoI detection results based on body landmark point: (a) if only a portion 
of the chest area is in the image; (b) if all the chest area is in the image. 

3.2. Motion-Based Respiration Measurement Method 
We consider two methods to improve the stability of existing respiration measure-

ment methods. The first is to suppress noise generated by movement not caused by 
breathing in the RoI. In an uncontrolled environment, the RoI of the measurement subject 
may include objects with other movements in addition to the chest and abdomen. Because 
breathing movements are relatively large, the movements of these objects must be sup-
pressed so that the noise does not affect the motion signal. However, distinguishing 
breathing from noise based on the calculated amount of movement is difficult because the 
quantitatively measured amount of movement varies depending on the distance between 
the measured object and the camera, the amount of breathing, and the type of clothing 
worn. The second method is to discover additional characteristics that can be used for 
motion analysis. Most existing methods for estimating respiratory information by quanti-
tatively measuring movements consider only vertical movement as indicating breathing. 
However, because respiration is a movement that causes expansion and contraction of the 
chest and abdomen, it is accompanied by movement in the left and right directions as well 
as in the vertical direction. In some cases, the left and right movements may not be ob-
served due to breathing movements, or they appear larger, so a more stable measurement 
may be possible when left and right movement characteristics are considered. Therefore, 

Figure 4. Example of chest RoI detection results based on body landmark point: (a) if only a portion
of the chest area is in the image; (b) if all the chest area is in the image.

3.2. Motion-Based Respiration Measurement Method

We consider two methods to improve the stability of existing respiration measurement
methods. The first is to suppress noise generated by movement not caused by breathing in
the RoI. In an uncontrolled environment, the RoI of the measurement subject may include
objects with other movements in addition to the chest and abdomen. Because breathing
movements are relatively large, the movements of these objects must be suppressed so
that the noise does not affect the motion signal. However, distinguishing breathing from
noise based on the calculated amount of movement is difficult because the quantitatively
measured amount of movement varies depending on the distance between the measured
object and the camera, the amount of breathing, and the type of clothing worn. The
second method is to discover additional characteristics that can be used for motion analysis.
Most existing methods for estimating respiratory information by quantitatively measuring
movements consider only vertical movement as indicating breathing. However, because
respiration is a movement that causes expansion and contraction of the chest and abdomen,
it is accompanied by movement in the left and right directions as well as in the vertical
direction. In some cases, the left and right movements may not be observed due to breathing
movements, or they appear larger, so a more stable measurement may be possible when left
and right movement characteristics are considered. Therefore, to improve on the stability
of existing methods, we consider distinguishing motion noise from fine motion caused by
breathing and use additional features to measure motion.

In this study, we propose a learning-based CNN model that estimates motion through
texture changes in the RoI. The structure of the proposed model is shown in Figure 5.
The model extracts the features of an image through convolution (Conv1, Conv2, and
Conv3 layers), which extracts the characteristics of the image by receiving RoI images of
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two adjacent video frames as input and calculates the difference in the features to obtain
the feature maps (feature maps 1, 2, and 3). Further convolution then extracts expressive
features in estimating motion information from these feature maps containing difference
information between the two images and outputs a two-dimensional output that expresses
the degree of exhalation and inhalation movement as values between −1 and 1. Because
the output refers to the degree of motion of the two RoI image inputs, the average of the
output is calculated to calculate the average degree of motion and is used as the average
motion information. All convolutions, except convolution (Conv4-2), that output results
include the ReLU activation function, and the Conv1, Conv2, and Conv3 layers include
batch normalization. Although the model consists of convolution throughout the entire
process, the size of the input image is fixed at 200 × 200 pixels for computational efficiency
and characteristic normalization. Details of the parameters of the model are summarized
in Table 2.
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Table 2. Model parameter of the proposed motion-based respiration measurement CNN.

