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Abstract: Entity linking and predicate matching are two core tasks in the Chinese Knowledge
Base Question Answering (CKBQA). Compared with the English entity linking task, the Chinese
entity linking is extremely complicated, making accurate Chinese entity linking difficult. Meanwhile,
strengthening the correlation between entities and predicates is the key to the accuracy of the
question answering system. Therefore, we put forward a Bidirectional Encoder Representation from
Transformers and transfer learning Knowledge Base Question Answering (BAT-KBQA) framework,
which is on the basis of feature-enhanced Bidirectional Encoder Representation from Transformers
(BERT), and then perform a Named Entity Recognition (NER) task, which is appropriate for Chinese
datasets using transfer learning and the Bidirectional Long Short-Term Memory-Conditional Random
Field (BiLSTM-CRF) model. We utilize a BERT-CNN (Convolutional Neural Network) model for
entity disambiguation of the problem and candidate entities; based on the set of entities and predicates,
a BERT-Softmax model with answer entity predicate features is introduced for predicate matching.
The answer ultimately chooses to integrate entities and predicates scores to determine the definitive
answer. The experimental results indicate that the model, which is developed by us, considerably
enhances the overall performance of the Knowledge Base Question Answering (KBQA) and it has the
potential to be generalizable. The model also has better performance on the dataset supplied by the
NLPCC-ICCPOL2016 KBQA task with a mean F1 score of 87.74% compared to BB-KBQA.

Keywords: Chinese knowledge base; question answering system; BERT; transfer learning; CNN

1. Introduction

With the penetration of the internet into various fields and industries and the growing
scale of users, the scale of information carried by the internet is increasing, and the content
is more heterogeneous and diverse, presenting challenges for people to access information
rapidly and effectively. The arrival of the era of big data has changed this status quo,
which is characterized by scale, diversity, rapidity, and authenticity. Big data technol-
ogy provides the possibility of large-scale knowledge acquisition. In such a background,
knowledge engineering (the technology of obtaining knowledge and information with
high efficiency and large capacity by using modern scientific and technological means)
has ushered in new development opportunities. Especially after Google announced the
knowledge graph project in 2012 to enhance its search engine performance, knowledge
engineering has entered a brand-new stage led by knowledge graph technology, that is,
the knowledge engineering stage in the big data era. Knowledge graphs based on big
data have rapidly gained significant attention from academia, industry, and government
departments and the knowledge graph slowly extends from search engines to the question
and answering system.

Large-scale knowledge bases (KB) have emerged over recent years, such as DBpedia [1],
Freebase [2], Yago [3], and the Chinese knowledge base published by the NLPCC-ICCPOL-
2016 Knowledge Base Question Answering (KBQA) evaluation task [4], KBQA tasks are
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gradually becoming a hot spot in the area of natural language processing. Knowledge
graphs are a special type of semantic network, which represents entities in the objective
world and their relationships in graphic forms. Generally, virtual knowledge exists in the
form of triples, such as <entity, predicate, target value>, which can help organize, manage,
and comprehend the vast amount of information available online. Most of the knowledge
on the web is unstructured or semi-structured, organized in a way that is suitable for people
to read and understand but not computer-friendly [5]. Knowledge graphs are helpful in
constructing heterogeneous knowledge in the domain and establishing inter-knowledge
associations. Google, Facebook, and Baidu have developed some knowledge graphs, and
demonstrated their value in many ways. KBQA [6] utilizes knowledge graphs as one of the
sources of knowledge to understand the questions using natural language input from users
and identify the entities and predicates to find the corresponding target values as answers.

Existing mainstream approaches to Chinese Knowledge Base Question Answering
(CKBQA) usually split the question and answering task into two subtasks: entity linking
and predicate matching. Regarding the entity linking module, Wang et al. [7] used convo-
lutional neural networks(CNN) and Gate Recurrent Unit(GRU) models to obtain semantic
representations of questions. Xie et al. [8] used CNN to develop Named Entity Recognition
(NER) and Bidirectional Long Short-Term Memory (BiLSTM) and CNN to implement
predicate mapping. Yang et al. [9] reported their progress in NER by extracting various fea-
tures, using Gradient Boosting Decision Tree (GBDT) model exploration, and using Naive
Bayes Support Vector Machine (NBSVM) and CNN support to design predicate mapping.
Lai et al. [10] generated candidate entities through an alias dictionary, constructed artificial
rules for entity disambiguation, and calculated cosine similarity based on word vectors
to score predicates. With the appearance of the pre-trained language model Bidirectional
Encoder Representation from Transformers(BERT), Liu et al. [11] finely tuned the model on
the basis of the BERT pre-training task for different subtasks in the CKBQA process and
obtained good results on the open-domain Chinese knowledge-based question-answering
task. However, the aforementioned methods suffer from two disadvantages: firstly, while
previous language knowledge can be incorporated into hand-crafted templates, template
design can consume a large amount of computational time. At the same time, manual
templates tend to have large granularity and are prone to exceptions, which limits the
model of ability for generalization. Secondly, the performances of conventional methods
are low on the Chinese dataset. Compared with the NER task for English, NER for Chinese
is more difficult because Chinese sentences cannot be spatially segmented as naturally as
English, and the presence of a large number of indistinguishable entities, as well as the
presentation differences between Chinese questions and basic knowledge, which makes
it difficult for general models to learn text features adequately. For Chinese NER, the
common practice is to use the Chinese Word Segmentation (CWS) tool for segmentation
before applying word order tokens. However, the noise present in the CWS tool itself can
significantly affect the performance of NER models.

