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Featured Application: Potential applications of the concepts and data presented in the article re-
late to inference systems and computational predictive models of job burnout, effective as second
opinion systems.

Abstract: Occupational burnout, manifested by emotional exhaustion, lack of a sense of personal
achievement, and depersonalization, is not a new phenomenon, but thusfar, there is no clear definition
or diagnostic guidelines. The aim of this article wasto summarize all empirical studies to date that
have used medical neuroimaging techniques to provide evidence or links regarding changes in
brain function in occupational burnout syndrome from a neuroscientific perspective, and then use
these to propose a fuzzy-based computational model of burnout.A comprehensive literature search
was conducted in two major databases (PubMed and Medline Complete). The search period was
2006–2021, and searches were limited to the English language. Each article was carefully reviewed
and appropriately selected on the basis of raw data, validity of methods used, clarity of results,
and scales for measuring burnout. The results showed that the brain structures of patients with
job burnout that are associated with emotion, motivation, and empathy weresignificantly different
from healthy controls. These altered brain regions included the thalamus, hippocampus, amygdala,
caudate, striatum, dorso-lateral prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex,
anterior insula, inferior frontal cingulate cortex, middle frontal cingulate cortex, temporoparietal
junction, and grey matter. Deepening our understanding of how these brain structures are related to
burnout will pave the way for better approaches fordiagnosis and intervention. As an alternative
to the neuroimaging approach, the paper presents a late proposal of the PLUS (personal living
usual satisfaction) parameter. It is based on a fuzzy model, wherein the data source is psychological
factors—the same or similar to the neuroimaging approach. As the novel approach to searching for
neural burnout mechanisms, we have shown that computational models, including those based on
fuzzy logic and artificial neural networks, can play an important role in inferring and predicting
burnout. Effective computational models of burnout are possible but need further development to
ensure accuracy across different populations. There is also a need to identify mechanisms and clinical
indicators of chronic fatigue syndrome, stress, burnout, and natural cognitive changes associated
with, for example, ageing, in order to introduce more effective differential diagnosis and screening.

Keywords: computational models; second opinion systems; job burnout; assessment; neural
correlates; medical imaging; evidence-based medicine
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1. Introduction

Professional burnout syndrome, manifested by emotional exhaustion, lack of a sense
of personal achievement, and depersonalization, is the result of chronic occupational stress.
It is not a new phenomenon; it was first mentioned as early as the 1970s [1]. There has been
a large amountof research on occupational burnout syndrome over the past few decades,
but there is still no clear definition of burnout or diagnostic guidelines [2]. Although it
has been included in the International Classification of Diseases, 10th Revision, Clinical
Modification (ICD-10 CM) [3,4] under the heading “Factor affecting health and health care
contact (Z00-Z99)” as “A state of life exhaustion”, and defined in ICD-11 [5] as “feelings of
energy depletion or exhaustion”, occupational burnout is still not recognized as a disorder
in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM 5) [6].
The main reason for this is the lack of evidence for an objective positive neurobiological
marker of occupational burnout syndrome, which makes the final stages of the diagnosis
process difficult [1]. The main aim of medical research is to provide up-to-date data for use
by clinicians to improve the effectiveness of diagnosis, therapy, and care. This is sometimes
difficult due to the lack of a comprehensive picture of the mechanisms of physiology and
pathology of the observed phenomenon, as well as unclear links between research findings
and theories that attempt to explain it comprehensively.

Burnout is a relatively common health problem, but its prevalence varies according
to a number of factors, both professional issues and various demographic factors, e.g.,
worldwide, the prevalence of burnout varies from country to country; it ranges from 0%
to 80.5% [7–9]. The aforementioned differences in results are also caused by differences in
burnout definitions, assessment methods, and research quality.

The aim of this article is to summarize all empirical studies to date that have used
medical neuroimaging techniques to provide evidence or links regarding changes in brain
function in occupational burnout syndrome from a neuroscientific perspective, and then use
these to propose fuzzy-based computational model of burnout.Burnout has a cumulative
effect on the human body over time. Chronic stress can have multidirectional effects
causing clinical implications at different levels: microscopic, macroscopic, and affective,
with varying degrees of severity. Neuroimaging offers standardized and objective evidence
on a macroscopic scale in addition to the subjective information that self-report studies
can give us. Computational modeling (at various levels) involves not only reflecting the
phenomena occurring in the structures being modeled, but also, through a data-driven
approach, extracting new, perhaps not yet known mechanisms and relationships. As a
result, we may be able to discover and understand the brain structures and neural networks
that are important in burnout syndrome, leading to the development of more effective
prevention and treatment methods.

To date, computational models have been widely regarded as an intermediate level of
research, linking theoretical concepts to experimental results. However, nowadays, thanks
to the development of artificial intelligence methods and tools, their functionalities have
been extended to include inference analysis and prediction from data. This brings with
it the opportunity to extend the diagnosis and treatment of burnout to an earlier stage:
prevention within the framework of healthy people medicine. With the aforementioned
approach, disorders can be detected at an earlier stage, and early diagnosis and prevention
strategies will allow treatment to be limited to the most severe cases. Not insignificant
are the issues that work requires increasingly more specialized knowledge, education of
specialists takes longer and costs more, and a satisfied employee works better. It pays for
employers to invest in prevention, gaining efficiency at work.

The proposed fuzzy approach is not completely new but was used for the first time in
the presented applications. The novelty of the article is the integration of the approaches:
neuroimaging and fuzzy-based computational modeling of burnout. Former studies con-
cerning integration neuroimaging with fuzzy-based computational modeling, for example
in Alzheimer’s disease, cannot be applied here due to their different neurological (not even
neurodegenerative) nature.Models of this type can be more accurate and faster, and in some
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cases, personalized. This fits into the global trend of personalized medicine and targeted
therapies, as well as technical support for clinical practice—in this case, not only the use
of artificial intelligence for drug development, but also for advanced diagnostics of the
human body.

1.1. Types of Neuroimaging Used to Study Brain Structure and Activity
1.1.1. Electroencephalogram

An electroencephalograph (EEG) records the spontaneous electrical activity generated
in the cerebral cortex. This activity reflects the electric currents flowing in the extracellular
spaces of the brain, which are the combined effect of the myriad excitatory and inhibitory
potentials of synaptic between cortical neurons. This spontaneous activity of cortical neu-
rons is strongly conditioned and synchronized by the subcortical structures, especially the
thalamus and the reticular formation of the brainstem. Afferent impulses from these deep
structures are likely responsible for stimulating cortical neurons to produce characteristic
rhythmic patterns of the brain waves, such as the alpha rhythm and sleep spindles [10].
Event-related potentials (ERP) associated with stimulus and analyses of the EEG power in
a resting-state condition can be used to assess burnout.