Name Kernel
Size

Input
Channels

Output
Channels Stride Input Size Output

Size

Conv1 3× 3 3 32 2 200× 200 100× 100
Conv1-1 3× 3 32 32 1 100× 100 100× 100
Conv1-2 3× 3 32 64 2 100× 100 50× 50
Conv2 3× 3 32 64 2 100× 100 50× 50

Conv2-1 3× 3 64 64 1 50× 50 50× 50
Conv2-2 3× 3 64 128 2 50× 50 50× 50
Conv3 3× 3 64 128 2 50× 50 25× 25

Conv3-1 3× 3 128 128 1 25× 25 25× 25
Conv3-2 3× 3 128 128 1 25× 25 25× 25
Conv4-1 3× 3 128 128 1 25× 25 25× 25
Conv4-2 3× 3 128 1 1 25× 25 25× 25

Because the initial layer of the CNN extracts low-level features, such as texture and
edge, as the convolutions are repeated, the structural characteristics of the object are
extracted. The model utilizes the complex structural characteristics of images [76]. However,
the proposed method is not designed to use complex structural characteristics, but rather to
estimate motion through changes in low-level features, such as texture. Therefore, relatively
few layers and model parameters are needed. In addition, we adopt a shortcut structure so
that the features extracted in the first layers can contribute to the last layer. This type of
proposed model has several advantages.

First, the model can be designed as a lighter network to reduce the amount of computa-
tion required and enable faster and more efficient training. Deep learning-based respiration
estimation shows excellent performance in terms of accuracy, but high-end devices are es-
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sential when real-time processing is required, owing to the large number of computational
resources required. However, the proposed method can perform real-time calculations
even in edge devices, such as mobile or embedded systems. In addition, the receptive
field is also correspondingly small, which enables efficient calculation with less data. The
receptive field can be defined as the size of the space of input neurons that can affect a
single output neuron, which is defined as the size of the input image that can affect the
output value [77]. The size of the receptive field is proportional to the extent to which
context information can be utilized; a larger receptive field is useful for solving complex
problems, but can easily lose detailed spatial characteristics of an image [78–80]. As the
model has more contextual information available, more data with guaranteed diversity
are required to prevent overfitting. The proposed model can be trained effectively owing
to its lightweight design. In addition, the small receptive field of the model and the fact
that it outputs motion information on the receptive field, which is a partial region of the
image, in the form of a two-dimensional image, allows the information to be estimated
independently. As the model has more contextual information, a sufficient dataset with
guaranteed diversity is required to prevent overfitting. Because the proposed method has a
small receptive field, it can learn intensively from the texture information of a local area of
an image; thus, efficient augmentation can be achieved even with relatively little data.

Second, the existing methods use only movement in a predetermined specific direction
as respiration information after calculating the motion information. However, because the
proposed model calculates the amount of movement based on the change in the image
without making a specific hypothesis on the breathing movement, the result can be derived
by using the overall elements present in the image. In addition, this characteristic of the
proposed method, which can handle more information, can also help to distinguish noise
information included in the RoI.

3.3. Model Training

Data preprocessing: For training, time-sequential frames and data labeled with in-
formation on motion due to respiration are needed to estimate the degree of motion. In
this study, we generated a dataset for respiration estimation, as shown in Figure 6, us-
ing video and respiration signals collected with a webcam and contact sensor. First, two
time-adjacent frames of a captured video were used as input images, and the difference
between the normalized respiration signals corresponding to the two images was obtained.
The difference between the respiration signals was a value between −1 and 1, and the
stronger the inhalation, the closer to 1, while the stronger the exhalation, the closer to −1.
By multiplying the predefined body mask for the image with the movement value due to
respiration, the torso area pixel values are assigned a movement value due to respiration,
and the pixel values of areas other than the mask are assigned a value of 0 to create a respi-
ration signal mask. The proposed model is trained to infer the torso mask for movement
changes due to breathing by taking two images as the input.

Implementation details: The L1 loss, as given in Equation (1), was used as the loss
function, the Adam optimizer was used, and a total of 1,000,000 iterations with a batch size
of 10. The learning rate started at 0.0001, and a step scheduler was applied to reduce the
learning rate by half every 200,000 iterations.

