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Abstract: Currently, the creation of digital copies (digital twins) of various objects by remote sensing
methods producing point clouds is becoming commonplace. This might be particularly important
for the digital preservation of historical objects. Such clouds are typically primarily acquired as
unordered sets of points with regular dense spacing, making the clouds huge in size, which causes
such clouds to be difficult to process, store and share. The clouds are, therefore, usually diluted before
use, typically through uniform dilution with a set spacing; such dilution can, however, lead to the
loss of detail in the resulting cloud (washed-out edges and fine features). In this paper, we present an
easy-to-use and computationally inexpensive progressive dilution method preserving detail in highly
rugged/curved areas while significantly reducing the number of points in flat areas. This is done on
the basis of a newly proposed characteristic T, which is based on the local scattering of the cloud (i.e.,
on the ruggedness of the local relief). The performance of this algorithm is demonstrated on datasets
depicting parts of historic buildings of different characters. The results are evaluated on the basis
of (a) root mean square deviation (RMSD) between the original and diluted clouds, (b) of visual
evaluation of the differences and (c) of reduction in the point cloud size, demonstrating an excellent
performance of the algorithm with a minimum loss of detail while significantly reducing the point
clouds (approx. by 47–66% compared to the corresponding uniform dilution for individual datasets).

Keywords: point cloud; subsampling; downsampling; dilution; cultural heritage; 3D scanning; SfM
photogrammetry; point cloud size; detail

1. Introduction

Nowadays, remote sensing techniques, such as 3D scanning (e.g., [1,2]), structure from
motion (SFM) photogrammetry [3,4], or UAV lidar [5]) constitute common approaches for
georeferencing and capture of historical objects. These methods produce huge amounts
of data that can, among other uses, assist the documentation and preservation of cultural
heritage objects for future generations [6,7] and/or the sharing of digital data on these
objects among researchers or even with the public. Prior to processing, the dense point
clouds collected by these techniques are typically diluted to a density that must correspond
to the required detail. This leads to the need for compromise between the preservation of
the most detailed parts of the object (such as reliefs or statues decorating a building) and
the overall data size. If high detail is needed for the decorations, flat areas of such buildings
(walls) would likely be oversampled, unnecessarily inflating the total data size. For this
reason, a progressive dilution preserving a high point density on the parts needing high
detail while reducing it for flat areas could be a promising approach for the storage of point
clouds of such buildings.

Algorithms used for point cloud dilution can be generally classified into those working
directly with point clouds, those using a triangular mesh for creating a surface, and other
algorithms using, e.g., deep learning (neural networks).
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Approaches directly diluting the point cloud are the simplest and most widely used.
Algorithms performing uniform dilution are typical representatives of such approach,
working, e.g., through random sampling (random selection of a user-defined number of
points), octree sampling (the cloud point space is divided into voxels with user-defined
size and one point—usually the closest one to the center of the voxel—is left in the cloud),
or, the most widely used, space sampling method (points are excluded from the cloud on
the basis of a user-defined minimal distance). These methods are very simple, fast, and
implemented in the available software, e.g., in the CloudCompare software; thus, they are
typically used as one of the first steps of point cloud processing ([1,8]).

The mesh-based approaches (e.g., [9–14]) build on the fact that real-world objects
consist of surfaces and the point cloud only “samples” these surfaces. Combining the
individual neighboring points into a network of triangles formed by neighboring points
from the cloud then approximates the surface. Obviously, where the surface is more curved,
more points are needed for its accurate description than where the surface is flat. The
generation of such surfaces is, however, too computationally demanding and typically
requires further manual editing. For these reasons, the use of these algorithms for historical
buildings or objects is quite complicated, making their suitability for point cloud dilution
in these applications rather questionable.

Other approaches use, for example, deep learning- or artificial intelligence-based
algorithms [15,16]. Similarly to algorithms using mesh, however, their practical use is
complicated by high computational demands; moreover, to the best of our knowledge, it
has never been used for historical buildings. Simplification approaches, known especially
from the field of computer graphics, are based on the preservation of only feature (key)
points, such as edges, from the cloud, ensuring that the reduction causes a minimal change
in the shape of the captured object (e.g., [17–21]). Specialized methods for the point
cloud density reduction that have been originally designed for point clouds describing
terrain- [22–24] could be also used for the description of cultural heritage objects.

A vast majority of the above-mentioned approaches for point cloud dilution has been
developed for other purposes, such as small objects or terrain. On the other hand, the
specific field of buildings with their associated characteristics (e.g., requirement for the
target density of the processed point cloud in points per m2) have been, so far, evaluated
only in a few studies [25–27]. Approaches described in these papers are, moreover, relatively
complicated and, in effect, computationally demanding.

For these reasons, we propose a simple and computationally undemanding method of
progressive dilution that can be easily implemented in the freely available CloudCompare
software v. 2.12.4 Kyiv (cloudcompare.org; 1 September 2022). This method is suitable for
dense point clouds obtained through SfM photogrammetry or laser scanning capturing
cultural heritage objects, such as buildings. The method is based on space sampling but
the distance for exclusion of surrounding points differs, being calculated individually for
each point based on the flatness of its surroundings expressed as a standard deviation of
plane fit transformed into the variable T through a specifically designed transformation.
The operator defines, based on the intended further use of the data, the required maximum
and minimum dilution parameters (the distance between the neighboring points) for the
least and most rugged surfaces.

