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Abstract: Image noise occurs during acquisition and transmission and adversely affects processes,
such as image segmentation and object recognition and classification. Various techniques are being
studied for noise removal, and with the recent development of hardware and image processing
algorithms, noise removal techniques that combine non-local techniques are attracting attention.
However, one disadvantage of this method is that blurring occurs in the edges and boundary
line of the resulting image. In this study, we proposed a modified local steering kernel based on
image matching to improve these shortcomings. The proposed technique uses image matching to
differentiate the weight obtained by the steering kernel according to the local characteristics of the
image and calculates the weight of the filter based on the similarity between the center window
and the matching window. The resulting images were quantitatively evaluation and enlargement
of images were used and compared with the existing noise removal algorithms. The proposed
algorithm showed clearer contrast in the enlarged images and better results than the conventional
image restoration techniques in the quantitative evaluation using peak signal-to-noise ratio and
structural similarity index.
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1. Introduction

Noise removal of images is an important preprocessing step in systems that detect
objects based on images or use algorithms, such as recognition and tracking. It is often
difficult to remove noise in areas with many high-frequency components, such as edges
and text in images [1,2]. Various filtering techniques for noise removal to improve image
quality and achieve excellent images have been proposed. Noise removal methods, such as
Split Bregman-anisotropic total variation denoising (SBATV) and Split Bregman-isotropic
total variation denoising (SBITV) [3], have been proven to effectively restore noisy images.

Local steering kernel (LSK) [4,5] is an excellent technique for resolving image noise
and uncertainty by estimating the local area structure while preserving the features of the
original image. In addition, the nonlocal means (NLMeans) [6] algorithm estimates the
original image based on the similarity of two image patches, showing excellent performance
and attracting significant attention. However, it is difficult to filter noise in the high-
frequency region of the image using typical noise removal techniques as image data and
noise are heavily mixed in the said region [7–9].

The Wiener filter became one of the most prominent algorithms in the noise removal
field after its proposal by Norbert Wiener. The Wiener filter is fundamentally based on
calculating statistical estimates from input signals to generate desired signals. The simple
structure and excellent efficiency of Wiener filters enable their use across many studies to
improve performance.

The 2D adaptive cuckoo search-based Wiener filter (2DACSWF) [10] was proposed
to reduce the noise of the contaminated images in the AWGN algorithm. This algorithm
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optimizes the weights of the Wiener filter using the adaptive cuckoo search (ACS) method
for estimating the original image.

The split Bregman isotropic total variation denoising (SBITV) [3] algorithm was pro-
posed to improve total variation (TV) denoising. TV denoising is an effective method for
restoring original images in images with substantial noise levels. However, the resulting
images are prone to the staircase effect and edge component loss. SBITV improved such
functions using the split Bregman algorithm.

The fuzzy membership function based modified Gaussian filter (FMGF) [2] was pro-
posed to improve the performance of Gaussian filters when used, as AWGN removal
algorithms. FMGF calculates the resulting images by adjusting the weighting of the Gaus-
sian filter according to the fuzzy membership functions. Blurring occurs less in edges and
text areas that include the primary data of the image.

This paper proposed a modified steering kernel filter algorithm that utilizes image
matching to minimizing smoothing, which occurs during the filtering process of the localiza-
tion techniques. The proposed algorithm sets the weights by comparing the similarities of
the localized regions to improve the local steering kernel method, which uses the directional
changes in the pixel values of localized regions. Additionally, the proposed algorithm was
applied to image matching procedures for comparing similarities. It determines weights
based on the distribution characteristics of the pixel values of the center windows inside
the matching areas and matching windows. The size of the center and matching windows
were adjusted depending on the noise level of the image using adaptive window sizes.
As the mask size was increased, the reduction of noise was increased whereas a smaller
mask size pertained the original image details. The proposed algorithm was compared
with conventional methods through analysis of simulations and usage of PSNR and SSIM,
with the results showing the superior noise reduction of the proposed method compared to
the other methods.

2. Modified Steering Kernel and Image Matching

When taking an image using a camera and a sensor, noise may be introduced due
to a problem in the system or environment. Additive white Gaussian noise (AWGN) [8],
a typical noise found in images, is an additive noise evenly distributed throughout the
image. The equation of the image in which the AWGN is generated may be expressed as
Ii,j = Zi,j + N. Here, Zi,j denotes an original image not damaged by noise, and N refers to an
AWGN with a mean value of 0 and a standard deviation σ. i, j are the internal coordinates
of an image with horizontal and vertical dimensions M× N, respectively. The proposed
algorithm sets the center window on the image and proceeds with the noise removal
process. The center window WC

i,j(k, l) is fixed as a square around the pixel coordinates (i, j).
The size of (2s + 1)× (2s + 1) is set according to parameter s, representing the size of the
center window. The internal coordinates are set as k, l.