For the purpose of this work, we focus on the CKBQA task via the designed CWS
and BERT models in order to address the difficulties such as the insufficient association
between entities and predicates. To achieve the final answer selection, we link the score of
entities and predicates, determining the query path and retrieve a definitive answer. The
key contributions of this paper are as follows:

1. An NER transfer learning model is presented. By fusing CWS in the NER task,
the accuracy of candidate entities is improved without introducing too much noise. We
also use a pre-trained BERT model combined with CNN and Softmax models for entity
disambiguation and predicate mapping in which richer contextual information can be
learned. The model makes full use of the problem encoding and candidate information
features extracted by the BERT model and has strong generalization for application in
multi-domain knowledge bases.

2. The results of the experiments suggested that we have developed a satisfactory
question answering system for the Chinese dataset. The current method achieves better
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on the NLPCC-ICCPOL 2016 KBQA dataset. It can generate more accurate and relevant
answers due to the transfer learning and BERT’s powerful feature extraction capability.

The remainder of this work is organized as follows: Section 2 describes the background
of the question-answering system, KBQA, and NER. Section 3 introduces the related
technologies. The model, results, and discussion proposed by us will be presented in
Sections 4–6. Section 7 provides a conclusion.

2. Background
2.1. Question Answering System

As a critical field in artificial intelligence [12], intelligent question and answer is an
essential branch of natural language processing, usually in a question-and-answer human-
computer interaction to locate the user’s desired knowledge and provide personalized
information services. Unlike search engines, it allows computers to answer users’ questions
automatically in a precise natural language format. The history of intelligent question and
answering dates back to 1950, when Alan Turing, the father of computer science, came
up with the Turing Test to determine if it possible for a computer might think accurately
and correctly, thus opening the chapter on natural language human-computer interac-
tion. Around the 1960s, the first question-and-answering systems were introduced, and
Green et al. designed a Baseball program that could answer questions about baseball games
in plain English. In 1966, Weizen-Baum designed and implemented ELIZA Chatbot [13],
which can process simple problem statements. In 1971, another early chatbot [14] was
developed by Kenneth Colby, a psychiatrist at Stanford University, and named “Parry”.
These question-answering systems based on rule matching could not be widely applied
due to lacking data resources at that time.

As deep learning and natural language processing technology rapidly advances, the
question-answering system gradually transitions from early rule matching to retrieval
matching [15]. The core idea is to extract the core words in natural language questions,
search for the relevant answers in documents or web pages according to the core words and
return the corresponding answers using the correlation sorting algorithm. Ma et al. [16]
proposed the pseudo-correlation feedback algorithm based on the method of automatic
document retrieval, which used the context information in the document to retrieve the
most similar answers. The retrieval matching approach achieved good results when it
was first proposed. However, as the number of data increased and the diversity of user
questions emerged, the quality of answers extracted from documents or web pages by this
approach varied, profoundly affecting system response time and the accuracy. Until the
concept of knowledge graph was proposed, the KBQA is significantly improved in quality
and has realized the form of extracting questions and answers from documents. At present,
KBQA has received more and more attention from researchers, and it has become a topic of
intense interest in the natural language field [17].

2.2. Knowledge Graphs and Knowledge Bases

In 2012, Google originally put forward the concept of the knowledge graph and applied
it to enhance the capabilities of conventional search engines. In the real world, the knowl-
edge graph presents structural knowledge as triples (entity-relations-entity or concept-
attribute-value), forming a multilateral relationship network. Its essence is a semantic
network that can reveal the entities’ relationships. According to different knowledge cover-
age fields, the knowledge spectrum can be divided into broad domain knowledge spectrum
(e.g., Wikidata [18], DBpedia, CN-DBpedia [19], Freebase, etc.) and specific domain knowl-
edge spectrum (e.g., Ali Commodity Atlas [20], Meituan Gourmet Atlas [21], AMiner [22]).
Traditional knowledge graph construction methods include entity recognition [23], entity
disambiguation [24], relationship extraction [25] and knowledge storage, etc.

With the emergence and rapid development of deep learning, the knowledge graph
has gradually changed from “symbol” connection to “vector” representation. The model of
TransE is suggested by Boards et al, in which the entities and relationships are embedded
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into the semantic space of a low-dimensional vector, and the relation vector is considered
to be a translation of the head entity vector into the tail entity vector. TransR/CTransR
proposed by Lin et al. [26] sets a unique relation matrix space M for each relation and
incorporates entities and relations into vector semantic space via M matrix for translation
calculation. The knowledge graph construction method based on knowledge representation
learning fundamentally solves the long tail effect brought by the traditional method and
greatly improves the usability of the knowledge graph.

2.3. KBQA

A crucial question related to KBQA is how to translate natural language problems
into formal language that can be understood by the computer and obtain the answer to the
problem through query and reasoning within the constructed KB. Therefore, KBQA mainly
includes Semantic Parsing-based (SP-based) methods and Information Retrieval-based
(IR-based) Methods.

The SP-based methods analyzes components of natural language questions, converts
the query into logical expressions, and then converts the query into a knowledge graph
query to get the answers. Hao et al. [27] parsed natural utterances into subgraphs of
knowledge graph to achieve complex question answering, and the model was found practi-
cal; Meng et al. [28] designed a semantic query expansion method to solve the problem of
difficulty in obtaining ideal answers from data sources, which expanded query terms in
question triples from three semantic perspectives and achieved multi-semantic expansion
of the question triples. This method can more clearly convert natural language problem
statements into logical expressions. However, the method requires many manually defined
logical expression rules, which perform well in specific domains but are not generalizable
when dealing with large-scale knowledge graphs. In other words, this method is suitable
in specific domains but cannot transform undefined rules when dealing with large-scale
knowledge graphs.