The proposed method is tested on point clouds of three constructions (a bridge and
two buildings) representing typical cultural heritage objects.

2. Materials and Methods
2.1. The Principle of the Method

The principle of the proposed method is quite simple. The point cloud representing
the object’s surface contains a finite number of discrete points. The surface of flatter parts
can be captured using much fewer points than curved or rugged surfaces. If we can,
therefore, determine the “flatness” of the surroundings of the point, we can determine
how much we can dilute the cloud in its vicinity without compromising the quality of the
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object description. The proposed method performs this in the unordered original point
cloud using already known simple manipulations. Unlike the commonly used uniform
dilution using only one parameter determining the distance between individual points
in the diluted cloud (a), the proposed method adds an additional parameter (b), which
defines the maximum distance between points, i.e., the distance that shall be used on the
flattest surfaces. The method sequence is as follows (also shown on Figure 1):

1. Calculation of an evaluation variable E3.
2. Transformation of the E3 variable into the T variable.
3. Correction of the range of the T variable by winsdorizing.
4. Dilution of the cloud based on a linearly changing distance between individual points

based on the relative value of T.
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Figure 1. The flowchart of the proposed progressive dilution algorithm.

The E3 variable is calculated separately for each point within the cloud. E3 calculated
for a point is defined as the variance of the distances of surrounding points (within a sphere
with radius R) from the plane interspersed through them; it can be acquired, for example,
as the third eigenvalue of the matrix according to Equation (1).

A =

x1R y1R z1R
...

...
...

xnR ynR znR

, UΣV = svd
(

AT A
n

)
, diag(Σ) =

E2
1

E2
3

E2
3

,

xiR = xi − xm, yiR = yi − ym, ziR = zi − zm,

xm = ∑n
i=1 xi

n , ym = ∑n
i=1 yi
n , zm = ∑n

i=1 zi
n .

(1)

The calculation of the eigenvalues of vectors/matrices is generally well-known;
here, we present a procedure using a singular decomposition (function svd ()) used in
Equation (1). In that equation, A is a matrix of coordinates of points xiR, yiR, ziR (i.e., the
coordinates of each point within the spherical surroundings of the evaluated point with
radius R, relative to the mean coordinates of all points within the sphere xm, ym, zm).

Subsequently, the E3 variable is transformed into the T variable. E3, as a characteristic
of variance, greatly changes with even small changes in flatness; for this reason, we have
proposed a transformation into the T variable (Equation (2)), which allows more linear
changes in dilution.

T =
1√
E3

(2)

Moreover, in every cloud, there are extreme points excessively broadening the range
of the T variable. A typical histogram, then, looks like that shown in Figure 2a—a vast
majority of points fall within a relatively small range and only a small minority is outside
this range. Values of T for individual points can be as high as T = 35,000 but there are so few
such points that they are even not visible on the histogram. For this reason, winsdorizing is
performed—the 99.9th percentile of data is arbitrarily found and this number is assigned
to all points with T values above this percentile, see Figure 2b. This includes points on
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extremely smooth and planar surfaces, for which T was undefined (E3 for these points is 0
and T would, therefore, be +∞; in CloudCompare, such points would be marked NaN).
The same is done for the 0.1th percentile and points lower than 0.1. This is the reason why
the T = 3000 category is seemingly so overrepresented in Figure 2b—it is not because the
value of T = 3000 is valid for so many points but because all points with T > 3000 were
aggregated into this single value.
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In the last step, the cloud is diluted based on the distances of the neighboring points.
Unlike in uniform dilution, we do not use a universally valid distancing parameter; rather,
two parameters are set, namely a as the minimum distance of neighboring points for
the lowest T (i.e., for the most rugged surfaces) and b as the minimum distance of the
neighboring points for the maximum T. Based on the T value for each point, the distance of
the particular point from the neighboring ones is then determined by linear interpolation
between these two parameters (a and b).

Of course, the data need to be standardly processed before the above-described method
is used–in particular, it must be cleaned of points not characterizing the object (such as
vegetation). Existing geometrical filters e.g., [28,29], can be used for this purpose; it must
be, however, kept in mind that most such filters are originally designed for the extraction of
terrain, and it might be beneficial to consider also other approaches based on the evaluation
of data variance for the extraction of buildings [30,31].

2.2. Data Used for Method Testing

Three datasets (see Figure 3) were selected for testing, representing different historical
objects with various characteristics. The data are neither perfect nor complete (best seen in
Data 3) to evaluate if this represents an obstacle for the algorithm function.