1.1.2. Positron Emission Tomography

Positron emission tomography (PET) images reflect the regional concentrations of sys-
temically administered radioactive compounds. The concentration of the above-mentioned
markers in different parts of the brain are determined by a system of radiation detectors,
and tomographic (3D) images are constructed using techniques similar to those used in
computed tomography. With PET, local patterns of brain blood flow, oxygen uptake, and
glucose utilization can be measured. This study has been shown to be useful in classifying
many pathological changes (e.g., distinguishing neoplastic tissue from radiation necrosis,
or differentiating types of degenerative diseases). Despite its usefulness, this technology is
expensive and does not always increase diagnostic confidence.

1.1.3. Magnetic Resonance Imaging and Functional Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) involves placing the patient in a strong magnetic
field, which causes endogenous isotopes (atoms) in the tissues and the cerebrospinal fluid
to align with the longitudinal orientation of the magnetic field. Applying to the above-
mentioned field of a short radio frequency pulse causes the rearrangement of the atoms.
When this pulse ceases, the energy that has been absorbed is emitted by the isotopes,
producing a magnetic signal that is detected by the receiver coils. The signals are measured
repeatedly after each impulse. The signals are stored in a data matrix from which 2D images
are reconstructed after computer analysis. The image is a map of the hydrogen content in
the tissue, and thusit largely reflects the water concentration. The difference between MRI
and functional MRI (fMRI) is as follows: MRI scans the anatomical structure (allowing the
study of organs, tissues, etc.), while fMRI allows for the hemodynamic functioning of the
brain to be studied (inferring brain activity by measuring changes in blood flow) [10]. fMRI
indirectly measures neural activity using a blood-oxygenation-level-dependent (BOLD)
signal and can be used to assess burnout. T2/T2-weighted MRI images reflecting change in
deoxyhemoglobin concentration at activated brain regions can be used to assess burnout.

1.2. Types of Computational Systems and Models Used to Study Brain Structures and Activity

In this subsection, we showed the rationale for the use of computational models in the
analysis of central nervous system processes, including the physiopathology of burnout.
Computational models begin the predominant way of linking current theoretical concepts
to results of experimental studies, even though they are not obvious or hidden.Many re-
searchers think that there is no further progress in, e.g., medicine or psychology, without
bioinformatics, biocybernetics, and healthcare informatics [11,12]. Fuzzy medical knowl-
edge can be used to model uncertainty and ambiguity in medical concepts and their sets.
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Furthermore, inference mechanisms based on fuzzy logic ensure continuity and complete-
ness of inference despite uncertainty in the data. [13,14]. Early recognition of the possible
occupations can create novel chances for early diagnosis, therapy, and care, even as a part
of preventive medicine. Fuzzy hierarchical analysis [15,16] can be a key solution to achieve
this. The rationale for the use of computational models in the analysis of central nervous
system processes, including the physiopathology of burnout, stems from the difficulty
in isolating the neural mechanisms of burnout. On the one hand, computational models
make it possible to link existing theoretical concepts to experimental findings by extracting
the mechanisms linking them, and on the other hand, they make it possible to test pos-
tulated/hypothesized mechanisms for the need for their existence and for gaps in their
explanation of observed phenomena. Current areas of application of artificial intelligence
(AI) in clinical practice include:

• Data analysis, including biomedical signals (from simple sequences of laboratory data to
EEG analysis, still and moving images, gait, or speech analysis as a biomedical signal);

• Pattern recognition and classification, and machine learning (ML), including tradi-
tional and deep artificial neural networks (ANN), support vector machine (SVM),
naïveBayesian classifier, kNN, regressions, decision trees, and random forests, etc.;

• Swarm intelligence, including ant colony optimization (ACO) and particle swarm
optimization (PSO);

• Fuzzy systems, including ordered fuzzy numbers and trend analysis;
• Multidimensional scaling (MDS) and similar tools for attractor analysis;
• Multifractal analysis, including the analysis of the trend change, e.g., based on changes

in the Hurst index;
• Artificial intelligence optimization of the production processes of medical devices

(prostheses, orthoses, exoskeletons, implants, drugs, etc.) and therapeutic processes
(e.g., optimization of rehabilitation robot algorithms);

• Second opinion systems;
• Predictive systems;
• Modeling of central nervous system processes on biologically faithful neural networks

(Emergent, Genesis, NEURON);
• Modeling the processes of the peripheral nervous system based on the patterns of the

signal theory;
• Dedicated data science systems in Matlab, R (Python), or other data analysis environ-

ments for predictive medicine purposes.

The number of various possible clinical applications of the aforementioned AI methods
and technologies in the area of early identification, diagnosis, therapy, and care of burnout
it is very large, and there are more of them almost every day. For the purposes of this article,
some of them (fuzzy systems, multifractal analysis, biologically faithful neural networks
in Emergent, dedicated data science systems in Matlab) have been applied to the models
presented later in this article.

2. Materials and Methods
2.1. Literature Review on Neuroimaging in Burnout

An extensive literature search was performed on two major databases (PubMed and
Medline Complete). The following search terms were entered: “burnout”, “neuroimaging”,
“work stress”, and the like. After careful check definitions and entry terms in bibliometric
databases including MeSH dictionary (PubMed), we clarified that for requirements of
this review,

• “work stress”= “occupational stress”;
• “professional burnout syndrome”= “professional burnout”;
• “mental stress” = “stress” = “stress exhaustion syndrome.

The search period was2006–2021, and the search was limited to the English language.
Eligibility criteria for the review were formulated as follows: peer-reviewed articles and



Appl. Sci. 2022, 12, 11524 5 of 20

scientific chapters in English, appropriate study design for the research question, medical
neuroimaging studies used, study group(s) with specified conditions. Each article was
carefully reviewed and properly selected on the basis of the input of raw data, the validity
of the methods used, the clarity of the results, and the scales for measuring burnout.

2.2. Concept of Computational Model of Burnout

On the basis of the results of the literature review, a hierarchical fuzzy model was used
to build a proposal for a computational burnout model.

