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Abstract: Taking the freeze-sealing pipe roof method (FSPR) adopted in the Gongbei Tunnel project
as the background, this study develops a simplified calculation model by considering different soil
freezing points, tube layout, and site conditions. The analytical solution of the linear single row tubes
is then used to formulate the analytical solution of the freezing temperature field of two kinds of
linear single row tubes, with equal spacing in the image plane. This is achieved through conformal
mapping and the variable separation method. Finally, the analytical solution to the steady-state
temperature field of FSPR in the object plane is obtained. The numerical solutions of common freezing
parameters in freezing engineering are analyzed to evaluate the accuracy of the analytical solution,
and the influence of parameter differences on the freezing temperature field are also discussed, to
provide a theoretical reference for popularization and application of similar construction methods.

Keywords: freeze-sealing pipe roof method; analytical solution; steady-state temperature field;
freezing point

1. Introduction

The theoretical analysis of artificial freezing temperature fields has been extensively
investigated in the ground freezing engineering field, particularly in heat conduction
problems, including “phase transition”, “hydrothermal coupling”, “temporal and spatial
effect” and other factors [1,2]. The currently applied research methods include analytical,
experimental and numerical methods [3–7]. These analytical methods use mathematical
and physical equations to establish accurate functional relationships for research problems.
The relationships between variables in the function are clear and can be directly solved, and
they can be applied by engineers and technicians during the design stage and to evaluate
the effect of on-site freezing construction. Therefore, they can be utilized to study artificial
freezing temperature fields [8–10]. However, considering the differences in the number and
arrangement of freezing tubes, freezing front movement, water migration and other factors,
the analytical method still has some limitations when applied in mathematical solutions,
and can only analyze the temperature field of single tube freezing. In academic and
engineering fields, many cases [11] have confirmed that the artificial freezing temperature
field develops very slowly, at the final stage of the freezing process. Since the freezing
tube will have reached the equilibrium state of cooling and heat absorption, the size of
the frozen wall almost does not change, and would be very close to the steady-state heat
transfer temperature field [12]. Therefore, the steady-state heat transfer model can be used
for approximate calculation.

Extensive research and derivation have been performed on the analytical solutions
of freezing steady-state temperature field. Currently, the commonly used analytical so-
lutions include the single-tube freezing steady-state temperature field [13], the two-to-
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five-tube equidistant linear arrangement steady-state temperature field [14–16] presented
by Bakholdin, the symmetric and asymmetric steady-state temperature fields of linear
single-row tubes [17], linear double-row tubes and three-row tubes [18–20], and the annular
single- circle-tube and double- circle-tube temperature field [21,22]. The aforementioned
results are based on the classic Trupak single-tube freezing steady-state temperature field
analytical solution formula, obtained through potential function superposition, separation
variable method, conformal mapping and other processing methods, combined with practi-
cal engineering situations to simplify the corresponding model, and improve its application
value in engineering. However, with the continuous and rapid development of urban con-
struction in China, higher requirements have been proposed regarding the formation and
functioning of underground engineering structures. For many engineering fields that in-
volve difficult construction, it is challenging to establish strong support methods to handle
complex geological conditions. Most analytical solutions also need to be constantly revised
or optimized to meet higher requirements such as various geological conditions, accurate
and fast calculation of temperature and frozen soil curtain thickness [23–25]. Therefore,
continuous in-depth studies should be performed to establish a theoretical basis that is in
line with engineering practices.