Data 1 show a side of a historical bridge structure. The dataset was obtained pho-
togrammetrically, the images were taken with a Canon EOS 400 D digital SLR camera and
processed in Agisoft Metashape software v. 1.8.1. In total, the original cloud consists of
728,137 points, the resolution on average approx. 0.01 m. In terms of ruggedness, the
central pillar is particularly pronounced (round at the bottom, square at the top). The water
drains on the left and right sides and the ledges represent significant features that need
to be preserved; the joints between the stones can be considered the smallest details. The
data are colored based on real-world photo colors. This object is a typical candidate for
digital twin creation—it represents a typical historical object with flat surfaces combined
with spatial details that need to be preserved.

Data 2 and Data 3 have been selected as extremely complicated scenes to evaluate the
performance of the proposed algorithm also for such difficult data. Data 2 describe a part
of a chapel gradually falling into disrepair—its surface is formed by crumbling plastering
revealing bricks underneath. The cloud was acquired using a terrestrial 3D scanner Leica
P40. The total number of points is 407,532, the resolution is approx. 0.01 m. There are
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practically no flat surfaces here, the surface is highly rugged from the perspective of both
the original shape and the consequences of the decaying plaster. The data are colored based
on the intensity of the reflected electromagnetic radiation (recorded by the 3D scanner).

Data 3 show the entrance gate of a historic town hall (after recent refurbishment).
The cloud was acquired with the Leica P40 terrestrial 3D scanner, the total number of
points is 1,470,249, the resolution is approximately 0.005 m. The data was included in
testing because the shapes are sharp and undamaged, and the data combine areas of high
detail and ruggedness (e.g., the coat of arms in the middle and areas such as the column
footings, etc.) with relatively flat areas. There is, therefore, an extremely wide range of
ruggedness. The data are colored based on the intensity of the reflected electromagnetic
radiation (recorded by the 3D scanner).
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2.3. Algorithm Performance Testing

The algorithm performance was tested by comparing the results of uniform dilution
with those of the proposed progressive method. Evaluated parameters included the number
of points in the respective cloud and the root mean square deviation (RMSD) between
the local triangular mesh created from the diluted cloud and points from the original
cloud (i.e., RMSD of the distances of the original points from the surface created from
the diluted cloud). These two simple criteria indicate the quality of dilution—the best
result of dilution contains the least number of points while being most similar to the
original cloud (i.e., having the smallest RMSD between the original and diluted cloud).
An additional parameter, RMSDE, was also calculated after the exclusion of points that
were not removed from the original cloud during dilution. The reason for this lies in the
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fact that RMSD is calculated from all points in the cloud, (i.e., including such unremoved
original points whose deviation from the original cloud must, by principle, be 0). This
would falsely improve RMSD for clouds that were only slightly diluted and, therefore,
contain a large number of such identical points. In other words, RMSDE is calculated only
from the approximated surface, not from any original points.

2.3.1. Preparation of the Test Clouds

All testing was performed in CloudCompare v. 2.12.4 Kyiv (cloudcompare.org;
1 September 2022), a free 3D point cloud (and triangular mesh) processing software that was
initially intended to compare two dense 3D point clouds or a point cloud and a triangular
mesh. Over time, however, it has been expanded into a multipurpose point cloud pro-
cessing program that includes a number of advanced algorithms (registration, resampling;
handling of color, normals, scalar fields, statistical evaluations, etc.). It is widely used both
for scientific purposes and for practical data processing. The calculation of E3 values and its
assignment into the scalar field was performed using the function Tools/Others/Compute
geometric features, and the T variable was subsequently calculated using mathematical
functions under Edit/Scalar fields/Arithmetics. The dilution itself (uniform as well as
progressive dilution) was performed using the Edit/Subsample function, opting for the
method Space. Subsequently, a constant parameter “min space between points” (set, e.g., to
0.01 m) was chosen in the case of uniform dilution; for progressive dilution, the option “use
active SF” (SF = scalar field) is selected, and the a and b values are set for the maximum
and minimum T.

2.3.2. Comparison of Prepared Clouds

The distances between the original point cloud and the triangular mesh created from
the diluted cloud were calculated using the function Tools/Distances/Cloud to Cloud dist.
Default settings were used, amended only in the Local modeling tab, where “Local model”
2D1/2 Triangulation was selected, and the Radius Sphere was set to 2 × b. The diluted
point cloud was set as the reference cloud, the original as the compared cloud. RMSDs
were subsequently determined using the function Tools/Statistics/Compute stat. params
with Gaussian distribution.

Although RMSD is an exact parameter frequently used for cloud comparison, its
information value is limited due to the immense number of points, which may lead to
falsely good RMSD values despite inaccuracies in the filtered model; this is particularly
true for points on the edges as the proportion of such is relatively low but their importance
in preserving detail is high. For this reason, visual evaluation was employed as a useful
additional criterion and will be presented in Results.

Reduction of the point cloud size is, of course, another important parameter. For this
reason, we have also evaluated the reduction in the number of points in the diluted point
cloud compared to the original one. In addition, we have also compared the reduction in
the progressively diluted point cloud to the uniform dilution with the same a.