3. Results of the Literature Review

A total of eleven studies meeting the selection criteria were selected. Of these, four
studies used EEG, six studies used fMRI, and one study used PET. The number of fMRI
tests hasgradually increased compared to previous years. The PRISMA flow diagram is
presented in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 22 
 

 

Figure 1. PRISMA flow diagram [17]. 

An overview of all included studies and their results is presented in Table 1. 

Table 1. Included studies concerning burnout neuroimaging. 

Study (Year) Method/Design 
Characteristics 

of Samples Studied 

Main Result(s) 

Statistical Significance 

Luijtelaar et al. 

(2010) [1] 

Examined brain function in 

burnout patients by analyzing 

EEG and neuropsychological 

outcomes. 

13 burnout subjects 

(mean age 48.2, range 

26–55). 

13 healthy controls 

4 females, 9 males in 

each group. 

Reduced P300 potency, peak al-

pha (F = 4.40,df = 1. 24, p <0.05)and 

beta (F = 5.86, df = 1.24, p <0.05) in 

burnout patients. 

Tement et al. (2016) 

[18] 

Examined the relationship be-

tween potential biomarkers in the 

alpha frequency band and student 

self-reports of occupational 

burnout and the role of gender. 

117 subjects. 

75 females, 42 males, 

aged between 19 and 

29 (females 

mean=22.41, SD=1.81; 

males: mean22.26, 

SD=2.34). 

IAF is associated with depression 

and power is associated with 

burnout (t(115)=3.02, p=0.003); 

gender differences were observed 

only for burnout questionnaire 

scores: males had a significantly 

higher score. 

Golonka et al. (2019) 

[19] 

Examined differences in brain 

activity were investigated by an-

46 burnout employees 

(incl. 19 males). 

Reduced alpha power in burnout 

patients indicatedcortical hyper-

Figure 1. PRISMA flow diagram [17].

An overview of all included studies and their results is presented in Table 1.
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Table 1. Included studies concerning burnout neuroimaging.

Study (Year) Method/Design Characteristics
of Samples Studied

Main Result(s)
Statistical Significance

Luijtelaar et al. (2010) [1]

Examined brain function in
burnout patients by analyzing
EEG and neuropsychological
outcomes.

13 burnout subjects
(mean age 48.2, range 26–55).
13 healthy controls
4 females, 9 males in each
group.

Reduced P300 potency, peak alpha
(F = 4.40,df = 1. 24, p < 0.05)and
beta (F = 5.86, df = 1.24, p < 0.05) in
burnout patients.

Tement et al. (2016) [18]

Examined the relationship
between potential biomarkers
in the alpha frequency band
and student self-reports of
occupational burnout and the
role of gender.

117 subjects.
75 females, 42 males, aged
between 19 and 29 (females
mean = 22.41, SD = 1.81;
males: mean22.26, SD = 2.34).

IAF is associated with depression
and power is associated with
burnout (t(115) = 3.02, p = 0.003);
gender differences were observed
only for burnout questionnaire
scores: males had a significantly
higher score.

Golonka et al. (2019)
[19]

Examined differences in brain
activity were investigated by
analyzing EEG power versus
resting frequency in burnout
and control patients.

46 burnout employees (incl.
19 males).
46 heathy controls (incl.
19 males), mean age:
36.14 years, SD = 7.89.

Reduced alpha power in burnout
patients indicatedcortical
hyperactivity associated with
greater mental effort and the
development of compensatory
mechanisms.Alpha power
significantly correlated with
burnout only in the males: anterior
area: r = −0.37, p = 0.021;central
area: r = −0.37, p = 0.023; posterior
area: r = −0.35, p = 0.032.

Yakovenko et al. (2021)
[20]

Quantitative EEG analysis of
different stages of burnout
syndrome (tension, resistance,
exhaustion).

131 burnout employees
(middle school teachers and
medical workers).
38 males and 93 females, aged
25–45 (mean 34.2 ± 7.3) years,
143 healthy controls.

At various stages of burnout, an
increase in dysfunction of the
brain’s regulatory systems was
observed, correlating with an
increase in the severity of clinical
symptoms (p < 0.05).

Durning et al. (2013) [21]

Examined how burnout
modulates brain activity
during clinical reasoning in
physicians.

17 internal medicine residents
aged 29.6 ± 2 (range 28–35)
years, 15 males and 2 females,
17 board-certified internists
aged 39.5 ± 7 (range = 32–51)
years, 10 males and 7 females.

Depersonalization was related to
less BOLD in DLPFC and MFG
(p = 0.033), residents mean = 2.33
(SD 2), while internists mean = 0.8
(SD 1.08).
Exhaustion of emotions was related
with more BOLD in MFG and CC
(p = 0.011), residents mean = 3 (SD
2.12) while internists mean = 1.67
(SD 1.29).

Savic (2013) [22]

Investigated structural
changes in the brain in
connection with occupational
stress in the MRI study
(cortical thickness (Cth) and
subcortical volumes).

40 burnout subjects
(38 ± 6 years, range
19–46 years, 15 males,
25 females).
40 healthy controls
(36 ± 6 years, range 15–45
years, 15 females, 25 males).

Reduced volume of the amygdala,
caudate nucleus, and impaired
motor function in burnout patients
(r = 0.44, p = 0.04; r = 0.43, p = 0.04).

Blix et al. (2013) [23]

MRI study where cerebral
gray matter and white matter
volume were compared
between patients with chronic
work-related stress and
healthy subjects.

30 burnout subjects
(23 females and 7 males, age
41.3 ± 6.6, range 36–55 years).
68 healthy controls (53 females
and 15 males, age 37.5 ± 7.2
years, range 27–51 years).

Reduced volumes of GM, ACC, and
DLPFC in burnout patients
(4.2 ± 1.1 vs. 2.2 ± 0.5; p <0.0001;
F = 100.6, df = 1) vs. below 3.0 in
the control group.
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Table 1. Cont.

Study (Year) Method/Design Characteristics
of Samples Studied

Main Result(s)
Statistical Significance

Tei et al. (2014) [24]

Investigated the relationship
between self-reported burnout
severity scores and
psychological measures of
empathic disposition.

25 nursesin active service with
less than 11 years of
experience (20 females, aged
22–34, mean = 26.0,
SD = 3.14 years).

The severity of burnout among
physicians wasexplained by
“decreased” brain activity related to
empathy.
AI/IFG and TPJ activity negatively
correlated with emotional
exhaustion on the MBI: r = −0.590,
p = 0.002, and r = −0.550, p = 0.004,
respectively,

Savic et al. (2018) [25]

Study of the cerebral effects of
chronic occupational stress
and their possible
reversibility.