To overcome the challenges associated with constructing shallow buried and concealed
excavation tunnels with large sections in the water-rich soft soil of coastal cities, Chinese
experts and scholars have put forward a new tunnel construction method; the freeze-
sealing pipe roof method (FSPR) that integrates the pipe roof method (PRM) and the
artificial ground freezing method (AGF) [26,27]. In Figure 1, a plurality of closely arranged
large-diameter steel pipes are jacked into the strata at both ends of the tunnel section to form a
pipe roof. Subsequently, the surrounding water-containing soft soil layer is artificially frozen
by installing a freezing tube in the inner wall of the jacking pipe. A closed freezing curtain is
created within the scope of the tunnel excavation section, which finally constitutes a large-scale
composite support structure of “frozen soil curtain and jacking pipe” [28].
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In Figure 1, the underground excavation section of the Gongbei Tunnel, the key project
of the Zhuhai link of the Hong Kong-Zhuhai-Macao Bridge in China, achieved successful
application of FSPR for the first time in the world, with good engineering results. In
the construction scheme of this project, artificial ground freezing technology was used
to freeze the ground to form a frozen soil curtain, thereby sealing the water between the
pipes and improving the bearing capacity of the pipe roof. The freezing construction
period takes 180 days, and considering the damage caused by excessive frost heaving,
the thickness of the frozen soil curtain is designed in advance, and the cooling capacity
is strictly controlled [29]. According to the field measured data, after 90 days of freezing,
the thickness of the frozen soil curtain remains unchanged, because the cooling supply
and heat absorption of the freezing tube reach a state of balance, so the temperature field
after that can be regarded as a quasi-steady state. Model analysis and calculation of the
freezing temperature field is the basis of theoretical research on FSPR, which can provide
strong support for similar methods in freezing construction parameter designs, process
monitoring, and target prediction [30]. During the whole freezing construction process, it is
necessary to grasp the frozen soil curtain thickness and temperature distribution law based
on the calculation and analysis of the temperature field, and to evaluate the reliability of
water sealing between pipes [31].

In this article, inspired by the existing analytical results and to better adapt to the
complex ground freezing conditions in the practical project, we have established a sim-
plified model by considering different soil freezing points and tube placement forms of
FSPR. Through the conformal mapping function and separation of variables solution, the
analytical solution of the freezing temperature field of two kinds of freezing tubes with
equal spacing in a straight line in the image plane is derived, after which the analytical
solution of steady-state temperature field in the object plane is obtained. The accuracy of
the analytical solution is verified by comparing the numerical solution of this project in
the range of soil freezing point 0~−1.5 ◦C, and the influence of the parameter differences
on the freezing temperature field is also discussed to provide a theoretical reference for
popularization and applications of similar construction methods.

2. Establishment of the Calculation Model for FSPR Steady State Temperature Field
2.1. Model Simplifications and Assumptions

In Figure 2, 18 concrete pipes and 18 hollow pipes were alternately arranged to form
a super-large section pipe roof during the freezing construction of the pipe curtain of
Gongbei Tunnel. The arrangement axis of the 18 hollow top pipes is a 5-segment circular
arc with left and right symmetry, while the arc lengths and radii are Arc1 = 5.45 m and
R1 = 9.86, Arc2 = 4.87 m and R2 = 6.96 m, Arc3 = 11.75 m and R3 = 20.96 m, Arc4 = 3.86 m
and R4= 3.86 m, Arc5 = 6.17 m and R5 = 18.86 m, respectively. The axes of the 18 concrete
pipes are offset by 30 cm inward, thus, there is a slight dislocation of the circular freezing
tubes in concrete pipes, and of the profiled freezing tubes in hollow pipes. The soil between
the pipes is frozen through the cryogenic refrigerant circulation method in these two types
of freezing tubes. The limiting tube is arranged on the outside of the axis of the concrete
pipe; excess cold can be removed by circulating hot brine in the tube, while the thickness of
the outside of the frozen soil curtain can be controlled to reduce frost heave of the stratum.
The structural form and function of the FSPR method are extremely complex, therefore,
appropriate assumptions and model simplification are required to ensure the feasibility of
the analytical solution of the steady-state temperature field, including:

(1) The entire length of the underground excavation section of the Gongbei Tunnel is
255 m long and is curved. The actual tube curtain freezing is a three-dimensional heat
conduction problem. The temperature deviation of longitudinal freezing is ignored,
and it can be simplified to a two-dimensional plane problem.

