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Abstract: With the acceleration of the process of agricultural modernization, many pesticides (insecti-
cides, fungicides, and herbicides) are applied to the field and finally brought into the soils, causing
serious damage to the environment. The problem of pesticide pollution has become increasingly
prominent. This has highlighted the urgent need for effective and efficient remediation treatment
technology for pesticide-contaminated soils. Biochar has a high specific surface area, high porosity,
and strong adsorption capacity, making it a soil amendment agent and carbon fixation agent that
can improve soil health and enhance adsorption capacity for pesticides to remediate contaminated
soils. Recently, efforts have been made to enhance the physicochemical and adsorption properties
of biochar by preparing modified biochar, and it has been developed to expand the application of
biochar. Specifically, the following aspects were reviewed and discussed: (i) source and modification
methods of biochar for pesticide remediation; (ii) the effect of biochar on the environmental fate of
remediating pesticides; (iii) the effect of biochar on pesticide-contaminated soils; and (iv) potential
problems for the large-scale promotion and application of biochar remediation of pesticides. In
conclusion, this review may serve as a reference and guide for pesticide remediation, hence reducing
the environmental concerns associated with pesticides in soil.

Keywords: biochar; soil; pesticide; modified biochar; remediation; environmental fate

1. Introduction
1.1. Application of Pesticides and Soil Pollution

Pesticides are widely used to prevent and control crop pests all over the world,
ensuring the improvement of yield and quality and playing a great role in producing food to
meet global demand [1]. However, there are benefits and drawbacks when using pesticides
in agriculture. Increasingly, pesticides are applied to control various pests, diseases, and
weeds, though most of these pesticides remain in the environment, posing a potential risk
to the whole agricultural ecosystem [2]. Pesticides’ environmental contamination is raising
concerns because of their negative effects on nontarget organisms in the soil and even
the entire ecosystem in the world [3]. Pesticides are a vital pollutant of nonpoint source
pollution and can contaminate soil in a variety of ways [4]. After applying pesticides,
only a small proportion remains in the plant, and the majority remains in the soil [5,6].
Excessive use of pesticides in the past several decades has caused the pesticides’ residues
accumulation problem, which often exceeds the self-purification capacity of the soil. This
further leads to increasing soil pollution and soil quality deterioration. Due to their high
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solubility in water, pesticides with high water solubility have a high risk of leaching into
the soil, which is the primary reason for pesticide misuse in agricultural fields [7].

1.2. Soil Pollution Remediation

The removal of pesticide contamination from soil and the possible detrimental effects
of pesticides on the environment have received more attention in recent years. Considering
the toxicity generated by excessive pesticide use during crop management, there is an
urgent demand to find environmentally safe, cost-effective, and appropriate remediation
techniques [8]. Currently, the main relevant techniques are physical and chemical remedia-
tion and bioremediation [9,10]. For example, electrochemical degradation, bioremediation,
membrane filtration, photocatalytic degradation, and adsorption have been explored for
the pesticide remediation in contaminated environments [11]. In view of the long cycles
and low efficiency, some of the methods are difficult and even impractical to apply in
soil remediation with severe pesticide pollution [12]. Chemical extraction methods are
conventionally used to extract contaminants from the environment [13]. However, some
effective methods are constrained in large agricultural fields by a lot of factors, such as
expensive costs, fertility loss, soil erosion, and potential environmental risks. Exploring
an environment-friendly and sustainable approach to counteract soil pesticide contami-
nation is promising with the absence of remediation technologies that have been tested
at full scale [14]. Generally, the adsorption method is relatively simple, low-cost, and
low-energy-consumption for contamination remediation [15].

1.3. Biochar

Biochar, usually produced by a pyrolysis process with lack of oxygen, has a high
specific surface area, high porosity, and strong adsorption capacity at a relatively lower
cost [16]. It is an excellent soil amendment agent and carbon fixation agent that can improve
soil health and enhance adsorption capacity for pesticides to remediate contaminated
soils [17,18]. At the same time, it can add soil organic matter and provide extra refugia
for beneficial microorganisms in the soil [19]. Soil properties can affect the application
of biochar, and attention should be paid when using a specific biochar for a specific
soil property improvement [20,21]. Therefore, a clear understanding of its effects and
mechanisms is necessary to engineer biochar production with desirable properties [22].
Improving the soil’s ability to immobilize pesticides would restrict pesticide movement
and lessen the likelihood of pesticides seeping into the environment. In conclusion, this
review could provide a reference and guidance for remediation of pesticides to reduce the
environmental risks of pesticides in the soils.

2. Source and Modification Methods of Biochar for Pesticide Remediation
2.1. Biochar Production

Numerous organic resources, including agricultural residues, forest residues, livestock
manure, culinary wastes, industrial biowastes, municipal biowastes, and animal carcasses,
can be utilized as feedstocks to create biochar for a variety of applications [23]. Biochar is
a carbon-rich byproduct of biomass pyrolysis that is produced in a reactor with a limited
oxygen supply and moderate temperature conditions (<700 ◦C). The traditional preparation
method of biochar limits the application of biochar. In recent years, more and more
chemical modification methods are used to improve the properties of biochar. Various
different agricultural waste is selected as raw materials, dried by natural air, ground by
a high-speed crusher, screened, and burned into carbon in the furnace. The prepared
biochar is washed with deionized water and dried to remove surface impurities and ash.
The laboratory and industrial production methods are both shown in Figure 1. Biochar
characteristics include porosity (comprising several pore sizes), a large surface area, pH,
ash, cation exchange capacity (CEC), electrical conductivity (EC), and nutrient level, which
improve its sorption abilities with the pesticides. Due to its extremely porous structure
and diverse functional groups, biochar has received attention for its involvement in the



Appl. Sci. 2022, 12, 11544 3 of 24

sorption and immobilization of organic pollutants in soil [24]. However, the efficiency
of biochar is greatly dependent on its manufacturing factors, which include feedstock
type, manufacturing methods, and processing conditions, all of which play a part in the
processes. Table 1 is shown below.
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Table 1. Effect of biochar source on adsorption capacity and removal rate.