Table 1 presents the range of constants (values of R, a, b) used for testing. For each
dataset, combinations of parameters were selected in view of the resolution of the original
data and the level of detail that needed to be captured (for example, as Data 3 contain most
details, a smaller initial a value was used). a and b values were proposed as (a) b = 2 a;
(b) b = 3 a. Once these combinations were evaluated, some additional combinations were
added arbitrarily based on these results—these are shown in Table 1 with designation (c).
For Data 3, a lower initial a = 0.005 m was chosen due to the presence of high-detail reliefs
in this dataset.

cloudcompare.org
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Table 1. The minimum distances of neighboring points used for dilution and testing.

Data Uniform Dilution [m] R [m] a/b [m] for Progressive Dilutions

Data 1 0.01; 0.02; 0.03; 0.05 0.050
(a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10;
(b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15;
(c) 0.01/0.05; 0.02/0.10

Data 2 0.01; 0.02; 0.03; 0.05 0.100
(a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10;
(b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15;
(c) 0.01/0.10; 0.02/0.10;

Data 3 0.005; 0.01; 0.02 0.050
(a) 0.005/0.01; 0.01/0.02; 0.02/0.04;
(b) 0.005/0.015; 0.01/0.03; 0.02/0.06;
(c) 0.005/0.025; 0.005/0.050; 0.01/0.05; 0.02/0.10

3. Results
3.1. Testing Results—Data 1

At the first sight, Data 1 represents a simple object consisting of simple geometrical
shapes. Figure 4 depicts the original data colored according to the T values. It is important
to note that the T value distinguishes areas with different levels of ruggedness—this is the
very principle of the method as without these distinguishing capabilities, the progressive
dilution could not be satisfactory. Blue color indicates the most rugged/curved parts,
red color the flattest ones. The figure clearly shows that the edges and joints are well
distinguished from flat surfaces—including details such as the round blue dots in the
lower part of the figure, indicating bolt heads. On a standard present-day laptop, the
E3 calculation for all points in this cloud took 1.2 s; the transformation of E3 to T was
practically immediate, and the dilution step took 0.4 s.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19 
 

Table 1 presents the range of constants (values of R, a, b) used for testing. For each 
dataset, combinations of parameters were selected in view of the resolution of the original 
data and the level of detail that needed to be captured (for example, as Data 3 contain 
most details, a smaller initial a value was used). a and b values were proposed as (a) b = 2 
a; (b) b = 3 a. Once these combinations were evaluated, some additional combinations 
were added arbitrarily based on these results—these are shown in Table 1 with designa-
tion (c). For Data 3, a lower initial a = 0.005 m was chosen due to the presence of high-
detail reliefs in this dataset. 

Table 1. The minimum distances of neighboring points used for dilution and testing. 

Data Uniform Dilution [m] R [m] a/b [m] for Progressive Dilutions 

Data 1 0.01; 0.02; 0.03; 0.05 0.050 
(a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10; 
(b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15; 
(c) 0.01/0.05; 0.02/0.10 

Data 2 0.01; 0.02; 0.03; 0.05 0.100 
(a) 0.01/0.02; 0.02/0.04; 0.03/0.06; 0.05/0.10; 
(b) 0.01/0.03; 0.02/0.06; 0.03/0.09; 0.05/0.15; 
(c) 0.01/0.10; 0.02/0.10; 

Data 3 0.005; 0.01; 0.02 0.050 
(a) 0.005/0.01; 0.01/0.02; 0.02/0.04; 
(b) 0.005/0.015; 0.01/0.03; 0.02/0.06; 
(c) 0.005/0.025; 0.005/0.050; 0.01/0.05; 0.02/0.10 

3. Results 
3.1. Testing Results—Data 1 

At the first sight, Data 1 represents a simple object consisting of simple geometrical 
shapes. Figure 4 depicts the original data colored according to the T values. It is important 
to note that the T value distinguishes areas with different levels of ruggedness—this is the 
very principle of the method as without these distinguishing capabilities, the progressive 
dilution could not be satisfactory. Blue color indicates the most rugged/curved parts, red 
color the flattest ones. The figure clearly shows that the edges and joints are well distin-
guished from flat surfaces—including details such as the round blue dots in the lower part 
of the figure, indicating bolt heads. On a standard present-day laptop, the E3 calculation 
for all points in this cloud took 1.2 s; the transformation of E3 to T was practically imme-
diate, and the dilution step took 0.4 s. 

 
Figure 4. Data 1—The original point cloud colored according to the T values; red—flattest parts, 
blue—most curved/rugged parts. 
Figure 4. Data 1—The original point cloud colored according to the T values; red—flattest parts,
blue—most curved/rugged parts.

Figure 5 indicates the results of processing with selected parameters and confirms that
the progressive dilution works as intended. Figure 5a shows data after uniform dilution
using a = 0.02 m, the remaining variants show the same data filtered using the same a but
higher b, thus preserving details with the same accuracy as uniform dilution but lowering
the numbers of points in flat areas.
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of the progressive dilution algorithm. Clearly, the density of points remains much higher 

Figure 5. Examples of dilution: a = 0.02 m in all cases; (a) uniform dilution (i.e., b = 0.02 m);
(b) b = 0.04 m; (c) b = 0.06 m; (d) b = 0.10 m.