(2) Ignoring the irregular shape of the pipe curtain section and the slight offset between
the hollow and concrete pipe axes, all 36 pipes are considered to be arranged on the
same circumferential line, that is, the pipe curtain section is simplified to a circle.
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(3) In the actual project, due to the arrangement of the pipes, the outline of the frozen
soil curtain is irregularly wavy. Considering the steady-state temperature field, the
end of the freezing process is studied. For mathematical derivation convenience, it is
assumed that the contour line of the frozen soil curtain is approximately a circle, and
its rationality can be evaluated by verifying the analytical solution.

(4) The profiled freezing tube in the hollow pipe contains a non-circular section, and its
size is smaller compared with that of the jacking pipe. It is estimated to have the
same section and size as the circular freezing tube in the concrete pipe. Flow and
temperature differences of the low-temperature refrigerant in the two types of freezing
pipes in the freezing process are ignored, and only the two types of freezing tubes with
the same tube wall temperature are considered during derivation of the analytical
solution. The effects of hollow and concrete pipes on the freezing temperature field
are also ignored, and only the effects of freezing tubes are considered.
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Based on the above assumptions, the model in Figure 2 is simplified, and freezing
tubes as well as frozen soil curtains are selected as the main research objects [32]. Two types
of freezing tubes, A and B, with radii R0 are obtained, which are periodically arranged on
the circumference line (R2), and the spacing is set as the dislocation angle β. The inner and
outer boundaries (R1 and R3) of the frozen soil curtain are circular (Figure 3):
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In Figure 3, the appropriate cartesian coordinate system is selected so that the center of
a type A freezing tube is just on the positive semi-axis of the x-axis. Next, the corresponding
mathematical expression of the two-dimensional steady-state temperature field is calculated
using Equation group (1):

∂2T
∂r2 + 1

r
∂T
∂r + ∂2T

∂θ2 = 0; Two-dimensional steady-state heat conduction equation
T(R2 + R0, k 2π

n ) = Tf ; Boundary condition for A-type freezing tubes
T(R2 + R0, k 2π

n − β) = Tf ; Boundary condition for B-type freezing tubes
T(R1, k 2π

n ) = T0; Inner boundary conditions for frozen soil curtain, T0 6= 0
T(R3, k 2π

n ) = T0; Outer boundary conditions for frozen soil curtain, T0 6= 0

(1)

where:

r, θ − Polar diameter and polar angle
T0, Tf − Frozen curtain boundary temperature and freezing tube wall temperature
n, R0 − Number and radius of type A and B freezing tubes

k − Values from 0 to n− 1
R1, R3 − Inner and outer boundary radii of frozen curtain

R2 − Freezing tube arrangement circle diameter
β − Dislocation angle between two adjacent freezing tubes

2.2. Conformal Mapping and Calculation Model Transformation

Considering that it is difficult to directly solve Equation group 1, conformal mapping
should be considered during the conversion of circular boundary conditions of the model
into the corresponding linear boundary conditions, thus, the logarithmic transformation
function is introduced [33,34]: 

ζ = i ln
(

Z
R2

)
Z = reiθ ; Object plane
ζ = x + iy; Image plane

(2)

where by Z represents the object plane (i.e., the original plane in Figure 3), r and θ represent
a point in the object plane, ζ represent the image plane, x and y represent a point in the
image plane, we can obtain:

x + iy= −θ + i ln
(

r
R2

)
(3)

From Equations (2) and (3), we can convert the computational model in Figure 3 into
the non-equidistant single-row tube with asymmetric development of the frozen curtain in
the image plane, as shown in Figure 4:
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This model can be calculated using Equation groups (4) and (5):
x = −θ, y = ln r

R2

ξ1 = ln R2
R1

, ξ2 = ln R3
R2

l = 2π
n , d = β, r0 = R0

R2

(4)



∂2T
∂x2 + ∂2T

∂y2 = 0
T(nl, r0) = Tf ; Boundary condition for A’-type freezing tubes
T(d + nl, r0) = Tf ; Boundary condition for B’-type freezing tubes
T(x, ξ2) = T0; Frozen soil boundary II, T0 6= 0
T(x,−ξ1) = T0; Frozen soil boundary I, T0 6= 0

(5)

where by, Equation group (4) denotes the conformal mapping function relationship between the
models in Figures 3 and 4. Equation group (5) denotes the expressions of the model in Figure 4.