Raw
Material

Pyrolysis
Tempera-

ture
◦C

pH

Specific
Surface

Area
(m2·g−1)

Organic
Carbon

Content%

Maximum
Adsorption

Capacity
(mg·g−1)

Maximum
Removal

Rate%

Contaminant
(Pesticide) Principle Adsorption

Kinetics
Adsorption
Isotherm

Active
Matrix Reference

rice hull 500 6.96 95.67 33.6 — increase by 2
to 3.2 fold

Oxyfluorfen
(herbicide)

surface polarity
mechanism, the

pore-filling
mechanism,

hydrophobic and
π-π interaction

The first-order
kinetics Freundlich soil [25]

cassava 750 9.55 430.37 62.38 125 86.64% atrazine
(herbicide)

via a pore-filling
mechanism

pseudo-second
order Freundlich soil [26]

red gum
wood 500 7.8 — — — 49.8% isoproturon

(herbicide) — The first-order
kinetics Freundlich soil [27]

wood chip >500 10.8 28.8 73.9 — 82%-85% aminocyclopyrachlor
(herbicide) — — Freundlich soil [28]

woodchip 725 7.39 3.72 85.76 11.8–21.5 —

4-chloro-2-
methylphenoxyacetic

acid (MCPA)
(herbicide)

— — — soil [29]

pine-wood
shavings 400 — — — — 95% atrazine

(herbicide) — — Freundlich soil [30]

poultry
litter 550 8.9 3.14 — increase by

448% — diuron
(herbicide) — — Freundlich soil [31]

wood
pellet 500 6.02 1.25 81.39 3 —

methyl
isothiocyanate

(fumigant)
— The first-order

kinetics — soil [32]

rice husk 700 9.87 377.00 47.71 9.6 ± 0.2 47.7% carbofuran
(insecticide)

the pore-filling
mechanism, π-π
interaction, Van

der Waals’ forces,
H-bond,

electrostatic
interaction

The first-order
kinetics — water [33]

rice husk 750 10.51 53.08 64.08 9.5 95% metolachlor
(herbicide)

the pore-filling
mechanism,

H-bond

intra-particle
diffusion Freundlich water [34]

magnolia
wood 700 10.14 364.63 83.55 — 81.10% ethiprole

(insecticide)

π-π interaction,
the pore-filling

mechanism

The first-order
kinetics Freundlich water [35]

pine needle 700 — 390.52 93.67 105 75.04%
trichloroethylene

(TCE)
(insecticide)

the pore-filling
mechanism —

Temkin
Dubinin-

Radushkevich
water [36]
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Table 1. Cont.

Raw
Material

Pyrolysis
Tempera-

ture
◦C

pH

Specific
Surface

Area
(m2·g−1)

Organic
Carbon

Content%

Maximum
Adsorption

Capacity
(mg·g−1)

Maximum
Removal

Rate%

Contaminant
(Pesticide) Principle Adsorption

Kinetics
Adsorption
Isotherm

Active
Matrix Reference

soybeans 450 9.21 17.5 57.52 1.5 — atrazine
(herbicide)

physical
adsorption,

chemical
adsorption

— Freundlich water [37]

azadirachta
indica 300 — 30.43 42.89 79.40 80% bentazone

(herbicide)

H-bond,
electrostatic

interaction and
ion exchange

pseudo-second
order Freundlich water [38]

pig manure
stock 700 8.7 218.1 81.83 2.872 71.80% carbaryl

(insecticide)

the pore-filling
mechanism, π-π

electron
interaction

— Freundlich water [39]

Herb
Dangshen

and
Danggui

750 9.75 85.3 79.09 3.09 91% metolachlor
(herbicide)

the pore-filling
mechanism,
hydrophobic

effect and π-bond

— Freundlich water [40]

greenwaste 450 — 7.56 ± 0.29 71.18 1.066 95% simazine
(herbicide) — — Freundlich water [41]

switchgrass 425 — 1.1 — 50 90% MCPA
(herbicide)

H-bond, van der
Waals and π-π

interaction

pseudo-second
order

Redlich-
Peterson water [42]

walnut
shells 700 — 358.67 82.53 44.67 87.89% metolachlor (MET)