The window size used for filtering is a key factor affecting the filtered results. Here, a
larger window size reduces noises but introduces a blurring effect that ultimately removes
important information such as the edge regions and text components of the image. In
contrast, a smaller window size does not reduce noise well. To resolve these drawbacks, an
adaptive window size was used to properly size the mask depending on the level of noise.

The adaptive window size s proposed in this study is defined as:

s = max[ŝ, 1], ŝ = round[α·σest], (1)

where α is the window size parameter, and σest is a noise estimate obtained using noise
estimation [11]. The round[ ] function means rounding and if the noise estimate is low and
ŝ = 0, the window size becomes the lowest value 1.
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2.1. Local Steering Kernel

The local steering kernel is one of the weights mainly used in image processing and
can analyze the slope and direction of the pixel value [12]. The steering kernel regression
(SKR) [13,14] is used in calculating the local steering kernel and depends on the pixel
position and intensity as well as the unique local structure of the sample. The size and
shape of the local steering kernel can extract the structural features of an image and have
the effect of spreading the kernel to areas with high correlation with each other.

The local steering kernel LSKx,y is expressed as:

LSKx,y =

√
det(C)
2πh2 exp

{
− [p q]TC [p q]

2h2

}
, det(C) ≥ 0, (2)

where
x = x1, x2, · · · , x2g+1, x = i + p, ∀ p ∈ [−g, g], (3)

where
y = y1, y2, · · · , y2g+1, y = j + q, ∀ q ∈ [−g, g], (4)

where h is the global smoothing parameter, which controls the filter strength. The higher
the h value, the stronger the smoothing effect. x, y are other pixel coordinates in the local
area with respect to the input pixel centered on coordinates i, j. g is a constant representing
the size of the matching area. [p q] refers to the 2 × 1 matrix, and p and q represent the
horizontal and vertical coordinates inside the matching area, respectively. C is a 2 × 2
matrix based on the local gradient from a symmetric gradient covariance matrix calculated
on a square-shaped local window.

2.2. Modified Steering Kernel Weight and Image Matching

The steering kernel has a shape in which the Gaussian weights are inclined according
to the gradient characteristics of the local region. As the steering kernel only includes
fragmentary information of the local area, smoothing occurs in the resulting image. We
used a matching window and image matching to assign large weights to regions with
similar pixel distributions.

The matching window Mx,y(k, l) is set around the pixel coordinates x, y located inside
the matching area and is set to (2s + 1)× (2s + 1) of the same size as the center window to
compare similarities between the two areas.

The proposed algorithm performs a similarity comparison on two windows to deter-
mine the relationship between the center window and the matching area. The similarity
comparison involves comparing pixel values located at the same internal coordinates of
two masks with each other. The similarity dx,y of the two masks obtained by comparing
the center window and matching window is expressed as:

dx,y =
1

(2s + 1)2

s

∑
k,l=−s

(
Cx,y(k, l)−Mx,y(k, l)

)2. (5)

k, l in Equation (5) are discrete variables representing the coordinates inside the
window as integers. A lower dx,y value indicates high similarity between the two masks.
The proposed algorithm first selects a similarity calculation result that is less than the
threshold value and then uses the pixel value of the corresponding coordinate for the final
output calculation. The weight tx,y according to the difference and threshold value of the
two masks is defined as:

tx,y = d̂−
√

dx,y

σest
, (6)

Here, d̂ represents the threshold. When the value of dx,y is lower, it is presumed that
the center and matching windows are similar, and a greater weight is applied. The weight
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is computed by comparing the pixel values at the same positions inside the two masks,
where tx,y becomes smaller as the pixel value difference between the two masks decreases.