Table 2 presents the results of the numerical testing of Data 1. As can be expected,
increasing the a value leads to a decrease in the number of points in the diluted point
cloud and the RMSD grows. Obviously, a is crucial for the capture of details as it sets the
maximum possible density (maximum detail) of the resulting cloud. The quality of results
should be, therefore, compared for the uniform and progressive dilutions with the same a.
If, for example, the number of points after progressive dilution with settings of a = 0.01 m
a b = 0.02 m is approximately 30% lower than that of uniform dilution while the RMSD
remains practically unchanged (0.0005 m vs. 0.0006 m, respectively), it can be perceived as
a successful application of the tested algorithm.

Table 2. Results of dilution of the Data 1 cloud—numbers of points and RMSDs (R = 0.05 m).

a [m] b [m] Points in
the Cloud

%
Original 1

RMSD
[m]

RMSDE
[m]

%
Uniform 2

original - 728,137 100 - - -

0.01 uniform 352,660 48.4 0.0005 0.0007 100
0.01 0.02 249,549 34.3 0.0006 0.0007 70.8
0.01 0.03 187,024 25.7 0.0006 0.0007 53.0
0.01 0.05 120,506 16.5 0.0007 0.0008 34.2

0.02 uniform 121,333 16.7 0.0010 0.0011 100.0
0.02 0.04 81,622 11.2 0.0011 0.0012 67.3
0.02 0.06 59,777 8.2 0.0012 0.0013 49.3
0.02 0.10 36,728 5.0 0.0016 0.0016 30.3

0.03 uniform 65,148 8.9 0.0015 0.0016 100.0
0.03 0.06 40,194 5.5 0.0017 0.0017 61.7
0.03 0.09 29,088 4.0 0.0020 0.0020 44.6

0.05 uniform 26,194 3.6 0.0029 0.0030 100.0
0.05 0.10 15,752 2.2 0.0033 0.0033 60.1
0.05 0.15 11,100 1.5 0.0042 0.0042 42.4

1 % original—the percentage of points relative to the original cloud. 2 % uniform—the percentage of points
relative to the uniformly diluted cloud with respective a.

The detail presented in Figure 6e allows a better visual evaluation of the performance
of the progressive dilution algorithm. Clearly, the density of points remains much higher
on the edges and in the joints between stones than on the flat sides of the stones. The edges
of details, such as the bolt head in the lower left corner are well preserved, but their flat
parts are successfully diluted.
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Figure 6 shows a detail of the point clouds diluted using various settings and their 
differences from the original could. Note in particular the differences between Figure 6b,f 
–two point clouds containing approximately the same numbers of points after dilution 
(Table 2). Figure 6b compares the original cloud with the result of uniform dilution with 
a = 0.020 m while (f) with the result of progressive dilution using a = 0.010 m and b = 0.050 
m. The progressive cloud has a better RMSD (Table 2), which corresponds to the visual 
comparison where greater differences on the edges from the original cloud can be ob-
served for the uniform dilution with higher alpha (red and blue points on the edges). This 

Figure 6. Details of the Data 1 point cloud: (a) original cloud, (b) differences between the cloud
acquired by uniform dilution with a = 0.02 m and the original point cloud, (c) point cloud after
uniform dilution with a = 0.01 m, (d) differences between the cloud acquired by uniform dilution
with a = 0.01 m and the original point cloud, (e) point cloud after a = 0.01 m b = 0.05 m progressive
dilution (approximately the same number of points in the cloud as for uniform dilution 0.02 m),
(f) differences between the cloud acquired by progressive dilution with a = 0.01 m b = 0.05 m and the
original point cloud. Note the higher representation of deviations on the edges of (b) compared to (f).

Figure 6 shows a detail of the point clouds diluted using various settings and their dif-
ferences from the original could. Note in particular the differences between Figure 6b,f –two
point clouds containing approximately the same numbers of points after dilution (Table 2).
Figure 6b compares the original cloud with the result of uniform dilution with a = 0.020 m
while (f) with the result of progressive dilution using a = 0.010 m and b = 0.050 m. The
progressive cloud has a better RMSD (Table 2), which corresponds to the visual comparison
where greater differences on the edges from the original cloud can be observed for the
uniform dilution with higher alpha (red and blue points on the edges). This illustrates
the main advantage of the progressive dilution—by using higher density only locally, it
preserves greater detail only where needed, thus reaching better results with the same final
cloud size.
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Comparing Figure 6d,f we can see the comparison of two clouds with the same
maximum detail a (0.010 m). The progressively diluted cloud contains approx. a third of
points compared to the uniform dilution, which represents a significant compression of
the data. Although the number of points with a greater difference from the original cloud
(red) is somewhat higher in the progressively diluted cloud, we can see that such erroneous
points are dissipated, representing largely chinks and slight unevenness in the relatively
flat areas of stone faces while the edges and details are preserved very well.