(insecticide)

the pore-filling
mechanism,

H-bond, and π-π
electron

donor–acceptor

pseudo-second
order Langmuir water [43]

crofton
weed 500 10.53 382.21 86.48 — 90%

(pH = 2)
flubendiamide

(insecticide) π-π interaction The first-order
kinetics Freundlich water [44]
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The physical and chemical properties of biochar vary with the types of raw materials,
and the preparation conditions are summarized in Table 1. The physical and chemical
properties and structures and the surface adsorption capacity of biochar surface are var-
ied with pyrolysis temperatures [45]. Pyrolysis usually includes fast pyrolysis and slow
pyrolysis. Fast pyrolysis means keeping the raw material for only a few seconds after the
temperature reaches the set value, while slow pyrolysis means keeping it from half an hour
to several hours [46]. Compared with rapid pyrolysis, high temperature and slow pyrolysis
are more conducive to the improvement of biochar yield and performance [47]. However,
the relative content of biochar pyrolysis products prepared at different temperatures is
obviously different. As shown in Table 1, different temperatures ranging from 300 to 750 ◦C,
different pH values ranging from 6.02 to 10.8, and the responding specific surface area
(SSA) ranging from 1.1 to 430.37 m2·g−1 affect the sorption of pesticides, ranging from 3 to
79.4 mg·g−1 [48]. Most herbicides and insecticides are acidic. Weak acids and weak bases
have little effect on the stability of pesticides. Strong bases, strong acids, and light can
promote the hydrolysis of pesticides. Most pesticides are nonpolar and slightly soluble or
insoluble in water (Table S1). The mechanisms of low-surface-area and high-temperature
biochar for adsorbing acidic and nonpolar pesticides include the pore filling mechanism,
the hydrophobic effect, the H-bond and π-bond, which are changed to π-π interaction,
electrical interaction, physical adsorption, and chemical adsorption after the modification.
The mechanisms of low-surface-area and low-temperature biochar for adsorbing nonpolar
pesticides are the surface polarity mechanism, the pore-filling mechanism, the hydrophobic
effect, and π-π interaction. After modification, the adsorption mechanisms are electrostatic
interaction and physical adsorption (Tables 1 and 2). The removal of pesticides with biochar
is mainly attributed to the adsorption of biochar. It indicates specific interactions such as the
pore-filling mechanism and hydrophobic and π-π interaction between biochar and pesticide
in the process of adsorption, which illustrates that the Freundlich isotherm model fits better
for the adsorption process. Due to large SSA and sufficient surface pores, biochar possesses
high adsorption capacity and can adsorb a large amount of pesticide in a short time.
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Table 2. The study of pesticides removed by modified biochar under different modification methods.

Raw
Material

Pyrolysis
Tempera-

ture
◦C

pH Modification
Method

Specific
Surface

Area
(m2·g−1)

Otal Pore
Volum

(cm3·g−1)

Maximum
Adsorption

Capacity
(mg·g−1)

Maximum
Removal

Rate%
Contaminant Adsorption

Mechanism
Adsorption

Kinetics
Adsorption

Isotherm
Active
Matrix Reference

walnut
shell 700 7 illiteFeCl3 232.77 0.29 126.72 95% metolachlor

(herbicide)

π-π electron
interaction and

chemical
reaction

pseudo-second
order Langmuir soil [49]

oil palm
empty
fruit

bunch

300 8.14 chitosan 1.19 — increase by
75 % — imazapic

(herbicide) — — Langmuir soil [50]

pinus
radiata

shavings
450 — Al-oxide 219 0.0681 146.054 56.72% isoproturon

(herbicide) — — Freundlich soil [51]

Moringa
oleifera

Lam. seed
husk

300 — nitric acid 5.77 0.0409 10.321 33.03% atrazine
(herbicide)

electrostatic
interactions and
hydrogen bonds

pseudo-second
order Langmuir water [52]

phragmite
powders 500 — nano

CuFe2O4
189.6 0.12 269.4 98.9% glyphosate

(herbicide)

physisorption,
chemisorption,

electrostatic
interactions and

coordination
bonding

pseudo-second
order Freundlich water [53]

rice husk 700 10.12 steam
activated 251.47 0.083 160.77 16.08% carbofuran

(insecticide)

electrostatic
action,

physisorption
and

chemisorption

— Freundlich water [54]

corn stalk 600 10
Ni(NO3)2

FeCl3
ZnCl2

14.26 — 143.15 71.58% atrazine
(herbicide)

chemisorption,
π-π bond

interaction

pseudo-second
order Freundlich water [55]

corn
straw 300 — H3PO4 638.1 — 79.6 96% atrazine

(herbicide)

Van der Waals’
forces, H-bond,

electrostatic
interaction and

porefilling

pseudo-second
order Freundlich water [56]

tangerine
seed 600 7 H3PO4 659.62 0.6203 93.46 87.52% carbamate pesticides

(insecticide)
Van der Waals’
forces, H-bond

Pseudo-second
order Langmuir water [57]

peach
stones 500 5.2

orthophosp-
horic
acid

6.179 0.006 39.37 99% imidacloprid
(insecticide)

H-bond
pi–pi physical

interaction

pseudo-second
order Langmuir water [58]
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Table 2. Cont.

Raw
Material

Pyrolysis
Tempera-

ture
◦C

pH Modification
Method

Specific
Surface

Area
(m2·g−1)

Otal Pore
Volum

(cm3·g−1)

Maximum
Adsorption

Capacity
(mg·g−1)

Maximum
Removal

Rate%
Contaminant Adsorption

Mechanism
Adsorption

Kinetics
Adsorption

Isotherm
Active
Matrix Reference

corn
straw 500 7 KOH 59.23 0.0231 2.84 88% atrazine

(herbicide)
electrostatic
interaction

pseudo-second
order Langmuir water [59]

rice straw 600 6.93 H3PO4 192.3 0.161 0.05 89.5% imidacloprid
(insecticide) — Elovich Freundlich water [60]

corn stalk 600 2.38
±0.01

K2CO3
H2SO4
HNO3

691.28 0.943 22.84 38.07%

2,4-
dichlorophenoxyacetic

acid (2,4-D)
(herbicide)