If the two types of freezing tubes A′ and B′ are separated, two linear single-row tubes’
(equidistantly spaced) models of asymmetric frozen soil curtains can be obtained. Therefore,
based on the separation variable solution method [35–37], the model in Figure 4 is regarded
as a superposition of the two types of linear single-row tube equidistant arrangement
models A′ and B′ (Figure 5):
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where the model temperature field T (Equation group (5)) is the superposition of temper-
ature fields T1 and T2 of two different frozen soil boundary conditions, namely: T = T1 + T2. 
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Figure 5. Freezing temperature field model in image plane of two kinds of linear single-row tubes:
(a) A′-type linear single-row tube; (b) B′-type linear single-row tube.

Mathematical expressions of A′-type and B′-type linear single-row tube models are
shown in Equation groups (6) and (7), respectively:

∂2T1
∂x2 + ∂2T1

∂y2 = 0
T1(nl, r0) = Tf − a; Boundary condition for A’-type freezing tubes
T1(d + nl, r0) = b; Boundary condition for B’-type freezing tubes
T1(nl, ξ2) = T0; Frozen soil boundary II, T0 6= 0
T1(nl,−ξ1) = T0; Frozen soil boundary I, T0 6= 0

(6)
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

∂2T2
∂x2 + ∂2T2

∂y2 = 0
T2(nl, r0) = a; Boundary condition for A’-type freezing tubes
T2(d + nl, r0) = Tf − b; Boundary condition for B’-type freezing tubes
T2(nl, ξ2) = T0; Frozen soil boundary II, T0 6= 0
T2(nl,−ξ1) = T0; Frozen soil boundary I, T0 6= 0

(7)

where the model temperature field T (Equation group (5)) is the superposition of tempera-
ture fields T1 and T2 of two different frozen soil boundary conditions, namely: T = T1 + T2.
a and b are the coefficients to be solved.

2.3. Analytical Solution for Freezing Temperature Field Model in the Image Plane of
Non-Equidistant Single-Row Tube with Asymmetric Development of Frozen Curtain

For the A′-type model in Figure 5a, according to Bakholdin’s single-row tube freezing
model theory and characteristics of asymmetric frozen soil curtains, the general form of its
steady-state analytical solution can be obtained as:

T =
Tf − T0

ln 2πr0
l −

π
l ·

2ξ1ξ2
ξ1+ξ2

{
1
2

ln
[

2(cosh
2πy

l
− cos

2πx
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
y
}
+ T0 (8)

Using Equation (8), the solution for Equation group (6) can be obtained as:

T1 =
Tf − a− T0

ln 2πr0
l −

π
l ·

2ξ1ξ2
ξ1+ξ2

{
1
2

ln
[

2(cosh
2πy

l
− cos

2πx
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
y
}
+ T0 (9)

Substituting the boundary condition for B′-type freezing tubes in Equation group (6) into
Equation (9), we get:

b =
Tf − a− T0

ln 2πr0
l −

π
l ·

2ξ1ξ2
ξ1+ξ2

{
1
2

ln
[

2(cosh
2πr0

l
− cos

2π(d + nl)
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
r0

}
+ T0 (10)

In the same way, the B′-type model in Figure 5b is equivalent to the A′-type model
where each freezing tube is shifted to the right by a distance d. From Equation (8), the
solution for Equation group (7) can be obtained as:

T2 =
Tf − b− T0

ln 2πr0
l −

π
l ·

2ξ1ξ2
ξ1+ξ2

{
1
2

ln
[

2(cosh
2πy

l
− cos

2π(x− d)
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
y
}
+ T0 (11)