L1 =
1
n

n

∑
i=1
|yi − f (xi)| (1)

In the model inference, the size of the input image was fixed at 200 × 200 pixels, but
we allowed the actual size and aspect ratio of the RoI to differ from the size of the input
image. In this case, the characteristics of the image may be modulated by resizing to match
the RoI image with a fixed image size. Therefore, we selected a bounding box of random
location, size, and aspect ratio to consider these factors, and resized the bounding box
to 200 × 200 pixels for use as input data. The size and aspect ratio of the bounding box
were randomly selected from 0.5 to 1.5 times based on 200 × 200 at each learning time. In
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addition, color augmentation was performed by scaling and shifting randomly for each
RGB channel of the image to include information on the texture changes of diverse colors.
Furthermore, the proposed method needs 759,760,000(0.7 G) floating point operations
(FLOPs) to respiration signal estimation.
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3.4. Refining Motion Estimation Model’s Respiratory Signals

A time-series motion signal may be obtained by estimating the average motion infor-
mation over time, as shown in Figure 7. Because the motion estimation model is trained
to suppress noise components and detect only motion caused by respiration, a respira-
tion signal that does not contain noise caused by movement other than breathing can
be extracted. However, because the proposed motion estimation model compares the
amount of motion between adjacent frames without reference, the accumulation of errors
in each frame can cause bias in the detected motion signal, which can be considered as
noise. Therefore, a post-processing operation must be performed to estimate respiration
information by removing the corresponding noise component. In general, frequency-based
post-processing methods are commonly considered for signal purification. These meth-
ods leave only specific components by using a band-pass filter to allow only the target
frequency to pass through the acquired raw signal and to refine various signals, such as
heart rate data. Because the deflection that occurs in the signal is a low-frequency compo-
nent that exists in the entire signal, the trend of the respiratory signal can be removed by
suppressing the low-frequency component. The low-frequency components of the signal
can be obtained or removed through various methods, such as discrete Fourier transform
(DFT) and moving average filtering-based methods. However, because the band-pass
filter removes the defined specific frequency components, the pause between breaths is
removed with low-frequency components, as shown in Figure 7a. The proposed method
uses moving average filtering to obtain the signal. Considering that rates of 10–40 bpm are
considered normal breathing, the window size of the filter used to obtain the low-frequency
component was 6 s long, which may include the maximum period of breathing. Figure 7
shows an example of the raw signal where the trend occurred, and the breathing signal
that removed the trend.
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3.5. Estimation of Respiratory Rate

Two methods are used to detect respiratory rate: a method based on peak-to-peak
interval (PPI) and a method based on frequency analysis. PPI is the distance between
adjacent peaks of the signal, which is the period of the signal. The respiratory rate (RR)
may be calculated from PPI using Equation (2) in units of seconds.

RR =
1

PPI
× 60 (2)

The method based on frequency analysis calculates the frequency component of the
signal, assumes that the frequency component with the largest amplitude is the respiratory
frequency, and estimates the respiratory rate through the corresponding frequency. The
respiratory rate can be calculated from the maximum frequency component using the
following Equation (3):

RR = fmax × 60 (3)

To estimate the respiratory rate based on PPI, accurate peak detection must be per-
formed. Because inaccurate peaks can significantly reduce the accuracy of respiration rate
estimation, frequency analysis-based estimation methods may be suitable in real-world
environments where stable peak detection may be difficult. Therefore, in this study, we
conducted an experiment in which we estimated respiratory rates with a frequency analysis
method using DFT.

3.6. Data Acquisition

All experiments were conducted using a notebook computer with an Intel Core i7-9750
processor (2.60 GHz), 16 GB RAM, and an NVIDIA GeForce RTX 2080 GPU, using the
Windows 10 operating system. The image was acquired at 640 × 480 resolution using
a Logitech C920 Pro webcam, as shown in Figure 8a. To prevent loss due to video com-
pression, all captured images were stored as RGB raw data and photographed at a speed
of 20 fps. The Vernier Go Direct Respiration Belt was used as reference equipment for
breathing signals, as shown in Figure 8b, and data were acquired at 20 fps, according to the
speed of the camera. All implementations required for the experiment were executed in
the Python programming language (version 3.8), and we used libraries such as OpenCV,
Pytorch, and ONNX Runtime to process images and to train and evaluate the models.
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The respiration dataset was obtained from 14 participants. The subjects breathed
comfortably approximately 1 m from the camera, and the front of their upper body was
photographed by the camera while they were guided to breathe according to a provided
breathing guideline signal. The guidelines were used to induce three types of respiratory
patterns to include various respiratory patterns in the data, and images and respiratory
signals were photographed for 260 s per the guidelines. Guideline #1 induced breathing at
40, 35, 30, 25, 20, 15, 10, 15, 20, 25, 30, 35, and 40 bpm for 20 s, and Guideline #2 induced
breathing in the form of rapid change in bpm speed to reflect rapid changes in the data.
Guideline #3 induced breathing that included pauses during breathing to reflect a stationary
state in the learning data. To include movement information other than breathing in each
image, moving objects were included in the background, in addition to the subjects, as
shown in Figure 9. For each subust, 15,700 image frames were photographed, 15,600,
5200 for each guideline, and a total of 218,400 image frames and respiratory signal values
corresponding to those frames were obtained for all subjects.
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We obtained testing data to evaluate the performance of the model for 13 people in
a spontaneous breathing situation without any separate control related to the subjects’
breathing patterns. The subjects were photographed at a close distance of about 0.5 m and
a long distance of about 1.5 m and were also photographed during thoroughly controlled
movement and a situation in which movement noise was generated in RoI. For the situation
with noise, the subjects’ RoI was photographed for an environment in which various objects,
such their hands and clothes, were also intermittently moving.