Figure 1 illustrates an example of image matching proposed by this paper. The image
used in the example is an 8-bit grey image distorted due to AWGN at σ = 25. Figure 2
shows a zoomed view of the center of Figure 1 and matching windows A, B, and C.
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If the coefficients used for calculation of weights are α = 0.1, h = 1.5, g = 10, and d̂ = 1.5,
the matching window A is a region with similar distribution of pixel values, resulting in
tx,y = 0.1038. The matching window B is a region with largely different distribution of
pixel values, resulting in tx,y = −2.3351. The matching window C is a region with the
most similar distribution of pixel values to the center window, resulting tx,y = 0.5135,
which exhibits the largest value among the three matching windows in Figure 1. Similar
to the matching window B, the regions with large differences in pixel value distributions
between the two windows may have negative weights, and using negative values in result
calculations may result in errors. Thus, as shown in the following mathematical expression,
the proposed algorithm establishes the weight as 0 when tx,y is negative.

In this case, negative values adversely affect the final value during calculation. Thus,
the proposed algorithm uses the following formula to exclude negative values from
Equation (6):
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Tx,y =



max{(t1,1), 0} max{(t1,2), 0}

max{(t2,1), 0} max{(t2,2), 0}
· · ·

max
{(

t1,y
)
, 0
}

max
{(

t2,y
)
, 0
}

...
. . .

...

max{(tx,1), 0} max{(tx,2), 0} · · · max
{(

tx,y
)
, 0
}


. (7)

To further emphasize area of higher similarity, the weights given differentially accord-
ing to the threshold are applied to the local steering kernel ωLSK

x,y . The modified steering
kernel weights Ux,y calculated based on the two weights is as follows:

Ux,y =



T1,1 ωLSK
1,1 T1,2 ωLSK

1,2

T2,1 ωLSK
2,1 T2,2 ωLSK

2,2

· · ·
T1,y ωLSK

1,y

T2,y ωLSK
2,y

...
. . .

...

Tx,1 ωLSK
x,1 Tx,2 ωLSK

x,2 · · · Tx,y ωLSK
x,y


. (8)

The filtering resultant image Ẑi,j obtained from Equation (8) is expressed as:

Ẑi,j =
1
u

g

∑
x,y=−g

Ux,y Ix,y, (9)

x, y in Equation (9) are discrete variables representing the coordinates inside the
matching area as integers. u denotes a normalizing parameter of the weight Ux,y.

Figure 3 shows the flowchart of the proposed algorithm. The flowchart shows the
modified steering kernel weight setting, image matching, and filter output calculation
process of the proposed algorithm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 11 
 

𝑇 , =
⎣⎢⎢
⎢⎢⎢
⎢⎡𝑚𝑎𝑥 𝑡 , , 0 𝑚𝑎𝑥 𝑡 , , 0𝑚𝑎𝑥 𝑡 , , 0 𝑚𝑎𝑥 𝑡 , , 0 ⋯ 𝑚𝑎𝑥 𝑡 , , 0𝑚𝑎𝑥 𝑡 , , 0⋮ ⋱ ⋮𝑚𝑎𝑥 𝑡 , , 0 𝑚𝑎𝑥 𝑡 , , 0 ⋯ 𝑚𝑎𝑥 𝑡 , , 0 ⎦⎥⎥

⎥⎥⎥
⎥⎤. (7)

To further emphasize area of higher similarity, the weights given differentially ac-
cording to the threshold are applied to the local steering kernel 𝜔 , . The modified steer-
ing kernel weights 𝑈 ,  calculated based on the two weights is as follows: 

𝑈 , =
⎣⎢⎢
⎢⎢⎢
⎢⎡𝑇 ,  𝜔 , 𝑇 ,  𝜔 ,𝑇 ,  𝜔 , 𝑇 ,  𝜔 , ⋯ 𝑇 ,  𝜔 ,𝑇 ,  𝜔 ,⋮ ⋱ ⋮𝑇 ,  𝜔 , 𝑇 ,  𝜔 , ⋯ 𝑇 ,  𝜔 , ⎦⎥⎥

⎥⎥⎥
⎥⎤. (8)

The filtering resultant image 𝑍 ,  obtained from Equation (8) is expressed as: 

𝑍 , = 1𝑢 𝑈 , 𝐼 ,,  , (9)

𝑥, 𝑦 in Equation (9) are discrete variables representing the coordinates inside the 
matching area as integers. 𝑢 denotes a normalizing parameter of the weight 𝑈 , . 

Figure 3 shows the flowchart of the proposed algorithm. The flowchart shows the 
modified steering kernel weight setting, image matching, and filter output calculation 
process of the proposed algorithm. 

 
Figure 3. Flowchart of proposed filter algorithm. 

Noisy image

Image matching 
using two window

Output image

Removal 
minus value

Calculating 
filter output

Modified steering 
kernel weight

Yes

No

Steering kernel 
weight

Setting 
center window

Setting        
matching window

Calculating    t

Figure 3. Flowchart of proposed filter algorithm.