48 patients with occupational
exhaustion syndrome
(29 females), aged 38 ± 6
(26–46) years.
80 healthy controls(47
females), aged 32 ± 7 (20–45)
years.
After 1–2 years:
25 patients with occupational
exhaustion syndrome.
19 healthy controls.

Chronic work-related stress was
associated with partially reversible
structural abnormalities in key
stress-processing regions, correlated
with the degree of perceived stress.
Sustained attention as well as
verbal memory were impaired only
among females (F = 1.40, p = 0.79,
df = 1).

Gavelin et al. (2017)
[26]

A study of the relationship
between burnout and neuron
activation in working memory
processing in patients with
stress-induced exhaustion and
the neural effects of cognitive
training in post-stress
rehabilitation.

55 patients with a clinical
diagnosis of exhaustion
syndrome, including 10
patients completed a 12-week
cognitive training
intervention in addition to
stress rehabilitation.
46 females, 9 males, aged
42.85 (SD = 8.97), range
22–60 years.
The control group was treated
traditionally.

There was no correlation between
the level of burnout and working
memory performance. The striatal
frontal nerve responses related to
working memory were modulated
by the severity of burnout. Levels
of burnout decreased following
rehabilitation: from mean = 4.86
(SD = 0.93) to mean = 4.08
(SD = 1.05). p < 0.001.

Jovanovic et al. (2011)
[27]

Limbic function test with PET
on chronic stress subjects.

16 stress subjects: 11 females,
5 males;mean age 38 ± 5,
range 28–47 years.
16 healthy controls.

Functional disconnection between
amygdala and ACC/MPFC in
chronically stressed subjects.

Abbreviations (in order of appearance in Table 1): EEG—electroencephalography; P300—endogenous potential:
positive, 300 ms after stimulus; ACC—anterior cingulate cortex; AI—anterior insula; IFG—inferior frontal
gyrus; TPJ—temporoparietal junction; MBI—Maslach Burnout Inventory; MPFC—medial prefrontal cortex;
IAF—individual alpha frequency; BOLD—blood-oxygenation-level-dependent imaging; DLPFC—dorsolateral
prefrontal cortex; MFG—middle frontal gyrus; CC—corpus callosum; MRI—magnetic resonance imaging; GM—
gray matter; PET—positron emission tomography.

3.1. EEG Studies

Luijtelaar et al. [1] investigated the brain function of burnout patients by analyzing
their EEG and neuropsychological results. Thirteen patients diagnosed with burnout
syndrome and thirteen controls were compared using four different measures:

• Frontal asymmetry;
• P300 amplitude;
• Alpha peak frequency;
• Alpha and beta power comparison with eyes open and closed.

There were no observed differences in asymmetry between the burnout group and
the control group, but the former showed significantly reduced P300 amplitude and a
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significantly lower alpha peak frequency than the control group. Comparing the power of
alpha and beta with eyes open and closed,

• Beta potency was significantly reduced in burnout patients compared to the control
group;

• There was no difference in alpha potency compared to the control group.

This study showed clear differences in the parameters obtained from the EEG in
burnout patients compared to a healthy control group.

In a study by Tement et al. [18], 117 participants (42 of whom were male, 35.90%) were
included from a large pool of individuals who completed questionnaires on burnout and
depression. The aim of the study was to test whether individual alpha frequency (IAF)
and IAF frequency power and coherence (IAF ± 1 Hz) differentiated between burnout and
depression syndromes, i.e., to serve as potential biomarkers. Patients were seated in a chair
and told to rest with their eyes closed while their EEG was recorded for three minutes. The
results showed that gender was a significant predictor. Seven out of twelve interactions
between EEG indicators and gender were significant. Connection patterns were also signif-
icant for depression, showing gender-related differences. A significant positive association
was found between IAF and job burnout when observed at the posterior location. Statistical
regression analysis showed that IAF was significantly associated with depressive symp-
tomatology, while power was mainly associated with occupational burnout, suggesting the
different value of IAF and power in predicting occupational burnout and depression. The
results of this study provided a strong rationale for considering occupational burnout as a
distinct clinical syndrome from depression.

In the study by Golonka et al., a significantly lower alpha power under open-eye
conditions was observed in the burnout group compared to the control group. Possi-
ble development of compensatory mechanisms were also found in the burnout group.
Gender appeared to be a differentiating factor in the association between EEG spectral
characteristics and burnout symptoms [19].

For comparison, central fatigue was studied in 50 patients with chronic fatigue syn-
drome (CFS) and 50 healthy controls using resting EEG taken from 19 scalp sites for 3 min
with eyes closed. Significant differences were found in the frequency bands: -delta (1–3 Hz):
sources mainly in the frontal lobe, and -beta-2 (19–21 Hz): sources in the medial and su-
perior parietal lobes. Left leading delta sources were correlated with clinically reduced
motivation [20].

Abnormal cortical sources werealso seen in patients with CFS. This ledto the conclusion
that early processes related to chronic stress and fatigue can be monitored by means of
EEG. An increase in dysfunction of the brain’s regulatory systems was observed at different
stages of burnout, correlating with an increase in the severity of clinical symptoms [21].

3.2. MRI and fMRI Studies

In this study, researchers investigated how burnout modulates brain activity during
clinical reasoning in doctors. Using functional magnetic resonance imaging (fMRI), the
brain activity ofinternal medicine residents was assessed:

• In the study group: N = 17 (15 men and 2 women);
• In the control group: N = 17 (10 men and 7 women) [21];

who answered multiple-choice questions while pondering the answers. All subjects com-
pleted the Maslach Burnout Inventory (MBI) [28] prior to fMRI. Whole-brain analysis
of covariance was used to examine the blood-oxygen-dependent signal (BOLD) during
response and reflection on clinical problems in relation to burnout scores. Higher scores
in the area of depersonalization in the test group were reflected in lower BOLD signals
in the right dorsolateral prefrontal cortex and middle frontal cortex during responses to
clinical problems and, in the control group, lower BOLD signals in the bilateral prefrontal
cortex during responses to clinical problems. In contrast, higher scores in the area of
emotional exhaustion were associated in the control group with stronger BOLD signals in
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the right posterior cingulate cortex and middle frontal cortex. The study group (described
above [21]: 40 burnout subjects (38 ± 6 years, range 19–46 years, 15 males, 25 females)) did
not show any significant effect of burnout on brain activity. They were more susceptible to
the effects of burnout on clinical reasoning, which may indicate that, as less experienced,
they may need both cognitive and emotional support to improve their quality of life and
optimize their performance and learning. In the samples studied, an imbalance in gender
wasobserved. These findings organize the understanding of stress, cognitive control, and
the theory of cognitive load [21].