3.7. Performance Validation and Metrics

We evaluated the accuracy of the proposed method in comparison with a reference
respiratory rate. The respiratory rate must accumulate data for a specific time, after which
a new bpm can be calculated for each new input frame. Therefore, in this study, based
on the experimental results of Section 4.1, after accumulating data for 17 s, the bpm for
all subsequent frames was calculated using the sliding window method. The following
analysis methods were used to verify the respiration measurement performance. To verify
the accuracy of the estimated respiratory rate, the mean absolute error (MAE) was used to
determine the absolute difference between the two measurements (reference and measured
bpm), as shown in Equation (4).

MAE =
1
n

n

∑
i=1

∣∣∣RRi
pred − RRi

gt

∣∣∣ (4)
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The Pearson correlation coefficient (r) between the two signals was used to determine
the similarity between the estimated signal and the estimated respiratory rate to the original
signal. This metric evaluates the correlation between two data points and can be used as
an indicator to evaluate the similarity of the trends of the two signals. The following is
implied by r: the closer r is to 1, the more positively the two data samples are correlated;
the closer to −1, the more negatively the two samples are correlated; and the closer to 0,
the less correlated the samples are. This value can be calculated from Equation (5) for both
respiratory signals, and we used the average as an indicator to determine the quality of the
estimated respiratory signals.

r =
∑n

i=1

(
si

gt − sgt

)(
si

pred − spred

)
√

∑n
i=1

(
si

gt − sgt

)2
√

∑n
i=1

(
si

pred − spred

)2
(5)

The intraclass correlation coefficient (ICC) was also calculated to analyze the degree of
agreement between the reference bpm and bpm measured using the contactless respiration
measurement method. ICC was calculated using Equations (6)–(8); the closer to 0, the lower
the consistency, and vice versa.

RR =
1

2n

n

∑
i=1

(
RRi

gt + RRi
pred

)
(6)

s2 =
1

2n

{
n

∑
i=1

(
RRi

gt − RR
)2

+
n

∑
i=1

(
RRi

pred − RR
)2
}

(7)

ICC =
1

ns2

n

∑
i=1

(
RRi

gt − RR
)(

RRi
pred − RR

)
(8)

In addition, we used a Bland–Altman plot to analyze whether error bias was present
along with the mean of different (MOD) and limit of agreement (LOA) indicators for further
performance analysis. We performed comparisons with existing methods to evaluate the
relative performance of the proposed method. Two methods were used for the comparison,
including an intensity variation-based method for RGB pixels [57] and an optical flow-
based method [62]. The method of detecting respiratory volume from images followed the
existing method, but the RoI detection method followed the method proposed in this study
to prevent performance differences due to differences in RoI detection accuracy.