Appl. Sci. 2022, 12, 11588 6 of 11

3. Simulation and Results
3.1. Experimental Setting

A series of experiments were performed to verify the effectiveness of the proposed
algorithm. The noise removal function was objectively evaluated using 512 × 512 8-bit
gray images in the simulation, as shown in Figure 4. The standard deviation of the AWGN,
ranging from 5–30, was prepared to evaluate and analyze the denoising performance based
on the noise level of the proposed algorithm. Figure 5 shows the four types of test images
used in the simulation and the noise image corrupted by the AWGN with σ = 30.
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The parameters used in the proposed algorithm were simulated using multiple test
images. After the resulting images were analyzed according to the changes in the parameter
values, the parameters were selected such that excellent PSNR and SSIM [15–18] character-
istics could be achieved in images other than the test images. Table 1 shows the optimal
values of the parameters used in the proposed algorithm.

Table 1. Parameter set of proposed modified steering kernel filter.

Parameter Variable Value

Window size parameter α 0.1
Smoothing parameter h 1.5

Matching area size g 10
Filter weight threshold d̂ 1.5

The higher the value of the window size parameter, the higher the size of the center
and matching windows, thus leading to an enhanced AWGN-removal function. However,
exceedingly high values lead to more intense smoothing effects, and the edge component
becomes vague. The filter weight threshold is a constant that determines the number of
matching windows that has been used to calculate weights through window matching. The
larger the filter weight threshold, the more the matching windows are used to calculate
weights; however, a result image obtained with more matching windows can be blurred as
it may include values lacking relevance. The smoothing parameter and matching area size
were set by referring to the values in [6] and [3], respectively. The smoothing parameter
is a constant that determines the shape of the steering kernel, and the smaller its value,
the higher the weight set in the center area of the kernel. A high smoothing parameter
can distribute the weight throughout the kernel. The matching area size is a constant that
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determines the area where window matching progresses; the higher its value, the more
the areas that can be matched, thus leading to improved AWGN removal performance.
However, since the number of matching windows used in this method increases, processing
can take longer, or areas with low relevance might be included.

3.2. Experimental Result and Comparison

Figures 6–9 show the filtered images and the enlarged portions of the images.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 11 
 

constant that determines the area where window matching progresses; the higher its 
value, the more the areas that can be matched, thus leading to improved AWGN removal 
performance. However, since the number of matching windows used in this method in-
creases, processing can take longer, or areas with low relevance might be included. 

3.2. Experimental Result and Comparison 
Figures 6–9 show the filtered images and the enlarged portions of the images. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 6. Denoising results for Lena image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV 
(d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 7. De-noising results for Baboon image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 8. De-noising results for Barbara image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 

Figure 6. De-noising results for Lena image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV
(d) FMGF (e) Proposed method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 11 
 

constant that determines the area where window matching progresses; the higher its 
value, the more the areas that can be matched, thus leading to improved AWGN removal 
performance. However, since the number of matching windows used in this method in-
creases, processing can take longer, or areas with low relevance might be included. 

3.2. Experimental Result and Comparison 
Figures 6–9 show the filtered images and the enlarged portions of the images. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 6. Denoising results for Lena image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV 
(d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 7. De-noising results for Baboon image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 8. De-noising results for Barbara image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 

Figure 7. De-noising results for Baboon image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV
(d) FMGF (e) Proposed method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 11 
 

constant that determines the area where window matching progresses; the higher its 
value, the more the areas that can be matched, thus leading to improved AWGN removal 
performance. However, since the number of matching windows used in this method in-
creases, processing can take longer, or areas with low relevance might be included. 

3.2. Experimental Result and Comparison 
Figures 6–9 show the filtered images and the enlarged portions of the images. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 6. Denoising results for Lena image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV 
(d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 7. De-noising results for Baboon image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 8. De-noising results for Barbara image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) 
SBITV (d) FMGF (e) Proposed method. 
Figure 8. De-noising results for Barbara image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV
(d) FMGF (e) Proposed method.



Appl. Sci. 2022, 12, 11588 8 of 11Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 11 
 

 

 

 

 

 

 

 

 

 

 
(a) (b) (c) (d) (e) 

Figure 9. De-noising results for Boat image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV 
(d) FMGF (e) Proposed method. 

The resulting images of conventional noise removal methods and the proposed algo-
rithm were compared to observe the visual effects. 

