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Abstract: The power and robustness of statistical tests are strongly tied to the amount of data
available for testing. However, much of the collected data today is siloed amongst various data
owners due to privacy concerns, thus limiting the utility of the collected data. While frameworks
for secure multiparty computation enable functions to be securely evaluated on federated datasets,
they depend on protocols over secret shared data, which result in high communication costs even
in the semi-honest setting.In this paper, we present methods for securely evaluating statistical
tests, specifically the Welch’s t-test and the χ2-test, in the semi-honest setting using multiparty
homomorphic encryption (MHE). We tested and evaluated our methods against real world datasets
and found that our method for computing the Welch’s t-test and χ2-test statistics required 100× less
communication than equivalent protocols implemented using secure multiparty computation (SMPC),
resulting in up to 10× improvement in runtime. Lastly, we designed and implemented a novel
protocol to perform a table lookup from a secret shared index and use it to build a hybrid protocol
that switches between MHE and SMPC representations in order to calculate the p-value of the
statistics efficiently. This hybrid protocol is 1.5× faster than equivalent protocols implemented using
SMPC alone.

Keywords: multiparty homomorphic encryption; federated analytics

1. Introduction

While an increasing amount of data from a variety of domains is being collected to fuel
much of the data-driven research conducted today, the data has also become increasingly
partitioned and siloed due to privacy and data ownership concerns, especially in the
medical domain [1]. This partitioning severely limits the utility of the data and hinders
potentially life saving research from being conducted as modern data analytics pipelines
strongly depend on the amount of data available. This is especially true for statistical
testing, which is an important tool for analysis of data. In fact, more than 80% of articles
from the New England Journal of Medicine and Nature Medicine contained inferential
statistical methods such as t-test and χ2-test [2], thus highlighting the importance of these
types of analyses.

One solution to this privacy problem is the federated analytics frameworks based on
secure multiparty computation (SMPC) techniques such as Sharemind [3] and MP-SPDZ [4],
which provide protocols to compute over secretly shared data. These frameworks provide
a general method for any number of data owners to collaborate and analyze the com-
bined data without leaking any information about the inputs and intermediate values
through secret sharing. Such frameworks have increased in popularity over the years due
to advancements in computational efficiency [5] and their support for various security
assumptions ranging from semi-honest to malicious security. However, one main disadvan-
tage that is shared by such frameworks is the communication cost that incurs, especially
when computing over a large batch of data as often is the case in statistical testing.
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On the other hand, homomorphic encryption (HE) is an alternative solution to the
problem that requires no interactivity during computation, thus resulting in significantly
lesser communication costs. Even though HE has been applied in a range of machine learn-
ing settings such as Logistic Regression [6] and even Convolutional Neural Networks [7–10],
the application of HE to computations that are not well approximated by polynomials such
as statistical tests that involve division has been limited due to computationally expensive
bootstrapping protocols. Multiparty homomorphic encryption (MHE) has recently been
thrust into the spotlight [11] as it strikes a optimal balance between SMPC and HE by
limiting interactivity to a computationally lightweight collective bootstrapping protocol
that has to be invoked only after the computation has reached a predefined multiplicative
depth. Therefore, our main purpose of research in this paper is to optimize the performance
and communication efficiency of federated anlaytics frameworks through cryptographic
algorithms and protocols design based on MHE.

1.1. Related Work

MP-SPDZ. The MP-SPDZ framework provides a wide range of SMPC protocols, in
which we are particularly interested in the SPDZ2K protocol (in semi-honest mode) that
is commonly used as the standard protocol for SMPC-based frameworks. We will also
compare our MHE-based methods with SPDZ2K-based methods in this paper;

Sharemind. Sharemind is another SMPC-based framework similar to MP-SPDZ which
implements protocols for secure computation over secret shared data. While there has
been prior work done to specifically implement the t-test and χ2-test amongst various
other statistical tests on the Sharemind framework [12], a thorough evaluation that includes
communication costs was not presented. Furthermore, the t-test took a long time (2.75 min)
to finish even with moderately small number of records (2000). We will show that our MHE-
based methods have more superior performance compared with SMPC-based methods;

FAMHE. FAMHE is a Federated analytics framework based on multiparty homomor-
phic encryption [11], which implements secure genome wide association study (GWAS)
and secure calculation of the Kaplan–Meier survival analysis. In their paper, they mention
a secure division protocol from MHE supposedly using polynomial approximations, which
may lose accuracy. Additionally, they present a method for p-value calculation in the
GWAS implementation, but since the distribution was assumed to be standard normal, this
computation was approximated using polynomials and was directly calculated. Different
from their approaches, we design more accurate secure division and P-value computation
protocols, instead of using polynomial approximations;

STAR. The STAR system [13] presents methods for computing the t-test and χ2-test
among various other statistical tests using a hybrid MHE-SMPC approach to bypass secure
division on encrypted data. The numerators and denominators for the statistics were
calculated using MHE and converted into SMPC secret shares for the secure division to be
done using SMPC. However, the encryption to share protocol was only simulated and the
p-value computation was done in the clear. On the contrary, our system is end-to-end secure
as the entire process including both statistical value computation and p-value computation
is done in the encrypted domain, without the decryption of any intermediate data;

Fed-χ2. The Fed-χ2 [14] protocol recasts the χ2-test as a second frequency moment
estimation problem and uses secure aggregation and stable projections to reduce the dimen-
sionality of the contingency table and by extension the communication cost of the overall
protocol. However, the marginal statistics were leaked and no empirical communication
cost data was presented. Our work differs from theirs on the design of more efficient
and secure MHE-based computation protocols, which enables more efficient statistical test
computations on encrypted data.