π-π interaction,
chemical

adsorption and
H-bond

— Langmuir water [61]

sludge 400 — FeCl3 — — 1.42 92.50% dicamba
(herbicide)

chemical
adsorption

pseudo-second
order — water [62]

cotton
straw

cellulose
110 —

the
methacrylic

acid
27.77 — — 95%

Sulfonylurea
herbicides (SUHs)

(herbicide)

π-π interaction
and H-bond

pseudo-second
order Freundlich water [63]

tea waste 500 7 ±
0.2

Chitosan
AgNO3

— — 5.643 93% imidacloprid
(insecticide)

chemical
adsorption

pseudo-second
order

Elovich
— water [64]

Merremia
vitifolia
plant

105 — ultrasound
H2SO4

172.8 — 66.93 94% 2,4-D
(herbicide)

electrostatic
interaction,

physical nature

pseudo-first
order Langmuir water [65]

coconut
fiber 600 — HCl 402.4 0.151 90.9 90% dichlorvos

(insecticide)

the pore filling,
the hydrophobic

interaction,
H-bond

pseudo-second
order Langmuir water [66]

date
stones 300 — HCl 421 — 8.6 93% aldrin

(insecticide)

intra-particle
diffusion,

external mass
transfer and

physical
adsorption

pseudo-second
order Freundlich water [67]

corn stalk 800 —
2-

methylimidazole
Co(NO3)2·6H2O

280 — 189 97% imidacloprid
(insecticide)

the pore filling,
H-bond and π-π

interaction

pseudo-second
order Freundlich water [68]
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Due to the diverse features of biochar, which vary significantly with different source
materials and pyrolysis settings, it can serve as both a soil amendment and a corrective
remedy for pesticide breakdown. Biochar works as a super sorbent by lowering pesticides’
accessible concentrations, which results in an increase in soil microbial biomass and the
potential to improve soil quality [69,70].

2.2. Modification Methods of Biochar

Biochar can be modified by gas activation, ball milling, radiation, acid, alkali, oxidant,
metal ion, and other treatment methods illustrated in Figure 2. For instance, modified
biochar with increased surface area, porosity, and/or functional groups of a material in
order to increase its sorption capacity has garnered more attention in recent years [22]. The
choice of method depends on its application field [71]. The modification of biochar can
significantly improve its activity and increase its application potential in pesticide-polluted
environmental remediation [72]. Modification of biochar with chemical reagents may
change its physicochemical characteristics, thereby improving its sorption capability, as
found in Table 2.
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As shown in Table 2, the biochar modification methods include acid, alkali, oxidant,
metal ion, and others. Compared with that of unmodified biochar, the maximum adsorption
capacity of modified biochar ranging from 2.84 to 269.4 mg·g−1 was significantly improved
by increasing the adsorption sites and promoting the function of biochar. The removal
rates varied from 87.52% to 99%, which were mainly focused on herbicides and insecticides,
while there is little research on fungicides. The sorption capacity and removal rate increased,
suggesting that high pH is favorable for sorption on biochar. Pesticide adsorption kinetics
can be well-represented by both the pseudo-first and pseudo-second order nonlinear kinetic
models. In a word, modified biochar provides better remediation effects on pesticide-
contaminated soils.

Using different biochar and modification methods had led to differences in the ad-
sorption mechanism of pesticides. When most of the biochar is modified by chemicals,
the pore filling mechanism is lower, increasing chemical adsorption. Most mechanisms
are π-π interactions and hydrogen bonds. Biochar prepared from rice husk has more, also
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involving soil, seeds, and plants. Biochar made from rice bran, rice husk, reed powder, and
corn straw has more than four adsorption mechanisms for pesticides, while cassava, slurry,
and pine needle have only one adsorption mechanism for pesticides. In particular, the
effect of modified biochar on the environmental behavior of maximum pesticide adsorption
capacity (mg·g−1) and removal rate (%) is to be considered.

The modification methods of biochar are mainly chemical methods, and pH before
and after modification is related to the added modified substances (Table S2). After the
modification of the biochar with acid substances, the pH of the modified biochar decreases,
and the range is about 1.45 to 1.89. Under the same modification conditions, due to
different raw materials prepared, the properties after modification are generally different.
By modification, biochar’s environmental behavior of maximum pesticides adsorption
capacity (mg·g−1) and removal rate (%) is increased (Table S2). The specific surface area
(mg2·g−1) and total pore volume (cm3·g−1) of the modified biochar are mostly increased.
The removal rate of pesticide pollutants from corn straw biochar modified with acid
substances increases from 38% to 96%. The maximum adsorption capacity of oil palm
empty fruit modified by chitosan increases from 8% to 75%.

Due to different modification methods for biochar made of the same raw materials,
the maximum adsorption capacity and removal rate of the modified biochar for the same
pollutant are improved. The maximum adsorption capacity of atrazine by modified corn
straw biochar is about 47.22 to 48.09 mg·g−1, and the maximum removal rate is 23.61% to
58%. As shown in Table S2, experimental result is greatly related to the influence of raw
materials. The same raw material, with different modified substances, will show different
properties, but the influence on the removal rate of pollutants and the maximum adsorption
capacity is not significant.

Pyrolysis temperature, duration time, composition, and concentration of input organic
matter, as well as the inclusion of exogenous modifiers, all have a significant effect on the
resulting biochar’s characteristics [73]. The effect of biochar’s pore geometry on adsorption
is not clear [74]. Moreover, the relevant mechanisms should be adequately considered for
maximizing the all-around efficiency of biochar amendments [75].