4. Experimental Results
4.1. Analyze the Impact of Changing the Time Window Size

A respiratory signal of a predetermined length or greater is required to refine the
respiratory signal and detect the respiratory rate. Short respiratory signals may not include
many respiratory cycles, resulting in poor estimation accuracy, and excessively long respi-
ratory signals may increase the time required for DFT computation to purify the signal and
calculate the bpm. Therefore, we conducted an experiment to select the optimal window
size considering accuracy and inference speed. The experiment derived the results through
5-fold cross-validation for the training data. Table 3 and Figure 10 show the changes in
the accuracy of bpm estimation and processing time according to the changes in the size
of the window. As a result of the experiment, the bpm estimation accuracy exhibited the
highest performance when the window sizes were 16 and 17 s. Notably, when the window
size increased to more than 18 s, the accuracy decreased. This can be advantageous for
periodic analysis, including many breathing cycles; however, using a window size larger
than a certain level increases the probability of bpm changing or including noise elements,
which makes accurately estimating bpm difficult. Therefore, choosing an optimal window
size that is neither excessively small nor large is important for ideal respiration estimation.
In terms of computation time, when the window size was less than 5 s, the computation
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time was noticeably short, but the difference in processing speed between time windows
of more than 10 s was approximately 0.1 ms, so the increase in window size was not
disadvantageous in terms of processing speed. Therefore, in this study, 17 s was used as the
optimal window size considering both bpm estimation accuracy and computation time.

Table 3. The changes in the accuracy and inference time according to window size.

Window
Size (s) MAE (bpm) Inference

Time (ms)
Window
Size (s) MAE (bpm) Inference

Time (ms)

1 5.5430 0.3314 16 0.1859 0.8533
2 3.2044 0.4635 17 0.1848 0.8882
3 1.8921 0.6130 18 0.2144 0.8594
4 1.2553 0.7679 19 0.2383 0.8625
5 0.9901 0.7876 20 0.2193 0.8385
6 0.8733 0.7889 21 0.2068 0.8442
7 0.6581 0.7971 22 0.2345 0.8951
8 0.5102 0.7986 23 0.2534 0.8564
9 0.4739 0.7920 24 0.2382 0.9244
10 0.4603 0.8154 25 0.2129 0.9412
11 0.3785 0.8468 26 0.2277 0.8854
12 0.3145 0.8501 27 0.2148 0.8739
13 0.2869 0.8260 28 0.2263 0.9089
14 0.2441 0.8311 29 0.2579 0.8530
15 0.2350 0.8423 30 0.2524 0.9211
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4.2. Results of Respiration Estimation in a Restricted Movement Environment

To verify the respiration measurement performance of our proposed method, we
conducted an experiment to compare the results of estimating the respiratory signal and
rate with the reference using test data. To confirm the respiration measurement performance
in ideal situations where movement is strictly controlled, we conducted experiments only
on scenes #1 and #2 of the test data. Details of the experimental results can be found in
Tables 4 and 5, and the Bland–Altman plot results are shown in Figure 11. According to the
experimental results, the MAE of the method proposed in scene #1 was the most accurate at
0.084, and that of the optical flow-based method was the most accurate at 0.123 in scene #2.
When the data from scenes #1 and #2 were used, the optical flow-based method showed the
highest performance at 0.107. We confirmed through ICC that the proposed method and
the optical flow-based method exhibited excellent bpm estimation performance. Although
the optical flow-based method showed the best performance in the experiment when
movement was controlled, the difference was potentially not significant because bpm
was calculated with a precision of a 0.36 level due to the nature of the frequency analysis
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method. Both methods showed the small error of a 0.1 bpm level and an exactly accurate
respiration measurement was possible. Furthermore, a slight degradation in performance
was observed at a greater distance than at a closer distance, which can be attributed to the
greater influence of optical noise with increasing distance. However, even at a distance
of 1.5 m, the respiration measurement methods exhibited good accuracy. The proposed
method and optical flow-based method recorded small MODs and LOAs in all situations,
which means that the error bias was small and the agreement between the reference and
the data estimated through the two methods was remarkably high. The Bland–Altman plot
in Figure 11 shows that the two methods had little error bias, and the agreement between
the data was also high. Each point in the plot is distributed discretely by bpm calculation
precision, and the density of the overlapped points is shown in color (red indicates higher
density and blue lower density).

Table 4. Respiration measurements in motion-controlled environments.

Scene # Method MAE
(bpm)

MOD
(bpm)

LOA
(bpm) ICC Mean of

#1 Ours 0.08 ± 0.14 −0.00 ±0.38 0.999 0.93 ± 0.04
#1 Optical flow [62] 0.09 ± 0.16 −0.01 ±0.36 0.999 0.95 ± 0.03
#1 Intensity [57] 3.33 ± 3.30 0.95 ±11.06 0.326 0.49 ± 0.26
#2 Ours 0.16 ± 0.16 0.04 ±0.56 0.999 0.93 ± 0.03
#2 Optical flow [62] 0.12 ± 0.15 0.05 ±0.71 0.999 0.94 ± 0.04
#2 Intensity [57] 2.16 ± 2.69 1.00 ±6.40 0.518 0.55 ± 0.27

Total Ours 0.12 ± 0.15 0.02 ±0.48 0.999 0.93 ± 0.04
Total Optical flow [62] 0.11 ± 0.15 0.02 ±0.57 0.999 0.95 ± 0.04
Total Intensity [57] 2.75 ± 3.03 0.97 ±9.03 0.429 0.52 ± 0.27

Table 5. Analysis of error statistics in a motion-controlled environment.