The aim of the study by Savic et al. was to investigate structural changes in the
brain related to occupational stress. The study compared the thickness of the cortex and
the subcortical volume in 40 patients with burnout and 40 in the control group. Stress
severity was measured using MBI. Patients with occupational burnout showed significant
thinning of the medial frontal cortex. By examining the correlation between age and cortex
thickness, we found that the effect of thinning of the frontal cortex was more pronounced
in burnout patients. The results also showed that the volume of their amygdala increased
bilaterally, while the volume of the caudate cortex decreased, accompanied by impaired
motor function. Patients with burnout positively correlated with amygdala volume. This
study found that burnout was associated with thinning of the cortex as well as selective
changes in the subcortical volume with behavioral correlates. The results of this study
support the hypothesis that stress-related excitotoxicity may be the underlying mechanism,
and that the described condition is a stress-related disease [22].

Blix et al. conducted a comparative MRI study of brain volumes in the grey (GM)
and white matter (WM) between patients with chronic occupational stress and healthy
controls. The study also included volume analysis of structures known to be susceptible to
neurotoxic changes of the hippocampus, caudate, and striatum (skin), but not the amygdala.
The study group consisted of 30 right-handed, non-smoking patients (23 women and seven
men) who were diagnosed with “coping with stress response and adjustment disorder”
according to the International Classification of Diseases (ICD-10). Subjects were also
required to have a mean stress burnout score >3.0 on the Maslach StressBurnout Inventory–
General Survey (MBI-GS) [29]. The control group consisted of 68 healthy, right-handed,
non-smoking volunteers (53 women and 15 men) without a history of chronic stress or
hereditary neuropsychiatric disorders. The results of the study showed that the GM volume
of the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex was significantly
reduced in the stressed subjects. In addition, the volume of their caudate nucleus and
shell cortex was reduced, correlating inversely with the degree of stress experienced. The
results indicate a morphological involvement of the frontal striatal circuits in individuals
exposed to stress. The finding of morphological changes, particularly GM atrophy in
these areas, supports the previous conclusion that patients reporting classic symptoms of
occupational stress have a medical condition that requires careful and precise diagnosis
and treatment [23].

Tei et al. examined the relationship between self-reported burnout severity and
psychological measures of empathic dissonance, emotional dissonance, and alexithymia in
physicians to test two conflicting hypotheses to explain burnout:

• compassion fatigue—that is, individuals become overly emotionally involved;
• emotional dissonance—that is, a discrepancy between felt and expressed emotions

along with decreased emotional regulation.

They then investigated whether increased or decreased brain activity related to empa-
thy as measured by fMRI was associated with burnout severity scores and psychological
measures. Twenty-five active nurses (twentywomen and five men) with work experience
ranging from 1 to 10 years participated in the study. During the fMRI study, participants
were presented with video clips showing the hand with and without pain. After the fMRI
study, participants completed self-report measures:

• severity of burnout was assessed using the MBI;
• empathic disposition was assessed using the Interpersonal Reactivity Index (IRI) [24,30].
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The study by Tei et al. was limited to a very specific population: nurses recruited via
advertising from hospitals in Kyoto (Japan).

The results showed higher activation in the anterior cerebral hemisphere/inferior
frontal gyrus (AI/IFG) and temporoparietal junction (TPJ) under pain conditions com-
pared to the no-pain situation. Hence, the severity of burnout in medical professionals is
explained by reduced brain activity related to empathy, and this reduced brain activity is
correlated with stronger emotional dissonance and alexithymia and greater empathy. The
results support the findings of previous studies that burnout is associated with emotional
dysregulation. Predicting future burnout among doctors using neuroimaging may be an
important addition to psychological research. A more complete understanding of burnout
is possible by identifying specific aspects of trait and empathy status and neural processes
that may be associated with burnout severity.

A study by Savic et al. in a group of patients exposed to chronic occupational stress
found reduced thickness of the right prefrontal cortex (PFC) and left superior temporal
gyrus (STG), enlarged amygdala volume, and reduced caudate volume, with these abnor-
malities more prominent in women, except for changes in caudate nucleus volume. These
were all related to perceived stress, which was similar for both sexes. PFC thickness corre-
lated with impaired ability to modulate negative emotions downwards. After 1–2 years,
amygdala enlargement and left STG thinning persisted. In the control group, the above
changes did not occur. Chronic occupational stress was associated with partially reversible
structural abnormalities in key stress processing regions, correlated with the degree of
stress experienced. The above changes weremore pronounced in women as a possible cause
of increased brain vulnerability to stress-induced psychiatric disorders [25].

In Gavelin et al.’s study, burnout levels were positively correlated with neuronal acti-
vation in the rostral prefrontal cortex, posterior parietal cortex, and striatum, as observed
by fMRI, and striatal activity decreased after therapy as a result of improved burnout
levels [26]. The Shirom–Melamed Burnout Questionnaire (SMBQ) [31] containing 22 items
in four subscales was used to evaluate burnout level.Cognitive training may bring improve-
ments, but this requires further research on larger patient samples [32–34].

3.3. PET Studies

Jovanovic et al. [27] conducted a PET study on 16 chronically stressed individuals
(mean stress burnout score >3.0 according to MBI-GS) and 16 non-stressed individuals. The
function of their limbic system was examined by measuring cerebral blood flow at rest and
during an odor activation paradigm. 5-HT1A receptor (BP) binding potential was studied
by PET imaging and bolus injection. Radioactivity in the brain was measured in a series of
15 consecutive frames with a duration of 63 min, of which the first 9frames were acquired
within 15 min. Stressed subjects showed a functional disconnect between the amygdala
and anterior cingulate cortex (ACC)/m posterior prefrontal cortex (mPFC) and impaired
olfactory activation of the ACC. They also showed reduced BP of 5-HT1A receptors in
the ACC, hemispheric cortex, and hippocampus. Their performance in attention, odor
discrimination, and semantic memory tasks was impaired and correlated with BP values
in each region. The degree of perceived stress was inversely correlated with ACC and
BP activation of 5-HT1A receptors in the amygdala and hippocampus. Thus, prolonged
daily psychosocial stress appears to be associated with a limbic decline in 5-HT1A receptor
binding and functional ACC/mPFC dissociation. These changes support the hypothesis of
impaired top-down regulation of stressful stimuli and indicate potential targets for early
treatment. PET has the potential to detect the detailed mechanisms of increased brain
activity associated with burnout.