3. The Effect of Biochar on the Environmental Fate of Pesticides
3.1. The Effect of Biochar on Sorption of Pesticides

According to Sophia and Lima (2018) [76], adsorption onto inexpensive materials is
a viable and promising strategy for removing both organic and inorganic pollutants [77].
Chemical sorption is less expensive, more efficient, and faster than biological methods.
Adsorption occurs initially when pesticides encounter soil and is one of the most important
processes for pesticide removal from soil. It has been shown to be a cost-effective and
efficient pesticide removal technology [78]. Pesticide sorption and desorption in soil is the
basis for understanding pesticide environmental behavior and biotoxicity [79]. Pesticide
bioaccessibility and bioavailability in soil are inextricably tied to desorption processes,
since the component must be released back into the soil solution to perform its intended
impact [80]. Biochar can enhance pesticide sorption and lower the concentration of free
pesticides in soil, which not only minimizes pesticide biotoxicity but also prevents pesticides
from mitigating possible environmental dangers linked with harmful compounds and
their metabolites [35,81,82]. Porosity, surface area, surface charge, pH, functional groups,
carbon content, aromatic structure, and mineralogy all contribute to biochar’s sorption
ability [83,84]. Biochar’s high organic carbon content and large surface area provide an
abundance of pesticide sorption sites via hydrophobic partitioning and pore-filling [85]. The
variances in biochar’s sorption capacity are frequently due to changes in their properties,
which vary according to the biomass source and manufacturing process used. After a
long time, the efficiency of biochar’s sorption capacity is likely to be reliant on the initial
rate of biochar application to the soil. However, aging in biochar-amended soils likely
reduces biochar’s adsorption capability by altering its physicochemical characteristics [86].
Further investigation is needed to get insight into the fundamental mechanisms to clarify
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the specific pesticide characteristics that determine each behavior [87]. Biochar has an
ability as a soil supplement to minimize pesticide contamination by boosting sorption and
decreasing mobility [88]. Adsorption of pesticides by biochar impacts the processes of
mobility and conversion, as well as pesticide absorption and usage in plants.

Several interactions between biochar and pesticides are depicted in Figure 3, including
hydrophobic adsorption H-bonding, electrostatic, π-π electron donor–acceptor interactions,
and cation–π bonding. Pesticides are removed from the environment by a variety of meth-
ods, including physical adsorption, complex formation, precipitation, ion exchange, and
electrostatic interactions [89]. Through particular interactions and their strong aromaticity,
surface functional groups and negative surface charge might enhance pesticide adsorption.
The interaction between adsorbents and adsorbates is described using several adsorption
isotherm models. The Langmuir and Freundlich isotherm models are the most often uti-
lized in the adsorption system, demonstrating the presence of both physisorption and
chemisorption [90]. On the basis of ideal monolayer adsorption, the Langmuir isotherm
model was constructed, and the Freundlich isotherm model was used to calculate non-ideal
adsorption on heterogeneous surfaces and multilayer adsorption. Pseudo-second-order
kinetics is a third model that is also applicable to adsorption. However, it can serve as a
theoretical foundation for the optimal use of biochar as a sorbent in environmental applica-
tions [91]. Adsorption is the simplest, most effective, and most widely used technology
for most remediation attempts, and biochar is the most used adsorbent due to its wide
applicability for pesticide removal [92].
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3.2. The Effect of Biochar on Degradation of Pesticides

Sorption and degradation are the major mechanisms that regulate pesticide effective-
ness and the danger of runoff contamination [93]. Due to its high adsorption capacity,
biochar has been extensively studied for its influence on pesticide sorption, desorption,
and degradation in agricultural soils [94]. Dissipation study is critical because it will aid in
the correct and safe application of pesticides [95]. Because of its high specific surface area
and abundance of oxygen-containing functional groups, biochar is considered an effective
pesticide amendment that reduces the biodegradation of pesticides in soils. This helps
pesticides remain stable in the soil and is likely to play an important role in this process [96].
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Pesticide dissipation is reduced in biochar-amended soil due to enhanced adsorption and
decreased desorption from the biochar surface, limiting pesticide bioavailability. How-
ever, adding biochar may increase microbial stimulation and hence pesticide breakdown.
Application of biochar to agricultural soils can change pesticide persistence and break
down products. When applied to agriculture, biochar’s sorption nature can affect pesticide
absorption and breakdown. Biochar can affect pesticide environmental destiny through
sorption, desorption, and degradation in soils [97]. Soil biodegradation of pesticides is
altered by biochar depending on which activity is prominent. The persistence of pesticides
in soil is closely related to their degradation kinetics. The influence of pesticide properties
and environmental conditions plays an important role in environmental fate. Pesticide
residues and half-life increase with the dose and number of applications. Its degradation
grade in soil is divided according to the guidelines for an environmental safety evaluation
test of chemical pesticides. Biochar has a certain degradation effect on pesticides, and the
amount of biochar has a significant impact on the degradation rate of pesticides. The more
biochar added to the soil, the slower the degradation rate of pesticides in the soil [27,98].
Biochar improved the soil and delays the digestion process of insecticides chlorpyrifos and
fipronil [99]. After pesticide application, pesticide residues in soil gradually decrease with
time, and the degradation trend is according to the first-order kinetic equation.