Substituting the boundary condition for A′-type freezing tubes in Equation group (7)
into Equation (11), we get:

a =
Tf − b− T0

ln 2πr0
l −

π
l ·

2ξ1ξ2
ξ1+ξ2

{
1
2

ln
[

2(cosh
2πr0

l
− cos

2π(nl − d)
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
r0

}
+ T0 (12)

Since Equations (10) and (12) are relatively complex, they are simplified before the
simultaneous solution: {

a = (Tf − b− T0)
ηζ

ϕζ
+ T0

b = (Tf − a− T0)
ηζ

ϕζ
+ T0

(13)

where:

ηζ =
1
2

ln
[

2(cosh
2πr0

l
− cos

2πd
l

)

]
− π

l
· 2ξ1ξ2

ξ1 + ξ2
+

π

l
· ξ1 − ξ2

ξ1 + ξ2
r0

ϕξ = ln
2πr0

l
− π

l
· 2ξ1ξ2

ξ1 + ξ2
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Equation group (13) is solved to get:

a = b =
Tf

ηζ

ϕζ
+ T0(1−

ηζ

ϕζ
)

1 + ηζ

ϕζ

(14)

Substitute Equation (14) into Equations (9) and (11) respectively, and according to
T = T1 + T2, we get:

T =
γζ

ϕζ + ηζ
· (Tf − 2T0) + 2T0 (15)

where:

γζ =
1
2

ln
[

2(cosh
2πy

l
− cos

2πx
l

)

]
+

1
2

ln
[

2(cosh
2πy

l
− cos

2π(x− d)
l

)

]
− 2π

l
· 2ξ1ξ2

ξ1 + ξ2
+

2π

l
· ξ1 − ξ2

ξ1 + ξ2
y (16)

Equation (16) is the analytical solution for the freezing temperature field model in the
image plane of a non-equidistant single-row tube with asymmetric development of the
frozen curtain shown in Figure 4.

2.4. Analytical Solution for Freezing Temperature Field Model in Object Plane of FSPR

Substituting Equation group (4) into Equation (16), we get:

T =
γZ

ϕZ + ηZ
· (Tf − 2T0) + 2T0 (17)

where:

γZ =
1
2

ln
[(

r
R2

)n
+

(
R2
r

)n
− 2 cos nθ

]
+

1
2

ln
[(

r
R2

)n
+

(
R2
r

)n
− 2 cos n(θ + β)

]
−

2n ln R2
R1

ln R3
R2

ln R3
R1

+
n ln R2

2
R1R3

ln R3
R1

· ln r
R2

ϕZ = ln
nR0

R2
−

n ln R2
R1

ln R3
R2

ln R3
R1

ηZ =
1
2

ln
(

e
nR0
R2 + e−

nR0
R2 − 2 cos nβ

)
−

n ln R2
R1

ln R3
R2

ln R3
R1

+
n ln R2

2
R1R3

2 ln R3
R1

· R0

R2

Equation (17) is the analytical solution to steady-state temperature field of FSPR when
considering different soil freezing points as shown in Figure 3.

3. Accuracy Verification of the Analytical Solution
3.1. Selection of Feature Parameters

For the calculation model of FSPR in Figure 3, since the freezing tubes are periodically
arranged, take an A-type freezing tube and a B-type freezing tube adjacent to the x-axis
as research objects. Taking the origin of coordinates as the center of the circle, select the
fan-shaped area as shown in Figure 6 for calculation.

Select the x-axis direction (main section, θ = 0), between two pipes (Section 1, θ = −β/2),
and the sector boundary (Section 2, θ = π/n − β/2) as the three characteristic sections for tem-
perature calculation, ξ1 and ξ2 are the inner and outer frozen curtain thicknesses, respectively.