3.2. Testing Results—Data 2

Data 2 represent an object that is practically free of flat surfaces. Figure 7 shows the
point cloud colored according to the T values (flat surfaces in red, rugged surfaces in blue).
Rather than architectural decorations, the high detail originates from the defects, chinks,
and cracks in this object. However, even these are important for an accurate recording of
the object. A closer look reveals also ledges and other projections. On a standard laptop,
the E3 calculation took less than 1 s, its transformation to T was practically immediate and
the dilution took 0.2 s.
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Figure 7. Data 2—original point cloud colored according to the T values; red—flattest parts,
blue—most curved/rugged parts.

Figure 8 shows examples of the processed cloud for the walled part of the chapel with
a = 0.02 m and different values of b. Table 3 shows the numerical values indicating the
reduction in the number of points; using the same example as in Data 1, i.e., a = 0.01 m and
b = 0.02 m, 0.03 m or 0.05 m, the number of points in the cloud decreased to 90%, 82% and
70%, respectively.
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Figure 8. Data 2—examples of dilution: a = 0.02 m in all cases; (a) uniform dilution (i.e., a = 0.02 m);
(b) b = 0.04 m; (c) b = 0.06 m; (d) b = 0.10 m.

Table 3. Results of dilution of the Data 2 cloud—numbers of points and RMSDs (R = 0.10 m).

a [m] b [m] Points in
the Cloud % Original 1 RMSD [m] RMSDE

[m] % Uniform 2

original - 407,532 100 - - -

0.01 uniform 404,419 99.2 0.0001 0.0015 100.0
0.01 0.02 366,731 90.0 0.0002 0.0006 90.7
0.01 0.03 332,062 81.5 0.0003 0.0008 82.1
0.01 0.05 283,446 69.6 0.0005 0.0010 70.1
0.01 0.10 213,828 52.5 0.0009 0.0013 52.9

0.02 uniform 120,139 29.5 0.0020 0.0023 100.0
0.02 0.04 112,243 27.5 0.0020 0.0024 93.4
0.02 0.06 105,751 25.9 0.0021 0.0025 88.0
0.02 0.1 95,120 23.3 0.0022 0.0025 79.2

0.03 uniform 63,517 15.6 0.0033 0.0036 100.0
0.03 0.06 58,674 14.4 0.0034 0.0037 92.4
0.03 0.09 54,882 13.5 0.0035 0.0038 86.4

0.05 uniform 26,158 6.4 0.0058 0.0060 100.0
0.05 0.10 23,756 5.8 0.0061 0.0063 90.8
0.05 0.15 22,082 5.4 0.0062 0.0064 84.4

1 % original—the percentage of points relative to the original cloud. 2 % uniform—the percentage of points
relative to the uniformly diluted cloud, with respective a value.

The extremely low value of RMSD in Table 3 for a = 0.01 (0.1 mm for uniform dilution)
is caused by the fact that in this dilution, practically no points were removed from the origi-



Appl. Sci. 2022, 12, 11540 12 of 18

nal cloud (only 0.7% of points were removed) due to the original resolution being approx.
0.01 m. For this reason, evaluation using RMSDE gives a complementary perspective on
the success of the dilution.

Figure 9 then shows a detail of Data 2, where (a) is a detail of the original cloud and (e)
of the progressively diluted cloud. Again, we can see a lower density of points in the flat
surfaces while density is preserved in the rugged parts such as the visible stones, bricks,
or edges.
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original point cloud. 

Similarly to the details presented for Data 1, we can again see that increasing a leads 
to a major loss in detail, and although uniform dilution with the same a provides visually 
slightly better results than progressive dilution with 10 times higher b, it reduces the num-
ber of points by about half while preserving sufficient detail even in data of such com-
plexity. 

3.3. Testing Results—Data 3 
Compared to the previous two datasets, the character of Data 3 differs in the sense of 

having a lot of details with sharp edges, which calls for a higher quality of the resulting 
model (diluted point cloud). The original resolution of the point cloud is also higher than 
in the previous cloud (better than 0.005 m). The data includes highly detailed reliefs, such 

Figure 9. Details of the Data 2 point cloud: (a) original cloud, (b) differences between the cloud
acquired by uniform dilution with a = 0.02 m and the original point cloud, (c) point cloud after
uniform dilution with a = 0.01 m, (d) differences between the cloud acquired by uniform dilution
with a = 0.01 m and the original point cloud, (e) point cloud after a = 0.01 m b = 0.10 m progressive
dilution (approximately the same number of points in the cloud as for uniform dilution 0.02 m),
(f) differences between the cloud acquired by progressive dilution with a = 0.01 m b = 0.10 m and the
original point cloud.

Similarly to the details presented for Data 1, we can again see that increasing a leads
to a major loss in detail, and although uniform dilution with the same a provides visually
slightly better results than progressive dilution with 10 times higher b, it reduces the number
of points by about half while preserving sufficient detail even in data of such complexity.