3.3. Factors Affecting Biochar on Environmental Fate of Pesticides

Due to the unique physicochemical features of biochar, it often has a high capacity
for adsorbing pesticides prevalent in the soil environment. These properties are highly
dependent on the feedstock (pinewood, wheat straw, rice husk, dairy manure, sugar
beet tailings, and sewage sludge) and pyrolysis conditions (temperature, heating rate,
and residence time), which are two critical factors affecting the amounts of functional
groups on the surface of biochar [100]. For example, biochar produced at greater pyrolysis
temperatures might provide more sorption sites for pesticides due to its increased surface
area. However, high heating degrades the acidic functional groups on the surface of
biochar, reducing its potential to adsorb NH4

+–N [101,102]. In addition, it has been shown
that the adsorption capacity of biochar is related to its physical and chemical properties,
such as specific surface area, pore diameter size, degree of carbonization, aromaticity, etc.
However, a single factor such as aromaticity is not able to explain the responding trends
of sorption [103,104]. Sorption of environmental constituents, especially natural organic
matter, and oxidation reactions have been established as major contributors to the aging of
biochar, which might impact biochar sorption affinity for pollutants [105]. However, by
lowering the amounts of functional groups on the surface, this can also result in decreased
pesticide sorption. Biochar’s structure and sorption capability are very variable depending
on the raw materials used and the pyrolyzing conditions. The most critical element affecting
the structure and sorption behavior of biochar is the pyrolyzing temperature. The yield of
biochar decreases with the increase of temperature, and the pH value is mostly alkaline. The
carbon content, C/N, ash content, and adsorption of pesticides basically increase with the
increase of temperature, while soluble carbon content and volatile matter deficiency show
the opposite trend [106]. Minerals form on the surface of the biochar after pyrolysis and
clogg the pores. Ash might bind to pesticides but has a detrimental effect on sorption [107].
It may cover the reactive surfaces of biochar, masking its real pesticide sorption capability.
Thus, acid washing is required to increase the specific surface area of biochar. Many factors
influence pesticide sorption of biochar in soil, including biochar characteristics. Note that
soil and ambient variables such as moisture, temperature, pH, and minerals impact biochar
stability [108].

The solubility, pKa, molecule size, and substituent nature of aromatic biochars all
influence the adsorption mechanism. Since pH affects the surface charge of biochar and
the molecular form of pesticides in soils, it is one of the most critical elements controlling
the adsorption process [106]. Pesticide features such as kind, molecular size, molecular
polarity, and functional groups influence sorption, desorption, and degradation in soils
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supplemented with biochar [109]. The sorption mechanisms shift when the solute concen-
tration change. Biochar can alter the fate and bioavailability of pesticides in soil, which
affects the biodegradation of pesticides. This primarily depends on biochar properties, soil
characteristics, and pesticide types. Clearly, further research is required to determine how
long biochar in soil may continue to bind pesticides and hence influence their efficacy.

4. Application of Biochar for Remediation of Pesticide-Contaminated Soils

Biochar can be used in contaminated soils as an amendment and remediating agent to
immobilize and reduce the bioavailability and toxicity of pesticides. Applying biochar to
agricultural soils has varying impacts depending on the feedstock, pyrolysis temperature,
and application rates [110]. Understanding biochar’s function in various applications
can help develop or choose the best biochar for a given application based on feedstock
composition, production parameters, and post-treatment qualities. Addition of biochar
to the soil has two roles: it drives contaminants into or adsorbs them onto the biochar,
while it can also release nutrients that increase the rate of microbial degradation of the
contaminants. Applying biochar to soil can play a significant role in altering nutrient
dynamics, soil contaminants, and microbial functions. Biochar improves soil fertility in
pesticide-contaminated soils. Certain sorption/deactivation potential (shown by high
sorption and low desorption) for pesticides is retained by the biochar after nearly three
years in soils. Table 3 demonstrates that biochar can effectively improve soil quality and
reduce its ecological risk.
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Table 3. Application of biochar in soil pollution.

Biochar Type Pyrolysis Temperature Contaminant
(Pesticide) Application Effects Active Matrix Reference

rice straw field under natural conditions clomazone
(herbicide)

Rice straw residues burnt in an open field
considerably reduced clomazone’s herbicidal activity
against barnyard grass.

soil [111]

wheat straw 450 ◦C

atrazine
(herbicide)
trifluralin

(herbicide)

In comparison to unamended soil, a 3.5-fold increase
in atrazine application rate was necessary. The
herbicides’ effectiveness to suppress weeds remained
insufficient even when application dosages were four
times greater than the authorized rates.

soil [112]

corn straw 500 ◦C 1,3-dichloropropene
(fumigant)

To obtain complete nematicidal activity, the dosage of
1,3-dichloropropene fumigant has to be quadrupled
at a biochar amendment level of 26 t ha-1 in soil.

soil [113]

wheat straw natural conditions diuron
(herbicide)

Diuron herbicide effectiveness was greatly reduced in
char-amended soil. soil [114]

Eucalyptus spp. wood
chips 850 ◦C

chlorpyrifos
(insecticide)
carbofuran

(insecticide)

Pesticide absorption by plants dropped significantly
as soil biochar concentration increased. It slows the
rate of pesticide microbial breakdown, hence
extending the duration of pesticide residues in the
environment.

soil [115]

red gum wood chip 850 ◦C diuron
(herbicide)

The soil treated with biochar produced by the
pyrolysis of red gum chips boosted diuron sorption
and increased the nonlinearity of the adsorption
isotherm and the degree of sorption-desorption
hysteresis. Small quantities of charcoal formed at
high temperatures (e.g., the inside of wood logs
during a fire) can have a significant influence on the
release behavior of organic compounds in soil.

soil [116]

sugarcane top 500 ◦C atrazine
(herbicide)

Biochar generated from organic matter slowed
atrazine breakdown in soils to varied degrees
depending on the rate of input.

soil [117]

rice straw 550 ◦C bispyribac-sodium
(herbicide)

Increased microbial activity and bacterial population
in soil following amendment with URS and biochars
revealed the significance of amendment in preserving
soil quality and function by increasing microbial
parameters.

soil [118]
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Table 3. Cont.