4. Computational Models of Burnout

There is no doubt that research into computational models of the central nervous
system, including its diseases, is an important part of the current challenges in both
computer science and biomedical engineering in medical science and clinical practice.
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Despite the validity of the problem of burnout and the availability of computational tools,
computational approaches to the analysis and classification of burnout have started to be
developed relatively recently [35,36]. The results of research to date are not satisfactory, and
it is difficult to fully explain all the physiological and pathological mechanisms underlying
burnout. This paper is one of the first to combine a review of neuroimaging studies that
address burnout syndrome, with the proposal of fuzzy-based modeling of the selected
aforementioned processes. Currently, there are no computational burnout models of
satisfactory efficiency and accuracy. Hence, any new concept in this area, even a rather
general one, is worth giving a chance, as attempts to construct such computational models
to date have not ultimately been successful.

4.1. Fuzziness of Burnout

It seems that the fuzzy nature of well-being and occupational burnout was finally
confirmed in the publications by Maija et al. and Dong et al. [37,38].

With the present state of knowledge, experience and clinical technique, a large part of
clinical decisions can be based on the traditional deterministic approach (usuallydifferential
diagnosis).In the case of well-being and burnout, the required approach is more complex. In
these cases, it is also necessary to take into account the linguistic character of the description
and numerous sources of uncertainty, including the interview with the patient and his self-
esteem. Traditional factors of well-being and occupational stress overlap with numerous
stressors, not only occupational but also related to pandemic, political, and economic
crises. Such a complex approach to occupational stress analysis is unique and makes our
computational approach unique.

4.2. Current Fuzzy Models of Burnout

Describing the brain through cognitive structures is one of the approaches/parts of
neuroimaging [39]. It is based on a structure divided into individual functions. In this
capacity, fuzzy logic opens up new possibilities.A fuzzy approach to the computational
classification of occupational burnout was shown in the work of Prokopowicz et al. [40,41].
ANN-based predictive analysis of burnout, resilience, and COVID-19 risk among teachers
was proposed by Martínez-Ramón et al. [42]. Blain et al. described the neuro-computational
mechanism playing a key role in overtraining syndrome as a form of burnout, defined in
endurance athletes [43]. Effective computational models of burnout are possible but require
further development to ensure accuracy across different populations. Potential applications
of the work concern inference systems and computational predictive models of job burnout,
effective as second opinion systems. Fuzzy logic allows us to define models on the basis of
incomplete and inaccurate knowledge, where a typical mathematical model has not been
recognized. This has interesting potential of using them in the computational brain models
in the area of theoretical and experimental computational neuroscience. This also applies to
clinical applications.Details are shown in Figure 2a–d. Figure 2a presents a conceptual view
of the model based on a previous review of literature. Figure 2b shows a traditional own
model based on layers of point neurons (Emergent software) or compartmental neurons
(Neuron or Genesis software). Our own approach based on fuzzy logic is presented in
Figure 2c (single fuzzy inference block—FIB) and cascade of FIBs (Figure 2d). The fuzzy
approach is original, partly based on our earlier concept published in [44].
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Figure 2. An example of the possible use of fuzzy systems in the computational model of the HPAaxis
(own concept): (a) hypothalamic–pituitary–adrenal (HPA) axis, (b) traditional model based on point
or compartmental neurons, (c) single fuzzy inference block (FIB), (d) complex fuzzy cascade model
(CFCM)—own approach based partly on our previous own concept [44].

The model presented in Figure 3 tries to reflect the structures that are responsible for
the burnout phenomena shown in Figure 2a. A hierarchical cascade of fuzzy logic systems
can provide descriptive insight into the behavior of a particular patient. It is connected
with the linguistic nature of rules interpretation in the fuzzy system. Mechanisms built
into the model allow for easier configuration and the use of complex sets of descriptive
features. The complex structures of the model are based on simple elements called fuzzy
inference blocks (FIBs) that provide intrinsic fuzzification and defuzzification (Figure 2b).
More complicated structures and dependencies are modeled by cascade of FIBs called the
complex fuzzy cascade model (CFCM) [41]. The most complex processes and structures
can be modeled using cascades of CFCMs (Figure 3). Despite the relatively high complexity
of the models, we can model these phenomena in a fuzzy manner.
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The aforementioned models, despite fuzziness, can be more accurate in modeling
complex phenomenon such as burnout, especially at thesystem level, where a single
element of the circuit may not be clearly visible, but its internal structure should be ready
to explore or adjust. This way, complex behavior emerges from synergy of the many simple
elements (agents).

4.3. Further Computational Studies

Being innovative and more effective, a fuzzy approach can provide a better, clearer,
and more understandable explanation processes underlying the emergence of stress and
occupational burnout, giving birth to normal brain functioning as a result of stressors
of varying intensity. The proposed fuzzy approach, once refined, may not only provide
the basis for the whole family of innovative methods that effectively and reliably reflect
the processes taking place in the median nervous system during stress and occupational
burnout but also make a significant progress in knowledge affecting a number of basic
and applied sciences. The multi-agent system as a model of the central nervous system
is in some ways consistent with the above-mentioned concept of our related mini fuzzy
systems. In such a structure, we can assume that each FIB represents one agent with a
multi-agent architecture.

5. Discussion

The mechanisms of burnout are still poorly understood, especially in neuroimaging
studies. The relationship between its neuronal substrate components and cognitive perfor-
mance may be more complex than previously thought [45]. Results from neuroimaging
studies indicate that the brain structures of patients with burnout that are related to emo-
tion, motivation, and empathy differ significantly from the same structures in healthy
control subjects. These brain structures include the thalamus, hippocampus, amygdala,
caudate, striatum, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC),
posterior cingulate cortex (PCC), anterior cerebral hemisphere (AI), inferior frontal gyrus
(IFG), middle frontal gyrus (MFG), temporoparietal junction (TPJ), and grey matter (GM).
The ACC is also known to show alterations on PET imaging in burnout patients [10], as are
the insular cortex and hippocampus. According to two recent cross-sectional meta-analyses,
both AI and ACC are involved in empathy [43,44]. Several behavioral studies indicate a
strong association between job burnout and empathy [46–52]. Interestingly, there are two
conflicting theories regarding job burnout and empathy:

• the conventional compassion fatigue theory which maintains that occupational burnout
is associated with excessive empathy [53];

• which maintains that occupational burnout is associated with reduced emotional
regulation, which causes a disconnect between felt and expressed emotions [54].