Scene # Method p-Value

#1 Ours–optical flow [62] 0.599
#1 Ours–intensity [57] 0.000
#2 Ours–optical flow [62] 0.531
#2 Ours–intensity [57] 0.000

Total Ours–optical flow [62] 0.928
Total Ours–intensity [57] 0.000

Table 5 shows the results of the statistical verification of the difference between the
bpm error group of the proposed method and the bpm error group of the existing methods
through a t-test, and there was no statistically significant difference between the optical
flow-based method and the proposed method for all motion-controlled situations. Intensity-
based methods recorded low performance values in all the experimental results. This can
be attributed to the limitations of the pixel variation-based method mentioned in Section 2.2.
Figure 12 illustrates this problem by comparing the estimated signals. Because the reference
signal used in the experiment was acquired through a belt-type respiratory measurement
sensor, the detailed shape of the waveform may vary depending on the degree of looseness
of the belt and the position in which it was worn. Therefore, in this study, the figure of
correlation, which can confirm the similarity between the estimated signal and the reference,
is not used as an absolute performance indicator, but rather as data to check whether the
estimated signal represents a breathing pattern well. From a similarity perspective, we can
see that intensity-based methods do not express respiratory signals well with extremely
low values, and that the proposed method and optical flow-based methods showed a high
degree of agreement of 0.9 or more in all situations. In fact, it may be confirmed from
Figure 12 that the signal estimated through the corresponding methods was almost similar
to the reference.
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4.3. Estimation of Respiratory Rate in a Free-Motion Environment

To apply the proposed method in practice, stable performance in the event of motion
noise is necessary, along with a thoroughly controlled environment. Therefore, we con-
ducted an experiment on scenes #3 and #4, which were situations in which movements
other than breathing occurred in the RoI. The experiment was conducted in the same
manner as before, and the actual experimental results are shown in Tables 6 and 7 and
Figure 13. The results show that the proposed method measured respiration accurately,
and the values did not differ significantly from those obtained in the controlled environ-
ment. The optical flow-based method, which showed excellent respiration measurement
performance in previous experiments, increased the overall MAE of the estimated bpm by
a factor of more than 20, and the intensity-based method also decreased significantly. The
correlation between the reference signal and the optical flow-based method also showed
a low agreement of up to 0.4 in this experiment, in contrast to the high value of 0.9 or
more obtained in the previous experiment. The ICC of the optical flow-based method was
also quite low at 0.2 levels, unlike in previous experiments. The Bland–Altman plot in
Figure 13 and the MOD and LOA results in Table 6 show that the error bias was large and
the agreement between the estimated data was remarkably low. From the t-test results
in Table 7, it may be confirmed that the proposed method shows a statistically significant
error compared to all existing methods in a noisy environment.
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Table 6. Respiration measurements in environments with motion noise.

Scene # Method MAE
(bpm)

MOD
(bpm)

LOA
(bpm) ICC Mean of

#3 Ours 0.10 ± 0.15 0.01 ±0.37 0.999 0.91 ± 0.03
#3 Optical flow [62] 2.84 ± 3.45 2.34 ±7.32 0.521 0.44 ± 0.28
#3 Intensity [57] 8.33 ± 9.22 −5.01 ±23.70 0.209 0.21 ± 0.15
#4 Ours 0.12 ± 0.15 −0.00 ±0.41 0.999 0.92 ± 0.04
#4 Optical flow [62] 5.57 ± 3.33 4.63 ±8.96 0.192 0.26 ± 0.20
#4 Intensity [57] 9.45 ± 8.37 −7.13 ±24.69 0.237 0.22 ± 0.15

Total Ours 0.11 ± 0.15 0.00 ±0.39 0.999 0.92 ± 0.04
Total Optical flow [62] 4.20 ± 3.64 3.48 ±8.48 0.202 0.35 ± 0.26
Total Intensity [57] 8.89 ± 8.81 −6.07 ±24.29 0.134 0.22 ± 0.15

Table 7. Analysis of error statistics in environment with motion noise.