The IR-based methods extract critical information from the question and use that to
qualify the knowledge of the knowledge base and then retrieve the answer. Qiu et al. [29]
suggested a Stepwise Reasoning Network (SRN) model on the basis of intensive learning.
The SRN model formalizes the problems as sequential strategy ones and an attention
mechanism is adopted to obtain exclusive information within the problem, which signifi-
cantly enhances the effectiveness of question and answering based on information retrieval
methods; Xu et al. [30] argued that KG lacks context to provide a more precise conceptual
understanding, although it contains rich structural information. For this reason, they
designed a model that uses external entity descriptions for knowledge understanding to
assist in completing knowledge question and answering. This approach achieves optimal
results on the Common-sense QA dataset and obtains the best results in the non-generative
model of OpenBookQA.

2.4. NER

NER is the identification of named entities with particular meanings in text and classi-
fying them into predefined entity types, such as person name, place name, institution name,
time, currency, etc. Named entities usually contain rich semantics and are closely related
to the critical information in the data. The NER task can resolve issues on information
explosion in text data online, and obtain critical information effectively. Moreover, NER is
commonly used in different areas, such as relationship extraction, machine translation, and
knowledge graph construction.

Chinese-oriented NER started later. One has immediately noticed that Chinese is quite
different from West Germanic languages such as English due to its language characteristics.
Hence, NER in the Chinese field mainly has the following three particularities. (1) Chinese
NER should solve the difficulty in boundary ambiguities. It is because Chinese unit
vocabulary boundaries lack clear separators such as spaces in English text and have no
apparent morphological transformation features. (2) Chinese NER must be combined
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with CWS and grammatical analysis, only which can correctly classify named entities and
improve the performance of NER. (3) Context may have significant influence on NER
tasks. In Chinese text, there may exist complex sentences, flexible expressions, and many
omissions. The exact words in different fields have different meanings, and there may be
multiple expressions for the same semantics, which can only be clarified by the context.
In addition, the internet has developed so rapidly, and the greater personalization and
randomization of text descriptions in online texts, makes identifying entities more difficult.

Nowadays, mainstream NER methods have three categories, including rule- and
dictionary-based methods, statistical machine learning-based methods, and deep learning-
based methods. This paper mainly studies the methods based on deep learning. The typ-
ical representative of Transformer-based methods is the pre-trained model BERT model.
Souza1 et al. [31] put forward a BERT-CRF(Conditional Random Field) model for the NER
task, combining BERT’s transfer capability with the structured CRF prediction. Li et al. [32]
addressed the lack of large-scale labelled clinical data by pre-training the BERT model on
unlabeled Chinese clinical electronic medical record text, thereby leveraging unlabeled domain-
specific knowledge. Wu et al. [33], who follows the work by Li et al., proposed a model
based on Roberta and character root features, using Roberta to learn medical features, and
using Bi-LSTM to extract character features. Yao et al. [34] designed a model using Albert-
AttBiLSTM-CRF and migration learning for fine-grained entity recognition text. In this model,
A more lightweight pre-training model ALBERT was adopted to embed words in the original
data Bi-LSTM was employed to extract the features of words with embedding and obtain
contextual information, and a decoding layer using CRF was utilized for label decoding.

3. Related Technologies
3.1. CNN

CNN [35], a deep neural network, contains convolutional operations. Meanwhile,
CNN is a representative algorithm of deep learning. It uses a convolution kernel to capture
local features and has the ability of representational learning. Depending on the dimension
of the input matrix, CNN can be divided into 1D-CNN and 2D-CNN, etc. Processing text
usually uses 1D-CNN. The length of convolution kernel is always equal to the feature
dimension of the text vector representation, whereas the width of convolution kernel
determines the window size of the contextual words or characters. In practical applications,
multiple convolution kernels of different widths are typically utilized in order to obtain
various receptive fields and augment the feature information extracted by the model. The
convolution kernels are shifted in a certain step size according to the text sequence length
to obtain the feature vector representation of the text sequence. After the convolution layer,
the top pooling layer or the average pooling layer is usually connected to choose features
and decrease the number of parameters. For features after pooling, classification and other
operations are conducted through the entire connection layer, as shown in Figure 1.

Figure 1. Illustration of CNN (Redrawn from [35]).
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CNN has strong feature capturing capability, nevertheless, when processing text data,
the convolution kernel can only pay attention to the local information in the window and
lacks the learning of long-distance information, As a result, overall understanding to the
text is lacking. Thus, CNN usually handles text-classification tasks rather than sequence-
annotation tasks. When combined with other neural network structures, CNN can be
used as a feature extractor to enhance the ability of feature representation. For example,
when processing Chinese text, CNN can be used to extract stroke features or glyphs of
Chinese characters.

3.2. RNN

Recurrent Neural Network (RNN) consists of connected cyclic units and featured by
recursion in sequences’ evolutionary direction. Compared with CNN, it is better suited to
modeling sequential data, such as text. At each time step (for each token position in the
text), each loop unit uses shared parameters, and both the input of the current time step and
the output of the previous time step can affect the output. Figure 2 shows the structure of
RNN. Where W, U, and V are the training process’s weight matrices of learning parameters.

Figure 2. Illustration of RNN(Redrawn from [36]).