3.3. Testing Results—Data 3

Compared to the previous two datasets, the character of Data 3 differs in the sense of
having a lot of details with sharp edges, which calls for a higher quality of the resulting
model (diluted point cloud). The original resolution of the point cloud is also higher than
in the previous cloud (better than 0.005 m). The data includes highly detailed reliefs, such
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as the coat of arms in the middle and decorations of the columns, as well as practically flat
surfaces on the feet of the columns or directly on the building walls. The areas covering the
cylindrical parts of columns are slightly curved. Figure 10 shows the original point cloud
colored according to the T variable. The E3 calculation on a standard laptop took 2.2 s, the
transformation of E3 to T is practically immediate, and the dilution took 0.9 s.
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Figure 10. Data 3—original point cloud colored according to the T values; red—flattest parts,
blue—most curved/rugged parts.

The results of dilution in Data 3 are similar to the other datasets (see Figure 11 and
Table 4). Figure 12 shows a detail of the Data 3 cloud. The detail contains areas of various
flatness/ruggedness/curvature (flat wall, cylindrical parts of the columns with various
radiuses, and very dense areas representing fine details in the stucco reliefs).

Figure 12e clearly shows the level to which the flat surfaces can be diluted without loss
of detail when using progressive dilution on well-preserved objects with plaster. Again,
the loss of detail in complicated areas is most pronounced when a is increased (Figure 12b).
Comparing the uniform dilution and progressive dilution with the same a, we can see
only a very slight decrease in detail accuracy while reducing the point cloud size by more
than 50%.
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Figure 11. Data 3—examples of dilution: a = 0.005 m in all cases; (a) uniform dilution; (b) b = 0.010 m;
(c) b = 0.025 m; (d) b = 0.050 m.

Table 4. Results of dilution of the Data 3 cloud—numbers of points and RMSDs (R = 0.05 m).

a [m] b [m] Points in
the Cloud % Original 1 RMSD [m] RMSDE

[m] % Uniform 2

original - 1,470,249 100 - - -

0.005 uniform 651,345 44.3 0.0004 0.0005 100.0
0.005 0.010 506,966 34.5 0.0004 0.0005 77.8
0.005 0.015 436,672 29.7 0.0004 0.0005 67.0
0.005 0.025 369,672 25.1 0.0005 0.0006 56.8
0.005 0.050 291,500 19.8 0.0006 0.0007 44.8

0.01 uniform 181,235 12.3 0.0009 0.0009 100.0
0.01 0.02 156,035 10.6 0.0009 0.0010 86.1
0.01 0.03 140,215 9.5 0.0010 0.0010 77.4
0.01 0.05 119,166 8.1 0.0011 0.0011 65.8

0.02 uniform 49,600 3.4 0.0021 0.0021 100.0
0.02 0.04 42,539 2.9 0.0022 0.0022 85.8
0.02 0.06 38,153 2.6 0.0024 0.0024 76.9
0.02 0.10 31,709 2.2 0.0046 0.0047 63.9

1 % original—the percentage of points relative to the original cloud. 2 % uniform—the percentage of points
relative to the uniformly diluted cloud, with respective a value.
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Figure 12. Details of the Data 3 point cloud: (a) original cloud, (b) differences between the cloud
acquired by uniform dilution with a = 0.01 m and the original point cloud, (c) point cloud after
uniform dilution with a = 0.005, (d) differences between the cloud acquired by uniform dilution with
a = 0.005 m and the original point cloud, (e) point cloud after a = 0.005 m b = 0.05 m progressive dilu-
tion, (f) differences between the cloud acquired by progressive dilution with a = 0.005 m b = 0.05 m
and the original point cloud.

4. Discussion

The main purpose of this algorithm for progressive dilution is to reduce the point
cloud size while minimizing the loss of detail. The results prove that a is the key parameter
for detail preservation—this is obvious both from the visual and numerical comparisons.

Three datasets were selected for the evaluation of the performance of the proposed
algorithm. Besides the Data 1 dataset representing a typical medieval construction built
from stones, we also used two highly complex structures. In one of those, the complexity
and high level of detail are caused by the fact that the building is round and falling into
disrepair, with the plaster falling from the walls forming irregular details (Data 2). In
the other dataset, we can see a combination of flat surfaces (caused by the fact that the
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surface has been relatively recently refurbished) and highly detailed reliefs and decorations
(Data 3).

The reduction of the point cloud was, logically, the highest (66%) in the case of the
medieval stone construction (Data 1), which contained only a limited number of details.
On the other hand, a reduction of approximately only 48% was achieved for the best-
performing setting in the case of Data 2 and 55% in the case of Data 3. This is not surprising,
because the latter two datasets contain a high level of detail. Still, we believe that the
achieved reduction at the expense of only a minor loss of detail can be considered a great
success of the proposed algorithm. This is especially true if comparing the loss of detail
experienced if attempting to reach the same reduction in the point cloud size using the
uniform dilution, compare, e.g., Figure 6b,f. In the case of plastered buildings without fine
embellishments, we could assume an even greater reduction in the point cloud size.