Scene # Method p-Value

#1 Ours–optical flow [62] 0.000

#1 Ours–intensity [57] 0.000

#2 Ours–optical flow [62] 0.000

#2 Ours–intensity [57] 0.000

Total Ours–optical flow [62] 0.000

Total Ours–intensity [57] 0.000

Table 8 shows the results of analyzing the statistical difference between the error group
of bpm measured in the motion noise environment and the error group of bpm measured
in the restricted motion environment for each noncontact respiration measurement method.
Although the proposed method did not show statistically significant errors in the two situa-
tions, the results confirm that the other two methods showed statistically significant errors.
Table 8 shows the results of analyzing the statistical difference between the error group of
bpm measured in the motion noise environment and the error group of bpm measured in
the restricted motion environment for each noncontact respiration measurement method.
Notably, the proposed method did not exhibit statistically significant errors for the two
situations, and the other two methods exhibited statistically significant errors.

Table 8. Analysis of error statistics between estimation with motion noise and estimation without
motion noise.

Distance (m) Method p-Value

0.5 m Ours 0.593
0.5 m Optical flow [62] 0.000
0.5 m Intensity [57] 0.000
1.5 m Ours 0.999
1.5 m Optical flow [62] 0.000
1.5 m Intensity [57] 0.000
Total Ours 0.715
Total Optical flow [62] 0.000
Total Intensity [57] 0.000

Figure 14 shows that reference and model-based breathing signals maintained stable
waveforms at the time of motion noise, whereas optical flow and intensity-based methods
showed significant damage to signal waveforms. Although the proposed method uses
an image-based inference model that can respond to motion noise when it is included
and learns from data containing information about motion noise, existing methods are
vulnerable to motion noise. This experiment shows that the proposed method is much
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more robust to motion noise than conventional techniques. Hence, the results show that
the proposed method can be applied to real-world environments where noise can occur
with much higher reliability than conventional methods.
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4.4. Inference Speed

The goal of the proposed method is to measure respiration in real time using standard
webcams and computing devices without using contact devices. Therefore, an experiment
was conducted to measure the computational time required to perform the entire process
using the proposed method. To measure the calculation time, the execution time of each
step was measured for real-time operation with an actual webcam. The measurement
process was repeated a total of 10,000 times. In Table 9, among the steps for respiratory
detection, RoI detection, signal purification, and bpm calculation were performed using
only the CPU, and respiratory movement detection through the model was the result of
using a GPU. Among the entire process for estimating respiration, the process of detecting
the torso area with RoI using BlazePose was the longest at 19.57 ms. Other computational
processes showed a short time of less than 3 ms. The total processing time, including the RoI
detection process, is 21.87 ms, achieving real-time at an arithmetic speed of approximately
45 fps. However, GPUs are difficult to consider as typical computing devices. To discuss
more general-purpose utilization, in this study, the speed at which GPUs were not used
and only CPU resources were used was also verified through experiments. Table 10 shows
the results of performing the operation of the entire process using only the CPU without
using the GPU. The average performance speed of the motion measurement step, which
performed the operation using the GPU, increased by about 3 ms from 1.96 ms to 4.58 ms.
In addition, as the computational load of the CPU increased, the execution time of RoI
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detection increased by about 5 ms, signal refinement by about 0.04 ms, and RR estimation
by about 0.09 ms. The total processing time in this case is 29.5 ms, which is a processing
speed of about 34 fps. Given that the standard for commonly used real-time operations is
30 fps, these results show that the proposed method can perform real-time processing even
with general computing and webcam hardware.

Table 9. Inference time of each respiration estimation on GPU.

Task RoI
Detection

Motion Mea-
surement

Signal
Refinement

RR
Estimation Total

Time(ms) 19.57 1.96 0.13 0.20 21.87

Table 10. Inference time of each respiration estimation on CPU.