Although the model structure of RNN is good at dealing with sequence problems, it is
possible that gradient disappearance or gradient explosion occur in the training process
for long sequences. To effectively handle long-distance dependence, many variants of
RNN have emerged, among which the most distinctive representative is Long Short Term
Memory Network (LSTM) [36]. The structure diagram of its cyclic unit is shown in Figure 3.
Its improvement is that the input gate, output gate, and forgetting gate are added to each
cycle unit. The sigmoid function limits the output of the gate between 0 and 1. Such a
gating mechanism controls how much the output from the last moment should be forgotten
and how much the input from the current moment should be retained and then calculates
the output of the current moment. For a given input sequence [x1, x2, . . . , xt, . . . xn], LSTM
calculation formula for moment t is shown in the following formula:

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ
(

W f xt + U f ht−1 + b f

)
(2)

ot = σ(Woxt + Uoht−1 + bo) (3)

C̄t = tanh(Wcxt + Ucht−1 + bc) (4)

Ct = ft ⊗ Ct−1 + it ⊗ C̄t) (5)

ht = Ot ⊗ tanh(Ct) (6)

it, ft, ot are respectively LSTM network input to the door, forgetting door and output, W
and U are the weighting matrix, b is for bias, Ct is cell state, ht is the network output. In
practice, LSTM with forward and reverse directions is usually used to process text, and
implicit layer vectors are spliced to obtain text representation with context information.
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Figure 3. Illustration of a LSTM cell (Redrawn from [36]).

3.3. BERT

Using the pre-trained word vector for representing the words is better than using the
randomly initialized vector, but the vector representation of the pre-trained word vector is
the same in various contexts, which is a context-independent word vector. For example,
“Who founded Apple?” and “How much does an apple cost?” The “apple” in the two
sentences represents different meanings but uses the same vector, so the pre-trained word
vector cannot solve the case of polysemy. Therefore, pre-trained language models such as
ELMo (Embeddings from Language Models) [37], GPT (Generative pre-training) [38], and
BERT [39] , build text sequences to obtain context-relevant Representations. The structures
of these three models are shown in Figure 4. Elmo uses double-layer LSTM connected by
residuals and encodes text sequences with forward and reverse directions. Its pre-training
objective function is given as follows:

N

∑
n=1

log P(xn | x1, . . . , xn−1) + log P(xn | xn+1, . . . , xN) (7)

The objective is to maximize the sum of probabilities that the context predicts the
current word. After pre-training, word vectors encoded by ELMo can be input into the
downstream model and applied to specific tasks. It can be seen from the objective function,
however, that ELMo is a one-way language model essentially. In 2018, Google proposed
BERT, which can better model bidirectional language models.

Figure 4. Illustration of pre-trained language models (Redrawn from [37–39]).

As shown in BERT’s model structure diagram, BERT mainly comprises the input,
coding, and mask layers. Among them, the input layer splits the input text sequence into
three vector representations: token vector, position vector, and clause vector, which are
added together and input into the coding layer. The coding layer comprises encoders of
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a bi-directional connected Transformer [40]. The basic BERT model has 12 layers, which
is the core structure of BERT. The transformer is a model structure suggested by Google
in 2017. Figure 5 presents the structure of its encoder part, and it consists of a multi-
attentional network and a feedforward network. The structure of task layer depends
primarily on the task target. The SoftMax layer handles classification tasks, and the CRF
layer follows sequence annotation. Since the input and coding layers are task-independent,
data fine-tuning BERT is often used to achieve good results in downstream tasks.

Figure 5. The structure of Transformer encoder (Redrawn from [40]).

BERT has two pre-training tasks: Mask Language Model (MLM) and Next Sentence
Continuity Prediction (NSP). MLM replaces certain words in the text with [MASK] tags
with certain rules and then predicts these words in the output layer. NSP is to predict
whether two sentences are connected. It is often used in sentence pair similarity tasks.
BERT has significantly improved 11 NLP tasks, which have become the focus of academic
attention. After that, some BERT improvements have emerged continuously, such as
XLNet [41], ALBERT [42], ELECTRA [43], ERNIE [44], etc. The work in this article is also
on the basis of the BERT pre-training language model and performed well on the question
and answering task.

4. Method

The purpose of this section is to demonstrate the overall structure of BAT-KBQA
framework and the details of component modules. We begin by explaining general design
of our framework and then describe the details of the essential components.

4.1. Overall Architecture

Figure 6 shows the overall flow of the KBQA system. The three core modules are entity
linking (consisting of named entity identification and entity disambiguation), predicate
mapping, and answer selection in the system. The objective of the entity linking step is to
discover the name of entity posed in the query, while the predicate mapping step aims to
find the relevant attributes asked in the question, and the answer selection is a combination
of these two steps to reach an accurate answer. We use the example of “Who is the author
of Journey to the West” to describe the flow of our system. Firstly, the NER model identifies
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the key entity “Journey to the West” from the question (in Chinese); combined with the
knowledge base, we can generate a collection of candidate entities related to “Journey to
the West”, and the entity disambiguation model scores the candidate entities. The highest
scoring candidate entity “Journey to the West (novel)” is adopted as the question of subject
entity; combining the subject entity and the knowledge base, the predicates of the subject
entity are used as a candidate predicate set. The named entity is then replaced with the
question sentence of the uniform identifier “entity” and the candidate predicate is fed into
the predicate matching model, obtaining the predicate “author” with the highest score;
finally, the answer selection module combines the entity and the predicate and queries the
knowledge base to arrive at the final answer. The modules will be described in subsequent
sections with more details.

Figure 6. The overall process of the BAT-KBQA framework. (The modules of the three cores have
been marked with bright colors.)