3.3. Comparison of PSNR and SSIM Results 
The performance of the proposed algorithm was quantitatively evaluated using the 

peak signal-to-noise ratio (PSNR) and structure similarity index (SSIM). Table 2 shows the 
result of the proposed algorithm and other existing methods on distorted images with 
AWGN values of 5–30. Figure 10 shows a graphical representation of Table 2. 

  
(a) (b) 

  
(c) (d) 

Figure 10. PSNR graph of simulation result. (a) PSNR graph of Lena image. (b) PSNR graph of 
Baboon image. (c) PSNR graph of Barbara image. (d) PSNR graph of Boat image. 

5 10 15 20 25 30

25

30

35

PSNR compare of Lena image 

PS
N

R 
[d

B]

Standard deviasion of AWGN [σ]

 WF
 2DACSWF
 SBITV
 FMGF
 PFA

5 10 15 20 25 30

24

27

30

33

PSNR compare of Baboon image 

PS
N

R 
[d

B]

Standard deviasion of AWGN [σ]

 WF
 2DACSWF
 SBITV
 FMGF
 PFA

5 10 15 20 25 30

24

27

30

33

36

PSNR compare of Barbara image 

PS
N

R 
[d

B]

Standard deviasion of AWGN [σ]

 WF
 2DACSWF
 SBITV
 FMGF
 PFA

5 10 15 20 25 30

24

27

30

33

36

PSNR compare of Boat image 

PS
N

R 
[d

B]

Standard deviasion of AWGN [σ]

 WF
 2DACSWF
 SBITV
 FMGF
 PFA

Figure 9. De-noising results for Boat image with AWGN of σ = 30 (a) WF (b) 2DACSWF (c) SBITV
(d) FMGF (e) Proposed method.

The resulting images of conventional noise removal methods and the proposed algo-
rithm were compared to observe the visual effects.

3.3. Comparison of PSNR and SSIM Results

The performance of the proposed algorithm was quantitatively evaluated using the
peak signal-to-noise ratio (PSNR) and structure similarity index (SSIM). Table 2 shows the
result of the proposed algorithm and other existing methods on distorted images with
AWGN values of 5–30. Figure 10 shows a graphical representation of Table 2.

Table 2. Comparison of PSNR and SSIM.

Image AWGN
[σ]

WF 2DACSWF SBITV FMGF PFA

PSNR
[dB] SSIM PSNR

[dB] SSIM PSNR
[dB] SSIM PSNR

[dB] SSIM PSNR
[dB] SSIM

Lena

5 37.33 0.9280 32.57 0.7996 36.54 0.9224 34.97 0.9189 37.97 0.9380
10 33.25 0.8498 30.15 0.6393 33.62 0.8832 33.23 0.8619 34.54 0.8952
15 30.69 0.7631 28.44 0.6460 31.90 0.8554 31.29 0.7876 32.84 0.8684
20 28.76 0.6767 26.21 0.5331 30.76 0.8332 29.49 0.7056 31.50 0.8418
25 27.22 0.6017 25.71 0.5417 29.94 0.8170 27.96 0.6330 30.69 0.8197
30 26.00 0.5379 25.08 0.4863 29.18 0.7994 26.64 0.5650 29.74 0.7980

Baboon

5 33.27 0.9108 29.08 0.8712 31.01 0.9145 26.19 0.6779 33.84 0.9148
10 29.55 0.8615 26.89 0.7745 27.02 0.8128 25.73 0.6019 30.04 0.8700
15 27.13 0.7204 24.46 0.6612 25.03 0.7244 25.19 0.5360 27.42 0.7778
20 25.41 0.7148 23.90 0.6156 23.84 0.6536 24.54 0.4806 25.89 0.7201
25 24.11 0.6126 22.97 0.5916 23.00 0.5958 23.83 0.4311 24.79 0.6264
30 23.07 0.5328 22.87 0.5492 22.39 0.5470 23.08 0.3893 23.99 0.5611

Barbara

5 36.17 0.9442 30.98 0.7274 32.84 0.9230 27.19 0.8383 37.37 0.9527
10 31.50 0.8780 27.05 0.5529 28.74 0.8438 26.80 0.7977 33.29 0.9196
15 28.72 0.7930 26.85 0.5289 26.79 0.7803 26.26 0.7423 31.19 0.8911
20 26.83 0.7100 25.03 0.4575 25.71 0.7350 25.59 0.6809 29.52 0.8545
25 25.35 0.6330 24.62 0.4285 24.98 0.7019 24.81 0.6179 28.49 0.8193
30 24.21 0.5669 23.67 0.3591 24.47 0.6761 24.07 0.5603 27.39 0.7809