Based on previous freezing engineering experience, six groups of freezing parameters
are selected for calculation. The value range of freezing tube circle radius R2 is 2.5~10.0 m;
value range of jacking pipe diameter D is 0.8~2.0 m; value range of the frozen pipe radius
R0 is 0.06~0.16 m; value range of ξ1/ξ2 is 1~1.2; temperature of the freezing tube wall Tf is
−30 ◦C; value range of the frozen soil boundary temperature is T0 −1.5~0 ◦C; frozen tube
parameters, such as n and β are shown in Table 1:
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Table 1. Characteristic parameters for analytical solution.

Group R1/m R2/m R3/m ξ1/ξ2 D/m R0/m n β/(◦) T0/◦C

1 6.0 7.0 8.0 1 1.46 0.06 20 4 0
2 6.0 7.0 8.0 1 1.02 0.06 25 4 0
3 8.0 9.0 10.0 1 1.62 0.06 36 2 −1.5
4 8.0 9.0 10.0 1 1.46 0.08 36 3 −1.5
5 7.9 9.0 10.0 1.1 1.59 0.08 36 2.6 −0.5
6 7.9 9.0 10.0 1.1 1.59 0.06 36 2.6 −0.5
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Figure 6. Computational periodic element model of the analytical solution.

3.2. Establishment of a Numerical Calculation Model

According to the model diagram in Figure 3 and characteristic parameters in Table 1,
six two-dimensional steady-state temperature field numerical models are established using
COMSOL Multiphysics [38]. The Heat Transfer in Porous Media module is used for
calculation, and the correctness as well as the accuracy of the analytical solution are verified
by comparing the results.

Taking the first group of parameters in Table 1 as an example, a sector of a period
(2π/n = 18◦) is selected to build a model as shown in Figure 7a. The model is divided
by triangular mesh elements. To ensure the calculation’s accuracy, select the “Extra fine”
option for the mesh element size, and increase the mesh density in the freezing tube area,
as shown in Figure 7b.
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3.3. Comparative Analysis of Calculation Results

Calculation results and the cloud map of the temperature field are compared as shown
in Figures 8–13:
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lytical and numerical solutions of section; (b) Steady-state temperature field. 

Figure 8. Comparison of the 1st group of calculation results: (a) Comparison curve between analytical
and numerical solutions of section; (b) Steady-state temperature field.
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analytical and numerical solutions of section; (b) Steady-state temperature field.
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From Figures 8–13, the analytical solution and numerical solution curve for each model
section under six groups of different parameters coincide, and maximum temperature
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differences at each point do not exceed 0.9 ◦C. The data indicate that the steady-state
temperature field model of the complicated freezing tube layout in FSPR can be simplified,
and conformal mapping and the separation-variable method can be employed to solve the
problem. The derived analytical solution is highly accurate, and can accurately calculate
the temperature value at any point in the model.

In the vicinity of the inner and outer boundaries of the model’s frozen soil, tempera-
tures of the three sections in each group are relatively close, corresponding to symmetrical
and uniform temperature distributions on both sides of steady-state temperature field
cloud map. In the area closer to the freezing tube, temperature differences among the three
sections are greater, and the maximum temperature difference is located at the axial surface
R2 of the freezing tube. The temperature curve of Section 1 is located between Section 2 and
the main section, and is closer to the latter.

In actual engineering, Section 1 is the position of the midline between the adjacent
concrete pipe and hollow pipe, and is an important area for “freeze-sealing between pipes”
in FSPR. The above figures show that the temperature range of this area within the size
range of the pipe is −10 ◦C~−28 ◦C and the distribution is relatively uniform, implying
that a reliable frozen soil curtain can be formed between the jacking pipes to ensure “freeze-
sealing” effects and safety.