4.2. Model For Entity Linking

Entity linking refers to the task, which links the expression in the text to the corre-
sponding entity in the knowledge base to conduct entity disambiguation and assist humans
and computers to understand the text’s particular meaning. For example, in the text “Do
you know who is the author of the book ‘Journey to the West?”’, there is “Journey to the
West (TV drama)”, “Journey to the West (novel)”, and “Journey to the West (game)” to
express the corresponding entity of “Journey to the West” in the knowledge database. In
our example, it links the expression “Journey to the West” to “Journey to the West (novel)”
in the knowledge base to eliminate the ambiguity caused by other meanings. So, entity
linking is the essential part of knowledge graph construction. The entity linkage model is
divided into NER and entity disambiguation.

4.2.1. Named Entity Recognition

The goal of NER is to recognize named entities in text and assign them to the corre-
sponding entity types. It is important since the semantic expression of Chinese corpus is
sparse, many similar entities are difficult to be distinguished, and differences exist in the
presentation of Chinese interrogative sentences and fundamental knowledge. Hence, it is
difficult for general models to learn text features thoroughly, which makes it challenging to
enhance the accuracy of entity linking. Here we suggest an adversarial transfer learning
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NER model. Our model incorporates adversarial transfer learning and the CWS task [45]
to solve these problems and introduces two major innovations, that is, applying CWS
tasks brings shared information without introducing new noise and adding a self-attentive
mechanism in the middle of the BiLSTM and CRF layers. The model tentatively learns
word boundary information shared by the task from the CWS task, then filters particular
information of CWS and unambiguously captures long range dependencies between two
arbitrary characters in one sentence finally. Figure 7 presents the architecture of this model.
The model is composed of five elements: embedding layer, shared-private feature extractor,
self-attention, task-specific CRF, and task discriminator. Each portion of the model would
be given a detailed elaboration in subsequent sections.

Figure 7. Named Entity Recognition model. (Consists of BiLSTM, Self-attention, CRF, feature recognizer).

First, the NER model is adopted to distinguish the topic entity in the question as the
starting point for semantic parsing of the question, e.g., “Journey to the West?” in “Who is
the author of Journey to the West?” is the reference form of the subject entity of the question.
NER can be regarded as a sequence annotation task, in which the common tagging system
“BIO” is used. Here “B” indicates the starting position of the entity mentioned, “I” indicates
the middle or end positions of entity mentions, and “O” denotes that the character is not
an entity mention. The position corresponding to the “Journey to the West” in the question
is labelled as “B I I I”, and the other non-entity mentions are labelled as “O”. In this paper,
the NER and CWS task datasets are labelled separately and embedded into the model
for training.

The embedding layer and other neural network models have similarities. Pre-trained
embedding dictionaries are loaded to map discrete NER and CWS characters into dis-
tributed embedding vectors.

Long-term memory [46] is a RNN’s variant and it can resolve the gradient disappear-
ance and explosion problems by introducing gate mechanisms and memory units. The
unidirectional LSTM utilizes only the past information but overlooks future information,
so we use BiLSTM for feature extraction to fuse the information from two sides of the
sequence. In our model, in addition to the two-end BiLSTM for extracting private features,
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we add a shared BiLSTM to extract the boundary information shared by the NER and CWS
tasks. That is, for the dataset of task m, the hidden states of the shared and private BiLSTM
layers can be calculated as shown in the following.

sm
i = BiLSTM

(
xm

i , sm
i−1; θs

)
(8)

hm
i = BiLSTM

(
xm

i , hm
i−1; θm

)
(9)

where θs is the shared BiLSTM parameter and θm is the private BiLSTM parameters.
In the third step, we draw self-attention as applied to machine translation and semantic

role labelling. After the feature extractor, we add a multi-headed attention mechanism [40]
in order to learn the dependencies between two arbitrary words in one sentence and seize
the internal structural information of the sentence. The formula is as follows:

Attention(Q, K, V) = softmax

(
QKT
√

d

)
V (10)

where Q ∈ RN×2dh, K ∈ RN×2dhand V ∈ RN×2dh are query matrix, keys matrix and value
matrix, respectively. d is the dimension of BiLSTM hidden layers. More information about
self-attention mechanisms are detailed in [40].

The next layer is the CRF [47]. The CRF layer can add some constraints to the final
predicted labels to ensure the reasonableness of the predicted labels. Because the labels
are different, we create a unique CRF layer for each task separately. For each sentence of
task m, the final representation is to concatenate the BiLSTM layer with the self-attention
representation.The final decoding process uses the Viterbi algorithm.

As shown in the Figure 7, the middle layer enters our task recognizer. We propose a
task recognizer to determine from which task the sentences come. The following formula
can signify the task recognizer:

s′m = Maxpooling
(
S′m

)
(11)

D
(
s′m; θd

)
= softmax

(
Wds′ + bd

)
(12)

where θd denotes the parameters of task recognizer . Wd ∈ RK×2dh and bd ∈ RK are trainable
parameters. m denotes the number of tasks. The middle layer is the shared features of
CWS and NER tasks, to prevent task-specific features from being incorporated into the
shared features. Inspired by adversarial networks, we introduce adversarial loss to train
the shared BiLSTM, resulting in a task recognizer that cannot reliably identify the task from
which the sentence comes. The following equation calculates the adversarial loss:

LAdv = min
θs

(
max

θd

m

∑
m=1

Tm

∑
i=1

log D
(

Es

(
x(i)m

)))
(13)

where θs refers to the shared BiLSTM’s trainable parameters. Es is the shared feature
extractor. Tm is the number of training examples of task m and x(i)m is the i-th example.
The shared BiLSTM develops a representation to deceive the task recognizer as part of a
minimax optimization, while the task recognizer tries its best to accurately recognize the
type of work. To tackle the minimal-extreme optimization problem, we add a gradient
inversion layer below the Softmax layer. We reduce the task recognizer’s error during the
training stage, and invert the gradient through the gradient inversion layer, which favors
the shared feature extractor for studying the word boundary information shared by the task.
The shared feature extractor and the task recognizer arrive at a point when the recognizer is
unable to discriminate tasks based on the representations acquired from the shared feature
extractor after training phrases.
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In training, the following is the final loss function of our model:

L = LNER · I(x) + LCWS · (1− I(x)) + λLAdv (14)

where λ denotes a hyper-parameter. Equation (21) can be used to calculate LNER and LCWS.
I(x) is a switching function determining which task the input is from. The formula is
as follows:

I(x) =
{

1, if x ∈ DNER
0, if x ∈ DCWS

(15)

where DNER is Chinese NER training corpora and DCWS is CWS training corpora. In each
iteration of the training phase, we sequentially select a task from {NER, CWS} and obtain
different training samples to update the parameters. We optimize the final loss function by
utilizing the Adam algorithm. Since the convergence rates of the Chinese NER task and the
CWS task could be distinct, we duplicate the above iterations until early stopping based on
the performance of the Chinese NER task.

4.2.2. Model for Entity Disambiguation

Next, since the entities mentioned in the natural language question may correspond
to multiple entities saved in the knowledge base. After obtaining the entity identification
of the subject entity in each question, it is essential to generate a set of candidate entities
related to the entity mention from the knowledge base and disambiguate these candidate
entity sets and to select the correct one. Accurately matching the subject entities asked in
the question can also reduce the candidate set size for the next step of predicate matching
and enhance the efficiency of the question answering system. We suggest a BERT-CNN
model that introduces the predicate features of the entities once they are chained in order
to boost the performance of the entity disambiguation task.

In the entity disambiguation part, to obtain the set of candidate entities close to the
subject entities in the question, we firstly generate the set of candidate entities by mapping
the entity mentions identified in the previous step to the mention2id library provided by the
NLPCC- ICCPOL-2016KBQA evaluation. For entity mentions that could not be mapped,
we relied on the knowledge base to retrieve entities with similar character as the candidate
entity set. Then, we input the interrogative sentences and the set of candidate entities into
the BERT-CNN [35] model (as shown in Figure 8). This task can be viewed as a binary
task, with the output label 1 if the candidate entity is a subject entity in a labeled triplet
and 0 otherwise. The input data are in the form of [CLS], problem character sequences,
[SEP], candidate entities for concatenation with predicate features, [SEP]. Among them, the
predicate feature is the chained relationship from candidate entities in the knowledge graph
to the connected predicates, as shown in Formula (16), where q represents the problem, e
represents the candidate entity, and pi represents the chained relationship starting from e.

x = [CLS], q, [SEP], e, p1, . . . , pn, [SEP] (16)

After BERT network coding, the hidden layer vectors of the last four encoder outputs
are obtained, and the hidden layer outputs H after addition. Formula (17) illustrates the
features of the convolution layer C :

C = σ(H ⊗W + b) (17)

where σ is the sigmoid function,
⊗

is the convolution operation,W is the weight in the
convolution kernel, and b is the bias. H extract features through three convolution layers
corresponding to stepsize 1, 3 and 5, respectively . Then the features feed into the highest
pooling layer and the Softmax layer carries out classification after concatenation the three
vectors, and the output label is 0 or 1. Formula (18) explains that the loss function is
the cross-entropy loss function, which is minimized during training. In the prediction,
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the probability that the candidate entity is predicted as tag 1 is taken as the candidate
entity’s score.

L = −[y · ln(x) + (1− y) · ln(1− x)] (18)

Figure 8. Entity Disambiguation model.

4.3. Model for Predicate Mapping

Due to the variety of natural language questions, different expressions may corre-
spond to the same question intent, and the same subject entity may also generate different
predicates, which poses a major challenge to the domain KBQA task. Such as matching
between the question “Who wrote the Journey to the West” and “Author ”. The predicate
matching model is suitable for matching the predicates in the question with the predicates
in the knowledge base, understand the intent of question, and select the predicate that
best matches the question. First, the entity disambiguation results can reduce the size of
candidate predicates set, so we start from the sample of candidate entities acquired in the
entity disambiguation task and retrieve the set of predicates of that entity in the knowledge
base as candidate predicates set. Next, we notice that in answering the question “Who
wrote the Journey to the West?”, the information of the candidate predicates can be enriched
by adding the information of the first-degree chained predicates of the candidate answer
entities retrieved by the candidate predicates. For example, “The candidate entities of
Journey to the West include release date, director, author, etc.” are related to the candidate
predicate “author”.

Therefore, this paper proposes a BERT-Softmax model [11] (as shown in Figure 9)
for entity-predicate matching. We treat BERT-Softmax as a binary sequence classification
problem, where the output label is 1 for candidate relation samples that accurately reflect
the intent of question and 0 for those inaccurately reflecting the aim of question. The input
data are composed of two portions: the question and predicate. The input data of the
question part consist of [CLS], a sequence of question characters with the entity character
replaced by the entity character, [SEP], the candidate relation, and [SEP], which is encoded
by the BERT network to acquire the hidden vector of the last four encoder layers, stitched
together and input to the Softmax layer for classification. The output label is 0 or 1. The
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loss function is also the cross-entropy loss function, which was minimized during training.
In the prediction, the probability of predicting a candidate relationship as label 1 is used as
the score of candidate relationship.

Figure 9. BERT-Softmax model.

4.4. Answer Selection Module

The answer selection module is responsible for integrating the two processes that came
before it. To get the best answer, when our entity can match the corresponding predicate,
we calculate the score Se of the candidate entity and the score Sp of the candidate predicate.
The final score S is obtained by weighting Se and Sp. The formula is as follows.