Biochar Type Pyrolysis Temperature Contaminant
(Pesticide) Application Effects Active Matrix Reference

wheat straw 700 ◦C tebuconazole
(bactericide)

Not only did the biochar-immobilized WZ-2 speed
tebuconazole breakdown, but it also restored native
soil microbial enzyme activity and community
composition.

soil [119]

rice hull 600 ◦C fomesafen
(herbicide)

In agricultural soils, biochar additions likely change
the fate of herbicides by reducing their transit via
improved adsorption.

soil [120]

corn stalk 600 ◦C atrazine
(herbicide)

bFeMBC protected the function and metabolic activity
of beneficial bacteria susceptible to atrazine
contamination during the early stage of pollution,
hence preserving their relative abundance.

soil [121]

walnut shell 900 ◦C

linuron
diuron

monuron
(herbicide)

Pesticides entrapped in biochar have a restricted
uptake by organisms, and as a result, their toxicity
decreases, resulting in low pest control efficacy of
pesticides in biochar-amended soils.

soil [122]

Eucalyptus wood 800 ◦C

metolachlor
(herbicide)

sulfentrazone
(herbicide)

It may have an effect on pest control and necessitates
a greater pesticide application rate, directly increasing
production costs and maybe introducing a new risk to
the environment.

soil [123]

magnolia tree woodchip 500 ◦C thiacloprid
(insecticide)

While biochar decreases thiacloprid’s bioavailability
in soil, the delayed degradation and increased
earthworm concentration in old biochar-amended soil
signal that the environmental hazards associated with
biochar application to earthworms persist.

soil [124]

crofton weed 500 ◦C acetochlor
(herbicide)

These findings show that ageing biochar in soil for an
extended length of time may enhance the pesticide
hazard to crops.

soil [125]

oil palm empty fruit
bunches 300 ◦C imidazolinone

(herbicide)

The developed EFB and RH biochars have the
potential to be employed in the soil as an eco-friendly
and cost-effective biosorbent to mitigate the dangers
of imidazolinone herbicides and safeguard the
environment from their contamination.

soil [126]
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Table 3. Cont.

Biochar Type Pyrolysis Temperature Contaminant
(Pesticide) Application Effects Active Matrix Reference

eucalyptus origin 400-500 ◦C diuron
(herbicide)

Due to the increased diuron sorption capacity and
decreased diuron desorption capacity of sandy soils
following biochar application, the danger of diuron
leaching and pollution of subsurface water may be
reduced.

soil [127]

rice husk 550 ◦C fenoxaprop-ethyl
(herbicide)

The use of biochar resulted in a decrease in the
toxicity of earthworms. Biochar was found to have a
beneficial effect on residues and toxicity. Biochar has
a high potential for soil remediation and may be a
positive agricultural approach for the soil
environment.

soil [128]

wheat straw 500 ◦C fomesafen
(herbicide)

Biochar made from wheat straw can help to minimize
the danger of fomesafen contamination in soil and
improve the soil microbial ecology.

soil [129]
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Insecticides used as chemical growth inducers, increased hormone releasers, pesti-
cides, weedicides, and synthetic fertilizers cause environmental issues. The enormous
benefits of biochar in agriculture and the environment are coupled with downsides [130].
Illustrating the negative effects of improper biochar usage, using biochar in soil remediation
on a large scale may expose animals, plants, microbes, and agricultural crops to harmful
effects from the biochar’s adsorbed hazardous chemicals. This might have deleterious
impacts on the biotic environment. Certain biochars can function well in improving soil,
while other biochars cannot [131]. The appropriate modification methods depend on the
environmental application [132]. As biochars’ properties change over time, the pesticides’
application rate might need to be adjusted for different pesticides every cropping season.
The variation of biochar properties can affect its stability in the environment, highlighting
the need to study the impact of biochar amendments on the sorption and environmental
fate of pesticides in agricultural soils under specific local conditions. The effect of other
contaminants on pesticide removal by biochar in soils, the effect of pesticide properties on
its behavior in biochar-amended soils, and the large-scale use of biochar in agricultural
soils for multifunction have also been evaluated. Its many roles have aided future study
directions. This suggests that applying biochar to soil might be a realistic way to relieve
these stresses [133]. Agronomic, environmental, and economic benefits may result from
applying biochar to soil strategically. Biochars may be tailored for particular environmental
purposes, making them a potential option [134].

5. Challenges and Opportunities
5.1. Cost of Biochar and Modified Biochar

Biochar application is motivated by the desire to minimize the use of comparably
more expensive conventional sorbents in water treatment [135]. It can be used to improve
pesticide treatment in agricultural fields. As the international production, distribution, and
applications of biochar continue to grow, it is important to study its environmental impacts
and economic performance to assess its overall value [136]. However, relatively limited
attention has assessed how biochar amendment affects plant growth in contaminated
soils [137]. When contemplating modified biochar as a soil supplement, one must consider
the cost of these modifications, even if they often yield better pesticide sorption effectiveness.
Low-cost biochar has widespread potential in soil remediation and can help identify
suitable types of biochar or develop engineered biochar with specific functions [102].