Preliminary studies have shown that a model of empathy is emerging in which
connections between mirror neurons and other brain structures may facilitate the observed
components of empathy [55,56]. Thus, on the basis of the results of the aforementioned
studies, it can be postulated that there is a direct link between empathy and mirror neurons,
as lack of empathy is one of the sub-elements of burnout syndrome. Further research should
be conducted to verify this hypothesis, with the ultimate goal being the development of a
biomarker to diagnose occupational burnout.
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Brain structures such as the amygdala, hippocampus, caudate, and putamen are
different in burnout individuals due to the nature of the neurophysiological functions of
these structures. The amygdala and hippocampus are part of the limbic system, which
plays an important role in memory, emotion, emotional learning and behavior, motivation,
and reward. A theory can be formulated about burnout syndrome in relation to the limbic
system and its structures: it has a direct impact on all three main dimensions of burnout
syndrome: emotional exhaustion, depersonalization, and lack of personal achievement.
The striatum functions as an input nucleus to the basal ganglia—its main function is to
receive excitatory input from cortical and subcortical structures. Input to the striatum
allows the basal ganglia to integrate information from different cortical and subcortical
areas and allows the basal ganglia to initiate our body movements and, also importantly,
the motor expression of our emotions [57]. This provides a basis for further research in
this area in the search for information on the correlation between the caudate ganglion,
putamen, and occupational burnout.

EEG studies in patients with burnout have found reduced P300 amplitude, lower peak
alpha frequency, and reduced beta power [1], with power being mainly associated with
burnout, but with gender being a significant predictor [17]. Neuronal generators of P300 are
mainly cortical (medial temporal area, superior temporal area, and inferior parietal area),
but can be located in the hippocampus and amygdala [58]. As the hippocampus is part of
the limbic system, it plays a role in visceral and endocrine functioning, as well as in the
expression of emotions and emotional behavior [57]. We know that occupational burnout
only develops after prolonged stress, which again is associated with hippocampal dysfunc-
tion, and reduced P300 amplitude may be a result of changes in the hippocampus, in which
chronic elevated HPA axis activity may be involved [59]. P300 is commonly associated with
memory updating and attentional allocation [49,60]. Reduced P300 amplitude may also
be seen as a contributing factor to or as objective physiological confirmation of attention
and memory problems in patients with burnout [51]. It should be noted here that alpha
power can be quantified in two ways: peak alpha frequency (PAF) and individual alpha
frequency (IAF). The IAF is considered a more accurate measure of the spectral distribution
than the PAF. IAF is assumed to be related to features of white matter structure, such as
fiber density, axon diameter, and myelination, and reflects different neuronal processes
other than alpha power [52]. PAF correlates negatively with subjective ratings of “fatigue
today” and “total fatigue”. PAF has been shown to be consistently associated with reduced
cerebral blood flow and reduced cerebral oxygenation [61]. PAF has also been proposed
as an indicator of “cognitive readiness” [62], as reduced PAF is associated with poorer
performance on memory tasks [63]. Interestingly, the reported daytime fatigue and mild
cognitive changes in patients with CSF may be explained by poor basal sleep drive [64].
Thus, classifying alpha power as a biomarker of burnout may be true as it is non-invasive,
reliable, has trait-like characteristics, and is heritable. However, the specificity of alpha
power, which is necessary to distinguish burnout from other disorders, is lacking. The P300
seems reasonable as a second indicator that can be added to diagnostic specificity and can
help discriminate between psychopathologies.

The goal of discovering and understanding the brain structures and neuronal networks
relevant to burnout is related to the work construct. The discovery and understanding
of the above mechanisms bring the prevention and treatment of burnout closer. Further
research is needed to confirm the findings described above and help develop interventions
and strategies to help those suffering from job burnout. This is of great scientific, clinical,
social, and economic importance, as job burnout can significantly reduce the ability to
perform work tasks [65]. Work-related fatigue is common among workers, such as those in
car factories [66]. Serious illnesses (stroke, neuromuscular diseases) and injuries can affect
job burnout and the ability to be employed and work, but knowledge of individual factors
is limited [67,68]. Further diagnostic methods need to be linked to being an employee. The
phenomenon of job burnout in remote working, which is becoming increasingly common
during the COVID-19 pandemic period, also requires research.
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Previous research has focused on the relationships between stress, burnout, and
biomarkers, while the review by Ciobanu et al. [69] summarized the immune and endocrine
changes found in patients with burnout. The main interest in the literature seems to be the
hypothalamic–pituitary–adrenal (HPA) axis, which can be disturbed by chronic stress and
can be tested by measuring hormonal reactivity:

• corticotropin-releasing hormone (CRH);
• adrenocorticotropic hormone (ACTH);
• cortisol;
• prolactin;
• thyroid hormones;

in the conditions of their pulsatile and diurnal fluctuation and heterogeneity of burnout
measures [69,70]. BDNF, the plasma level of which is higher in people with chronic stress,
may play a key role in the mechanisms of stress-related disorders, and increasing its
peripheral levels may contribute to the protection of neurons under stress [71]. Results
of demand modeling and labor resources using structural equations with least squares
estimation weighted with mean and variance showed that such a model was well suited to
the data and that occupational burnout had a statistically significant negative structural
relationship with work efficiency, but work efficiency did not explain statistically significant
variance of neither psychological stress nor intention of rotation apart from occupational
burnout. Thus, defining work efficiency as a result of occupational burnout in the process of
employee handicap in the model of requirements and labor resources may not be useful [72].

The problem lies also in the early diagnosis of burnout. It has been observed that more
complex tests may be more sensitive in detecting cognitive dysfunctions in non-clinical
burnout. Moreover, a relationship was found between the performance of two tasks and the
performance of work, and insomnia was associated with subjective cognitive functioning,
but not with the performance of work [73].

In conclusion, thusfar, six biological areas for the basis of individual differences in stress
resistance (i.e., the ability to adapt successfully to stressful work events) were identified:

• The influence of the immune system on stress sensitivity [74];
• The role of norepinephrine and serotonin [3];
• The role of selected neuropeptides in the inhibitory mechanism of the impact of

stress [75];
• The role of the hypothalamic–pituitary–adrenal axis in influencing stress susceptibility

and resistance to stress [76];
• The role of epigenetic modulation of gene expression in influencing stress susceptibil-

ity [77];
• Neurobiological mechanisms by which factors such as diet, exercise, and peer support

influence stress resistance [78].