3.4. Discussion of Analytical Solution in FSPR

From the parameter selection of each group in Table 1, the smaller the dislocation
angle β value and the larger the frozen tube radius R0, the lower the temperature of the
freezing tube area. In the FSPR method adopted in the Gongbei Tunnel, the approximate circle
radius of the freezing tube ring is about 9 m, and the diameter of the jacking pipe is 1.62 m.
The distance between adjacent jacking pipes is about 0.3 m, and the dislocation angle is about
2◦. Taking the freezing parameters R1 = 7.9 m, R2 = 9 m, R3 = 10 m, and ξ1/ξ2 = 1.1 at the end
of the freezing stage, respectively, calculate the temperature difference of the three sections
of the frozen soil curtain at the axial surface R2 of the freezing tube, as shown in Table 2:

Table 2. Temperature differences of each section at the end of freezing.

Main Section Section 1 Section 2

Temperature/◦C −30 −28.51 −16.08
∆T1/◦C −1.49 ——
∆T2/◦C —— −12.43

At the end of freezing, the temperature difference between the main section and
Section 1 is ∆T1 = −1.49 ◦C, while the temperature difference between sections 1 and 2 is
∆T2 = −12.43 ◦C. Section 2 is located at the axis of symmetry of the steel jacking pipe,
which can provide effective water sealing capacity, therefore, only Section 1 should be
considered. The temperature for Section 1 can drop to a lower temperature value at the end,
which is very close to the temperature of the freezing tubes in the main section. Notably,
frozen soils can be formed with sufficient strength and water sealing performance between
the jacking pipes. Then, an effective frozen curtain is formed as a whole, which provides
safe and reliable support for tunnel excavation.

Finally, the steady-state temperature field distribution cloud map of the overall model
in FSPR is calculated and drawn in line with the analytical solution formula, (Figure 14).
The analytical solution obtained in this article has sufficient accuracy to meet the calculation
needs of different positions (pole radius r) in the FSPR model. The temperature field cloud
map, drawn according to the calculation results, can intuitively reveal the overall temper-
ature distribution and thickness of the frozen soil curtain, and realize visual processing.
It is also proven that when the temperature field tends to steady-state in the latter stage of
freezing, the shapes of the inner and outer boundaries of the frozen soil in this model can
be considered to be a circular ring, and the wavy frozen soil boundary can be ignored.
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4. Conclusions

(1) During the freezing process of FSPR, formation of the frozen curtain is largely de-
pendent on two types of freezing tubes to freeze the soil between the jacking pipes,
and achieve the purpose of sealing water. Taking this as the main research object of
the freezing steady-state temperature field, the model is assumed and simplified in
combination with actual situation of the Gongbei tunnel project. Using the confor-
mal mapping function and the separation-variable solution method, the analytical
solution expression for the steady-state temperature field of FSPR under different soil
freezing points is deduced, which is a quick calculation method that can be used by
engineers and technicians during the designing stage and to evaluate the effect of
on-site freezing construction.

(2) Different characteristic parameters and finite element software can be used to establish
and solve the corresponding two-dimensional steady-state temperature field numer-
ical calculation model. The correctness and accuracy of the analytical solution are
verified by comparing the results. In this project, the calculation result is acceptable
when the soil freezing point range is 0~−1.5 ◦C.

(3) Combined with the contour map of the steady-state temperature field, it is shown that
when the number of frozen tubes is large, that is, the spacing between the freezing
tubes is small, the shapes of the inner and outer boundaries of the frozen soil curtain
can be approximately regarded as circular rings in the steady state.

(4) The temperature difference of the three sections is larger in the region closer to the
freezing tube. Section 1 is the position of the midline between the adjacent concrete pipe
and hollow pipe, and is an important area for “freeze-sealing between pipes” in FSPR.
The calculated results show that the temperature range of this area within the size range
of the pipe is −10 ◦C~−28 ◦C, implying that a reliable frozen soil curtain can be formed
between the jacking pipes to ensure the effect of “freeze-sealing” and safety.

(5) How to adapt the analytical solution of temperature field to the operating state of
various frozen tubes is a problem that requires further investigation. In addition, the
actual tunnel section is closer to that of the ellipse, and considering these conditions,
the analytical solution also deserves further exploration.
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