5.2. Application of Biochar Return to Field

With a growing global population and limited arable land, restoring soil quality
to nonproductive soils is critical to future food production, food security, and energy
supply. Biochar may help in this attempt [138]. Biochar has qualities comparable to those
of activated carbons but is far less expensive. Biochar has the potential to be utilized
as a renewable and sustainable sorbent to remove contaminants from the soil due to its
high surface-to-volume ratio and large surface area (as shown in Figure 1). However,
the processes governing the fate and behavior of organic pollutants in the environment,
particularly pesticides in biochar-amended soil, are poorly known [139]. To optimize
the advantages of biochar in soil settings, the methods by which biochar interacts with
soil components should be further investigated [140]. This will provide insight into the
effect of biochar on soil ecology and biogeochemical processes. The specific processes of
contaminant-biochar retention and release over time, as well as the environmental impact
of biochar additions on soil organisms, remain unknown [141]. How and to what degree
biochar can alter pollutant transit and fate in the environment is uncertain. Soil pollutants,
herbicides, and minerals must be stabilized and bioavailable using charcoal. This will
enable the construction of biochar with specified physicochemical features and help manage
the released pollutants. Biochar is not without its environmental dangers, such as pollutant
release, biota toxicity, and impact on global carbon fluxes and contaminant movement [140].
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While these are valid concerns, physical, chemical, and biological treatments can affect the
effectiveness of biochar [142].

Biochar offers several advantages in forest soils, especially in low-fertility plantation
soils [143,144]. Due to its unusual structure and remarkable physicochemical qualities,
biochar has shown promise as a compost ingredient. It improves physicochemical and
nutritional characteristics, reduces bioavailability, and removes resistance genes from
compost. Biochar increases fertilizer utilization efficiency and water retention capacity in
soil. Straw is a readily available biomass with a global production surpassing 3.97 billion
tons per year [102,145]. Among all biochar types, straw biochar was shown to be the
best compost supplement [102]. Crop straw direct burning in the field which will cause
serious air pollution is prohibited in China. Returning crop straw without direct burning
to the field may aggravate the occurrence of various crop diseases. The direct straw
return to the field will be transformed into a technical chain of “collection and storage-
carbonization-productization-return to the field”. Based on carbonization technology,
through the industrialization and large-scale application of carbon-based agricultural
inputs, farmland soil carbon sequestration will be realized, greenhouse gas emission will be
reduced, and full quantitative utilization of straw and the improvement of farmland quality
will be promoted. Straw-derived biochar returning to the field for emission reduction and
sequestration of carbon technology, as one of ten major technical projects of the Ministry
of Agriculture and Rural Affairs, China in 2021, will provide a great opportunity for
biochar application for remediation of pesticide-contaminated soils. With the continuous
application of pesticides, the contamination of soil by pesticides will continue to occur.
However, whether repeated biochar return to pesticide-contaminated fields will cause
long-term adverse effects on the soil ecosystem is still unknown.

5.3. Effect of Biochar on Climate Change

Biochar has emerged as a new class of biomass-derived functional materials that can
be obtained using a plethora of thermochemical conversion techniques [146]. Biochar
made from diverse biomass has been widely employed to increase soil fertility, reduce
harmful gas emissions, sequester carbon, and act as a catalyst in energy generation [147].
Thus, employing pyrolysis to create biochar and storing it in soil is gaining popularity
as a way to combat climate change. Biomass is gaining attention as a renewable energy
alternative to replace present fossil fuel resources [148]. With China already aiming to peak
CO2 emissions by 2030 and attain carbon neutrality by 2060, biochar has a bright future.
Thermochemical conversion of solid waste into biochar can assist the circular economy in
several ways, including climate change mitigation and carbon sequestration [149]. Because
biochar is made from a variety of source materials and is recyclable, it may convert trash
into treasure when used to cure the environment. Using biochar to sequester soil carbon
seems to have significant adaptation/mitigation potential, if cost-effective manufacturing
and inclusion methods can be established [150].

6. Conclusions

The extensive and ineffective use of pesticides over the decades has resulted in consid-
erable soil pollution, but it has helped enhance agricultural output by lowering disease and
insect pests. Aside from boosting soil quality and agricultural output, modified biochar is
increasingly being used to remediate polluted soils [151,152]. Soil remediation utilizing eco-
friendly additives to combat pesticides in soil appears to be one solution. Modified biochar
is a more potential and beneficial soil amendment solution for pesticide-contaminated soils.
It can also increase soil fertility and trap carbon produced by the thermal decomposition of
organic materials in oxygen-limited environments. Modified biochar has high porosity with
plentiful oxygen functional groups and aromatic surfaces to boost soil sorption capacity for
pesticides. The capacity of modified biochar to remediate contaminants from environmental
matrices is also addressed. At present, pesticide-polluted soil remediation with modified
biochar is mostly used in laboratory tests, and field application research is less frequent. In
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this perspective, future study should focus on the influence of modified biochar additions
with low cost and high practical application value on pesticide sorption and environmental
destiny in agricultural fields. Carbon sequestration, soil fertility enhancement, pollution
remediation, and agricultural byproduct/waste recycling are possible modified biochar
uses [153].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app122211544/s1, Table S1: Chemical properties of different
pesticide contaminants; Table S2: Comparison of biochar and modified biochar on adsorption capacity
and removal rate.
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