Boat

5 35.62 0.9061 28.53 0.8394 34.50 0.8946 31.78 0.8747 36.28 0.9137
10 32.06 0.8420 28.18 0.6891 31.44 0.8348 30.80 0.8342 33.01 0.8694
15 29.68 0.7682 27.24 0.6827 29.73 0.7905 29.57 0.7790 30.84 0.8066
20 27.92 0.6961 24.61 0.5753 28.59 0.7566 28.18 0.7139 29.55 0.7669
25 26.45 0.6288 24.42 0.5352 27.70 0.7292 26.91 0.6508 28.58 0.7155
30 25.27 0.5685 23.90 0.5037 26.98 0.7055 25.78 0.5916 27.74 0.6849
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Figure 10. PSNR graph of simulation result. (a) PSNR graph of Lena image. (b) PSNR graph of
Baboon image. (c) PSNR graph of Barbara image. (d) PSNR graph of Boat image.

3.4. Performance Comparisons

Visual and quantitative evaluations were conducted to assess the performance of
the proposed algorithm. Simulations were carried out using MATLAB R2020b software
running on an Intel Core i7-10700 system with 2.90-GHz CPU, 16-GB RAM, and a 64-bit
operating system.

For visual evaluation, certain regions from the resulting images were enlarged as
shown in Figures 6–9. The resulting images processed using WF, 2DACS-WF, and F-MGF
were not completely free of noise and were heavily affected by the AWGN. The results
from the SB-ITV exhibited damages at the intersections between bright and dark regions,
indicating that edge characterization was difficult compared to other methods. Conversely,
the results from the proposed algorithm clearly maintained the edge components while
significantly reducing the level of noise compared to other methods.

In Table 2, the PSNR and SSIM of the proposed algorithm were superior to the
conventional methods. In the case of the distorted Barbara image at AWGN σ = 30,
the proposed algorithm showed a PSNR value of 27.39 [dB]. The proposed algorithm’s
PSNR was better than WF, 2DACSWF, SBITV, and FMGF by 3.18 [dB], 3.72 [dB], 2.92 [dB],
and 3.32 [dB], respectively.

Concerning the proposed algorithm, the PSRN and SSIM results show high or similar
values in most areas when restoring a noisy image from σ = 5 when the intensity of the
AWGN is relatively weak to σ = 30, which indicates prominent noise. In particular, the
proposed algorithm shows a significant performance increase compared with conventional
methods when restoring images with high-frequency components, such as the Barbara
images. Table 1 shows that the proposed algorithm had a PSNR of 27.39 [dB], which was
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higher than the PSNR values obtained using WF, SBITV, and FMGF processing by 3.18 [dB],
3.72 [dB], 2.92 [dB], and 3.32 [dB], respectively, by restoring the Barbara image damaged
using an AWGN of σ = 30. In summary, the visual and quantitative results show that
the proposed algorithm effectively eliminates AWGN and inhibits excessive blurring of
edge components.

4. Conclusions

In this study, we propose a modified steering kernel algorithm based on image match-
ing to improve the blurring phenomenon that occurs in the edges of the image as a result
of AWGN removal. As a typical steering kernel only contains gradient information for a
local area of the image, blurring occurs while filtering high-frequency components, such as
edges. To solve this problem, the proposed algorithm proposes a modified steering kernel
algorithm based on image matching.

The proposed algorithm determined the modified steering kernel weight by utilizing
the weights derived from image matching applied to the original steering kernel. The image
matching was processed by utilizing the similarity between center and matching windows,
and the final images were computed using the modified steering kernel weights applied
to the pixel values of the matching areas. The performance of the proposed algorithm
was evaluated using the resulting and enlarged images. According to the simulation,
the proposed algorithm displayed better edge components, a higher contrast in the high
frequency areas, and a larger reduction of noise by suppressing the blurring effect. The
PSNR and SSIM were used for more quantitative evaluation, with the proposed algorithm
displaying superior results compared to existing methods as a result of comparing different
types of images and various levels of noise.

The proposed algorithm has excellent noise removal functions but requires a relatively
long time to eliminate noise owing to the increased computational complexity. In the future,
we intend to conduct research aiming to simplify and optimize the algorithm to solve these
shortcomings and enhance the overall performance.
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