They all fit into the directions of our further research described below.

5.1. Directions for Future Research

As part of research on the above factors and mechanisms for clinical practice, it is
crucial to identify modifiable factors and help to develop/modify effective strategies to
prevent stress and burnout—including increasing resilience both among individuals and,
for example, professional groups [78]. Possible interventions include dietary changes,
lifestyle modifications, work environment modifications, psychosocial interventions, phar-
macological therapies, and others [78,79].

Computational models, including those based on fuzzy numbers, extend this per-
spective with new possibilities, including the simultaneous and multi-level interaction of
many factors within hierarchical models. It becomes possible to take into account non-
contingencies that reflect not only gaps in knowledge or hypothetical mechanisms, but
also the individual variability of the nervous system, both healthy and pathologically
functioning. Further selection of model parameters aimed at increasing their reliability is



Appl. Sci. 2022, 12, 11524 16 of 20

an important direction of further research on computational models of severe stress and
occupational burnout. Reflecting the continuity of disease processes in the computational
model will show the successive phases of pathology growth in an apparently healthy
organism.

This discussion also addresses fuzzy variants of analysis, reasoning, and prediction
from data. As an alternative to the neuroimaging approach, the paper presents a late
proposal of the PLUS (personal living usual satisfaction) parameter. It is based on a
fuzzy model, wherein the data source is psychological factors—the same or similar to
the neuroimaging approach [40,51]. It is believed that there is a common denominator
because both neuroimaging and our PLUS are based on MBI, and thusboth in the layer
of neural changes and the test results that reflect them, there is room for connection and
consideration. There must be consistency in the results achieved with the different methods,
techniques, and tools at the different levels of clinical analysis. Computational solutions
are becoming the same clinician’s tool as neuroimaging studies or patient functioning tests.

The directions for further research also include novel methods, in particular, random-
ized controlled clinical trials (RCTs) in larger samples, using concurrent EEG/fMRI or
similar studies as well as data-driven analysis to assess the correlation of burnout. The
findings thusfar still require additional research to verify their clinical significance. Intro-
ducing a more objective assessment in the form of standardized criteria for interpreting and
reporting the above data can help predict burnout risk;significantly reduce unnecessary
surgeries;allow planning of preventive strategies;and, if necessary, provide the timely
delivery of individualized treatment to at-risk patients. Research can be accelerated thanks
to the application of new solutions of computational models of cognitive deficits [80,81].
Cognitive deficits, depression, and anxiety appear to be common in burnout, and family
support is essential for both mental health and cognitive functioning [47,69].

5.2. Limitations of Own Studies

Most of the work in the review was producedbefore the COVID-19 pandemic and
the war in Ukraine. Thus, it should be noted that the expected number of stressors may
increase. We have had the opportunity to observe this recently: the COVID-19 pandemic,
the war in Ukraine, and the energy and economic crisis are groups of stressors that overlap
with each other and with work-related stress, especially in groups of medical specialists.
Computational models, thanks to prediction, will allow not only for the prediction but also
the assessment of the effectiveness of various strategies for the prevention of stressors of
particular types. This will support and complement the existing tools at the disposal of
medical specialists, providingthem with new opportunities to help patients.

Resolution of neuroimaging techniques constitute a limitation on the reported results.
It must be taken into account that the neuroimaging methods, despite their high spatial
resolution (e.g., one voxel in fMRI has a typical resolution 3.4 × 3.4 × 4 mm) vs. low spatial
resolution of EEG usually have a low temporal resolution (fMRI 1–4 s, while EEG 1–10 ms).
Hence, simultaneous fMRI + EEG studies would be better.Moreover, in the samples studied,
an imbalance in gender wasobserved.

To sum up, the limitations of the current studies concern both the number of relevant
studies that meet the requirements of the evidence-based medicine (EBM) paradigmand
methodological issues (small sample size, sample recruitment—convenience sample vs.
randomized, no standardization of data analysis, the need for interval studies, etc.). Such a
small amount of data hardly meet the requirements of computational models, although for
several years, machine learning methods for small datasets (20 < N < 100) have appeared.
One should also bear in mind the limitations of the applied neuroimaging techniques:
limited spatial resolution of EEG (despite attempts to compute localization of diffuse
EEG sources) and limited temporal resolution of fMRI. Therefore, innovative sugges-
tions such as simultaneous EEG/fMRI should be used. Connectomics (comprehensive
map(s) of connections within the nervous system) may offer more advanced tools in the
future [82–86], but thusfar, scarce publications have been observed on connectionism in
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occupational burnout [24,81]. For big data approaches dealing with a specific classification
(e.g., healthy traits vs. disease symptoms), a convolutional neural network can create new
solutions [87,88].

6. Conclusions

More research is still needed to understand the mechanisms observed in the neural
correlates of burnout syndrome, including through artificial intelligence. In our review,
only eleven studies met the inclusion criteria. For the aforementioned reasons, more studies
should be conducted to replicate and confirm previous findings. The data summarized
and analyzed suggest that burnout syndrome is strongly associated with changes in brain
structures, particularly in regions responsible for emotion, motivation, and stress such as
the HPA axis.

Neuroimaging techniques give us an advantage over traditional subjective methods
(self-report, interview) by providing standardized, objective measurements of brain struc-
tures. With this approach, specific brain structures involved in the pathogenesis of burnout
and providingthe earliest symptoms can be isolated. This will increase the overall under-
standing and knowledge of burnout, allowing for more effective approaches in prevention,
diagnosis, and therapy.

The computational models of job burnout analyzed in this article will help to develop
the foundations of computational psychiatry and computational psychology, support-
ing professionals from the fields of psychiatry and psychology, but also in occupational
medicine, in their daily efforts to reduce the symptoms of job burnout.

As the novel approach to searching for neural burnout mechanisms, we showed
that both our PLUS models as far as computational models, including those based on
fuzzy logic and artificial neural networks, can play an important role in inferring and
predicting burnout. There is also a need to identify mechanisms and clinical indicators of
chronic fatigue syndrome, work-related stress, job burnout, and natural cognitive changes
associated with, for example, ageing, in order to introduce more effective differential
diagnosis and screening.
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