The numerical comparison of the dataset performance using RMSD also shows that
progressive dilution leads only to a slight reduction in accuracy. We must, however, keep
in mind that RMSD may not be the perfect parameter in this case—the number of points
defining the edges and details is on most buildings is relatively low compared to that
of those characterizing flat surfaces. In such cases, this numerical parameter is greatly
influenced by these points on flat surfaces with practically 100% accuracy and although the
final RMSD can be excellent, the fine edges and decorations may become “washed-out”.
For this reason, we propose to always use, in addition to RMSD, also visual evaluation.
For example, the RMSDs describing point clouds used for details in Figure 12b,f are very
close and both excellent, below 1 mm (0.0009 and 0.0006 m, respectively), but the visual
evaluation detects a great difference in detail preservation between these two clouds.

It must be also noted that if dilution does not lead to a significant reduction in the
number of points in the cloud (see Table 3 and point cloud reduction and RMSDs for
a = 0.01 m), RMSD is extremely good just because of the very fact that the point clouds are
almost identical. For this reason, we introduced the RMSDE parameter, which removes
points that are identical in both point clouds (have not been removed) from the calculation.
This plays no major role where the dilution was successful, as the number of these original
points is relatively low. In such cases, the differences between the positions of the points
from the original cloud and the mesh created from the diluted point cloud prevail and
RMSD can provide a relatively good evaluation of the dilution accuracy.

As well as its good performance in reducing the point clouds and preserving details,
the proposed progressive dilution algorithm comes with the additional benefits of simplicity
(and, thus, rapidity of calculation) and availability (i.e., it can be easily implemented
using the free CloudCompare software. For this reason, we believe that it has great
potential to be used for the creation and sharing of digital twins of historical buildings. As
progressive dilution would likely perform even better on modern constructions without
embellishments, the algorithm is likely to be suitable not only for historical buildings but
also for any other constructions and even contemporary civil engineering or for the creation
of digital twins of entire cityscapes.

It is, however, necessary to draw attention to the basic prerequisite for the proper
functioning of the algorithm—well-prepared data. The algorithm is based on the detection
of data scattering from the fitted plane. For this reason, input data must be well cleaned of
outliers arising due to errors in data registration, errors caused by a suboptimal combination
of several scans (i.e., when the overlay of two scans creates two parallel surfaces) or
suboptimal processing of the photogrammetric method producing noisy clouds. Such
noise/parallel surfaces would inherently lead to an incorrect assessment of flatness (i.e.,
such areas would be considered areas of high detail) and progressive dilution would fail.
Therefore, operator supervision and evaluation of the input cloud are required. This is,
however, a common problem for all dilution algorithms—once any algorithm is fed with
poor data, the result is bound to be poor as well.
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5. Conclusions

Modern surveying methods such as laser scanning and photogrammetry make it
possible to create nearly flawless and highly detailed digital 3D representations of objects
of all forms and sizes, which allows the preservation of the objects of cultural or technical
heritage in the digital form for future generations. The level of preserved detail may,
however, become an obstacle for such preservation as, naturally, it increases the data size.

For this reason, we proposed a novel method for the progressive dilution of such
point clouds, primarily intended for creating digital twins of historical buildings (but
other applications are also possible). This algorithm is based on the determination of the
flatness in the area around each point in the cloud (this is determined by fitting the plane
through the spherical surroundings of the point and calculating the deviation of these
points from the plane; where the surfaces are planar, this deviation would be minimum,
while on curved/rugged surfaces, this deviation is large). Depending on this flatness and
user-defined parameters of minimum and maximum dilution, the algorithm then dilutes
flatter areas more than highly detailed ones, which brings a notable reduction in the data
size compared to the uniform dilution, providing comparable detail. The advantages of
this algorithm include a significant point cloud reduction with minimum loss of detail
(demonstrated both numerically using RMSD and visually), easy implementation in free
software CloudCompare, and rapidity of processing. The only limitation we are aware
of is the need for good preparation of the input data and cleaning it from noise and/or
data artifacts.

Author Contributions: Conceptualization, M.Š.; methodology, M.Š.; software, M.Š.; validation, R.U.
and T.K.; formal analysis, M.Š. and R.U.; investigation, T.K.; writing—original draft preparation, M.Š.;
writing—review and editing, R.U. and T.K.; visualization, M.Š.; funding acquisition, R.U. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Grant Agency of CTU in Prague—grant number SGS22/046/
OHK1/1T/11, “Optimization of acquisition and processing of 3D data for purpose of engineering
surveying, geodesy in underground spaces and 3D scanning”, and by the Technology Agency of the
Czech Republic—grant number CK03000168, “Intelligent methods of digital data acquisition and
analysis for bridge inspections”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pérez-Álvarez, R.; de Luis-Ruiz, J.M.; Pereda-García, R.; Fernández-Maroto, G.; Malagón-Picón, B. 3D Documentation with TLS

of Caliphal Gate (Ceuta, Spain). Appl. Sci. 2020, 10, 5377. [CrossRef]
2. Matoušková, E.; Pavelka, K.; Smolík, T.; Pavelka, K. Earthen Jewish Architecture of Southern Morocco: Documentation of Unfired

Brick Synagogues and Mellahs in the Drâa-Tafilalet Region. Appl. Sci. 2021, 11, 1712. [CrossRef]
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