S = θ × S e + (1− θ)× S p (19)

where θ is a hyperparameter . We choose the highest score as the best matching relationship
and acquire the answer by querying the KB.

5. Experimental Results
5.1. Data and Preprocessing
5.1.1. Datasets

The NLPCC-ICCPOL 2016 KBQA task offers the knowledge base adopted in this
paper. It is the first large-scale general knowledge base in the Chinese domain, containing
6,502,738 entities, 587,875 attributes, and 43,063,796 triples. The knowledge base is essen-
tially a collection of triples (entity, attribute, attribute value). Some examples of triples and
dataset annotation are presented in Table 1 and Table 2, respectively.

Table 1. Triads in the Knowledge Base.

Subject Predicate Object

Journey to the West Author Wu Chengen
Higher mathematics Press Wuhan University Press

Carotenoids Nature Pigment
Hamlet Director Michelle Amiriad

Facebook Field Social networking site
. . . . . . . . .
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Table 2. Dataset sample annotation sample.

Tagging Content

Question Who wrote the novel Journey to the West?
Named entity recognition Journey to the West

Triple Journey to the West||Author||Wuchengen

5.1.2. Data Preprocessing

The data in the knowledge base are directly and automatically extracted from the
Infobox of Baidu Encyclopedia, so there is much noise, especially in the attribute part,
which often appears as useless characters, bringing interference to standard experiments.
Therefore, before designing and starting the experiment, this paper firstly carries out a
certain degree of de-noising on the knowledge base, such as converting traditional Chinese
into simplified Chinese, removing redundant spaces in the relation of triples, truncating the
entity names that are too long, converting English letters to lowercase for the experiment,
etc. The subtask data set is divided as shown in Table 3.

Table 3. Dataset statistics.

The Data Set The Training Set The Validation Set The Test Set

NLPCC 2016 13,609 1000 9870
Named entity recognition 13,609 1000 9870

Entity disambiguation 24,985 4744 36,208
Relational prediction 76,009 10,600 121,958

Triples of the same entity in the knowledge base may be distributed in various places
in the file of the knowledge base. To enhance the efficiency of the knowledge base query,
this paper collects all triples about the same entity and creates index files for the knowledge
base. The format of each line in the index file is entity name, start position, and content
length. It indicates the start position of all content of each entity in the knowledge base
and the total length of the content (both in bytes). When searching for an entity, it is firstly
obtained from the index file, and all the information about the entity can be discovered
directly from the knowledge base without traversing the knowledge base from start to
finish, leading to considerably enhancements in the query efficiency of the knowledge
base [48].

5.2. Environment Setup

For evaluation purpose, we utilize the Precision (P), Recall (R), and F1 scores as
metrics in the experiment. The formula is shown as follows.

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2 ∗ P ∗ R

P + R

(20)

For the hyperparameter settings for NER, we tune it on the basis of the performance
of the development set. We set the character embedding size de to 100, the dimension of
the LSTM hidden state dh to 120, the initial learning rate to 0.001, the loss weight coefficient
λ to 0.06, and the dropout rate to 0.3, the number of projections h is set to 8. For the
initialization of trainable parameters, use an initializer to initialize the parameters. In
terms of entity disambiguation and predicate mapping, a BERT-base model has 12 layers,
768 actual states, 12 heads, and a total number of parameters of 110 M. For fine-tuning of
BERT, all hyperparameters are tuned on the development set. For the dataset, the maximum
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sequence length is set to 60, and the batch size is set to 32. ADAM (Adaptive Moment
Estimation) is used for optimization, β1 = 0.9, β2 = 0.999, the dropout rate is set to 1× 10−5,
and the initial learning rate of BERT-Softmax is set to 5× 10−5 by applying a learning
rate warm-up strategy. The training epoch of BERT-Softmax is 3. In the answer selection
module, the hyperparameter α is set to 0.6. For all baseline models, the word embeddings
in the experiments are pre-trained by the word2vec toolkit on the Baidu Encyclopedia
corpus, where the size of embedding is set to 300.

5.3. Entity Link Experiment

Table 4 shows the experimental results of entity reference recognition, and P, R, and F
values are used as evaluation indicators. The results suggest that the model can achieve
accurate outcomes. Traditional NER tasks need to distinguish different types of entities and
determine the boundary positions at both ends of the entities. In contrast, entity mention
recognition sub-tasks only need to identify the locations mentioned by the entities and do
not need to distinguish the types, and simple questions that usually only contain a single
entity mention, which reduces the difficulty of this sub-task. In the entity disambiguation
subtask training set, the ratio of positive and negative cases was 1:5, and all candidate
entities were selected for prediction in the verification set and test set. The sub-task is prone
to over-fitting in the training process, so fewer training rounds and lower learning rates are
selected. The evaluation indexes were Acc@N. The formula is shown as follows. For the
evaluation set of Q questions, each question predicts the set of N candidate answers, Ci
that contains the correct answer Ai is recorded as 1, otherwise 0. Each question is summed
and then averaged. The average precision is obtained. In this paper, we merely focus on
the mean accuracy for N = 1, 2, 3.

Accuracy@N =
1
|Q|

|Q|

∑
i=1

δ(Ci, Ai) (21)

Table 5 presents the experimental results of solid disambiguation on the test set.
Among them, the introduction of relational features in the Acc@1 index increased by about
10%. This is because the benchmark model that only uses questions and entity names as
input has less available information. At the same time, the relationship features contain
topological information of topic entities in the knowledge graph and their associated
relationship content, thus enhancing the matching degree between topic entities and
questions, effectively improving entity disambiguation. Moreover, the feature extraction
capability of CNN has also brought improvement. By reserving the top three candidate
entities, a high accuracy rate can be acquired, which is helpful in reducing the size of
the candidate relation set for relationship prediction and enhancing the efficiency of the
question answering system. To sum up, entity linking can accurately identify the entities
mentions and accurately and link effectively to the entities in the knowledge graph.