Task RoI
Detection

Motion Mea-
surement

Signal
Refinement

RR
Estimation Total

Time(ms) 24.45 4.58 0.17 0.29 29.50

5. Discussion and Limitations

Recent studies on noncontact respiration measurement were widely adopted follow-
ing the interest of noncontact heart rate measurement. Nevertheless, to the best of our
knowledge, the proposed approach is the first to measure respiration in a fully automated
manner, and previous studies needed a pre-defined torso RoI for respiration measurements
and only developed an advanced respiratory signal extraction algorithm. The proposed
method detects up to the torso area and extracts respiratory signals from the detected RoI.
In addition, our proposed respiration measurements have a processing speed of less than
30 ms, even in a CPU environment, which generalizes noncontact respiration measurement
and presents new directions for applications in various fields. In addition to complete
automation of remote respiratory rate measurements, the results of several experiments
verified that noise removal, which was is not solved by existing methods, can be success-
fully performed through deep learning methods that infer the rate of respiration rate in
motion noise environments. Therefore, the proposed method is designed to be reliable and
robust to motion noise.

The proposed method can be widely adopted and can also be executed on inexpensive
and commonly used webcams and laptops, in contrast to existing methods. However, our
proposed method is an early version of the real-time automatic respiration measurement
technology with model-based motion analysis technology, and continuous improvement
remains needed to develop the techniques that make up the proposed method further. First
limitation: Our approach can be expanded to simultaneously measure multiple breaths in a
single image. Moreover, there is a need for the optimization and verification of the various
structures and scales that the proposed CNN model can process. Second limitation: Further
experiments can be conducted by acquiring more data to improve the performance of the
model and additional augmentation can be applied. In addition, it is necessary to verify the
performance of various factors, such as measurement distance, measurement posture, color,
and type of clothing worn by the subject, and additional experiments can be conducted on
changes in the movement of objects covering the RoI. In addition, because the frequency
analysis-based method used to estimate the respiratory rate uses the strongest frequency
component as the respiratory rate at a window of 17 s, reflecting changes in respiration
may be difficult if a subject’s respiratory pattern changes rapidly. Because the proposed
method can estimate stable respiratory signals as well as measure the respiratory rate, it
can be extended to detect additional information (depth of respiration, apnea interval, etc.)
that can be estimated from respiratory signals. Third limitation: The respiration signal
extraction is affected according to the ROI selection method. The proposed method uses
the body detector to measure respiration in torso ROI, so the measurement results may
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vary depending on the performance of the body detector. For this, a one-stage respiration
measurement method combining ROI selection and respiratory rate measurement can
be proposed, and the one-stage respiration measurement model structure for this can be
referred to the following literature [81,82]. If these limitations are addressed, the proposed
method can be applied to a variety of applications, including medical, forensic investigation,
fitness, and emotional estimation, and enhancing its performance for further applications
can be considered by combining it with technology for estimating the heart rate from
skin color.

6. Conclusions

In this study, we proposed a contactless breathing measurement method that can
universally utilize standard RGB cameras. Existing contactless breathing measurement
methods are not widely adopted because of the need for a separate device, difficulty
in automatically detecting RoI, and limitations in that measurement is impossible when
unintended movement occurs. In this study, it is shown that the entire process can be
automated using only RGB cameras for respiration measurements and the technology to
automatically detect RoI, and the existing limitations are improved by using a CNN-based
method designed to detect respiratory movements with high resistance to noise. Segmen-
tation technology and lightweight body landmark-based technology were presented as
alternatives to the existing RoI detection technology, and an environment in which the two
methods could be applied was considered.

For respiratory motion analysis, we proposed a model that learns the movement occur-
ring in two RoIs by applying various augmentation techniques to improve its performance.
We also presented a method for purifying noise components that may be included in a
motion signal, and we applied a method to detect respiratory rates from the purified signal.
The performance of the proposed method was compared with representative existing
methods based on optical flow and pixel intensity. The proposed method enables accurate
respiration measurement with an error of approximately 0.1 bpm and did not show perfor-
mance degradation even in a noisy environment that notably degraded the performance up
to 8 bpm errors in existing methods. It can also operate in real time about 30 FPS and need
0.7 GFLOPs for inference. This shows that it can be applied not only to a CPU environment
but also to a mobile device. Our experimental results show that the proposed method can
be implemented in various applications to overcome existing limitations. However, the
problem of performance degradation due to distance still needs further investigation, and
further analysis remains necessary because we analyzed the effect of the movement of the
measurement target on performance, rather than that of movements occluding the RoI.
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