Table 4. Named Entity Recognition.

Models F1

BiLSTM-CRF 90.28
BERT-BiLSTM-CRF 96.90

Ours 98.66

Table 5. Entity disambiguation.

Models Accuracy@1 Accuracy@2 Accuracy@3

Siamese BiLSTM 87.85 92.58 94.59
Siamese CNN 88.04 92.68 94.88

BERT-CNN 89.14 93.19 95.05
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5.4. Relational Prediction Experiment

The performance of the BERT-Softmax model for predicate mapping is shown in
Table 6. We demonstrate that a higher performance is attained, suggesting that the fine-
tuned BERT model may extract deeper semantic knowledge compared with other neural
network models.

Table 6. Predicate Mapping.

Models Accuracy@1 Accuracy@2 Accuracy@3

Siamese BiLSTM 92.54 96.74 98.12
Siamese CNN 86.47 93.80 96.16
BERT-Softmax 94.81 97.68 98.60

5.5. Comparison with the Baseline Model

We compare the developed model with the baseline models published in the NLPCC-
ICCPOL 2016KBQA task. Table 7 presents the outcomes from the NLPCC-ICCPOL
2016KBQA task and it is found that the developed model outperforms all the other ones,
indicated by the higher index F1 value. Because the model adopted combines the BERT
model, the training time is longer.

Table 7. NLPCC-ICCPOL 2016 KBQA result .

Models Averaged F1

Baseline model(C-DSSM) 52.47
Wang et al. [49] 79.14

Xie et al. [8] 79.57
Lei et al. [50] 80.97

Zhou et al. [51] 81.06
Yang et al. [9] 81.59
Xie et al. [52] 82.43
Lai et al. [10] 82.47
Liu et al. [11] 84.12

Ours 87.74

6. Discussion

Table 7 presented performance comparison between our method and other published
methods. The systems of Lai et al. [10], Xie et al. [52], and Yang et al. [9] are the top three
for the NLPCC 2016 KBQA evaluation task, and they all combine neural networks and
manually constructed rules to ensure the quality of question and answering. BB-KBQA [11]
fine-tunes the pre-training task based on BERT to achieve three subtasks of NER, entity
disambiguation, and predicate mapping, but the performance on the first two subtasks is
weaker than the model of this paper, resulting in a lower final performance than the KBQA
in this paper. The results of experiments demonstrates that the BAT-KBQA can achieve an
Averaged F1 value of 87.74%, which achieves the best results and improves the question
answering system accuracy compared with other published methods.

Finally, we analyzed the effect of the CWS task of this work, and the results show
that word boundary information from the CWS task is effective for the Chinese NER task.
Particularly when various entities appear at the same time, our model can correctly classify
the word in different scenarios. Then, the performance of the question-answering system
is evaluated. The results are found accurate except for some triples and wrong answers.
For example, for the question “Where did Jie Wang debut?” (in Chinese), corresponding
to the knowledge triple <Jie Wang, debut place, Taiwan>, our system predicts the subject
entity and predicate as <Jie Wang (male singer from Hong Kong and Taiwan), debut
place>, indicating that the entity disambiguation module can correctly select the answer
Jie Wang, who is a singer. For the question “Which factory built submarine type 212?” (in
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Chinese), the corresponding knowledge triple is <212 type submarine, built, Hathaway
Shipyard (hdw)>, and the subject entity and predicate predicted by our system is <212 type
submarine, manufacturing plant>, which shows that although the predicate chosen by the
predicate matching module is different from the labeled predicate, the correct predicate is
chosen by understanding the intention of the question, and the correct answer is finally
found. In practice, the method employs some artificial rules because of the introduction
of CWS task, which requires data annotation such as the NER task. Therefore, additional
effort should be spent on annotation and the need for manual labeling data is sometimes
tedious. However, labeling is relatively easy and within an acceptable range.

In summary, we can see that introduction of CWS in the NER task can enhance the
accuracy of entity linking. In our work, entity disambiguation and predicate mapping
combined with BERT pre-training exhibit better performance, and the entities also have a
strong correlation with the predicates. Compared to other models that use more complex
features and artificial rules, our KBQA system achieve better results with only neural
network models and a small number of simple text features. Therefore, our system achieves
sufficient accuracy and can effectively answer the questions asked by the users.

7. Conclusions

In this paper, by fusing CWS in the NER task, the accuracy of candidate entities is
improved without introducing too much noise. A multi-channel entity disambiguation
model is proposed to enhance the features of candidate entities to bridge the semantic gap
between the question and the knowledge base. The model makes full use of the problem
encoding and candidate information features extracted by the BERT model and has strong
generalization for application in multi-domain knowledge bases. The current method is
evaluated from experiments on the NLPCC-ICCPOL-2016KBQA Chinese open question
and answering dataset, with an average F1 score of 87.74%.

The results of experiments indicate that we have developed a satisfactory question
answering system for the Chinese dataset. Our method performs better on the NLPCC-
ICCPOL 2016 KBQA dataset. The system we developed may fill the gap in the technical
research of the tutor selection service system. Later, we will use the BAT-KBQA framework
on the Chinese Academy of Sciences tutor dataset to develop a tutor KBQA for students, so
that students can quickly select tutors.

In future work, different subtasks will be trained in combination, or more knowledge
graph representation learning methods can be introduced to obtain richer features.
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