1.2. Our Contributions

This paper focuses on federated settings where the dataset is partitioned amongst
collaborating institutions that wish to perform statistical tests securely. To that end, we
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present communication efficient methods for computing the test statistics that are more
efficient in terms of communication and runtime compared to an equivalent SMPC-based
method. An overview of the system architecture is shown in Figure 1.

Data Owner 1

• Initialize Analytics Request

• Configure Datasets and Analytics Parameters

External User

Data Owner 2

Private Dataset 1

Encrypted Statistical Value 

Computation 

Private Dataset 2

Encrypted Dataset 1 Encrypted Dataset 2
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MHE Computation Protocols

Encrypted P-Value 

Computation

Encrypted P-Value 
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Joint Decryption and Release Results to User

Privacy 
Barrier

Figure 1. Federated analytics system architecture.

As a prerequisite, we first present a new method for the secure division fully using
MHE. We find that even for a relatively moderate batch of divisions, our MHE-based
method is far more efficient in terms of communication and outperforms equivalent SMPC-
based methods in terms of runtime.

We then use this secure division method to compute the Welch’s t-test and χ2-test
statistics on real world datasets and find that our method remains highly accurate while
requiring far less communication than the SMPC method. This communication efficiency is
leveraged to result in a significant speedup in runtime for our MHE-based method.

Lastly, we design and implement a novel protocol to perform privacy-preserving table
lookup from a secret shared index. This is used to calculate the p-value of the Welch’s
t-test for which both the statistic and degree of freedom contain private information, and
polynomial approximations are hard to craft. This is a similar yet different problem from
that of private information retrieval (PIR) [15] where the table is held by the server and the
index is held by the client. In order to compute the secret shared index from the encrypted
statistic and degree of freedom, we design and implement another protocol that switches
between the MHE and SMPC representations—specifically one that preserves the packing
and “real” number encoding of the Cheon-Kim-King-Song variant of MHE [16].

2. Preliminaries
2.1. Multiparty Homomorphic Encryption

In this paper, we utilize the Cheon-Kim-Kim-Song [16] variant of the MHE scheme
presented in Ref. [17], which enables secure computations to be performed over “real”
numbers. Under this scheme, ciphertexts are encrypted under a public key with the
corresponding secret key being held in a distributed manner amongst the parties. Therefore,
decryption is an interactive process with each party performing some partial decryption,
which is combined in the end to result in the plaintext. Additionally, the MHE scheme
admits a collective bootstrapping protocol that is much more computationally efficient than
standard bootstrapping techniques for the non-multiparty CKKS scheme.
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The plaintext space is RQL = Z[X]QL /XN + 1 where QL = ∏L
i=1 qi for qi prime,N is a

power of 2 and L represents the number of levels or the number of multiplications allowed
before the noise in the ciphertext must be refreshed. The ciphertext space is consequently
R2

QL
. Under this scheme, N2 values can be packed into a single ciphertext. The following

functions are permitted in the CKKS variant of the MHE scheme:

• SecKeyGen(1λ): Each party Pi generates its own secret key ski with security parameter λ;
• ColKeyGen({ski}): The parties collectively generate the collective public key pk;
• Encode(v): Encodes a vector of complex numbers v ∈ CN/2 as a plaintext p̄ ∈ RQL ;
• Decode(p̄): Decodes a plaintext p̄ ∈ RQL into a vector of complex numbers v ∈ CN/2;
• Encrypt(pk, p̄): Encrypts plaintext p̄ ∈ RQL to ciphertext ĉ ∈ R2

QL
under the public

key pk;
• ColDecrypt(ĉ, {ski}): The parties collectively decrypt a ciphertext ĉ ∈ R2

QL
into a

plaintext p̄ ∈ RQL ;
• ColBootstrap(ĉ, {ski}): The parties collectively refresh the noise in the ciphertext

ĉ ∈ R2
QL

returning a new ciphertext ĉ′ ∈ R2
QL

with less noise;
• HAdd(ĉ, ĉ′): Adds 2 ciphertexts ĉ, ĉ′ ∈ R2

QL
;

• HSub(ĉ, ĉ′): Subtracts the second ciphertext ĉ′ from the first ĉ;
• HMul(ĉ, ĉ′): Multiplies 2 ciphertexts ĉ, ĉ′ ∈ R2

QL
;

• HRotate(ĉ, k): Assuming ĉ encodes and encrypts [v1, . . . , vd], returns a ciphertext ĉ′

encoding and encrypting [vk, . . . , vd, v1, . . . , vk−1];
• HInnerSum(c): For a ciphertext ĉ ∈ R2

QL
which encodes and encrypts a vector

v ∈ CN/2, compute the ciphertext that encodes and encrypts the vector v′ ∈ CN/2

which has, as all its elements, the L1 norm of the vector v i.e., v′ ≈ ||v||1 · 1.

Note that while technically the HAdd, HSub, and HMul operations have been defined
here to operate on two ciphertexts, we abuse the notation in this paper to allow the second
argument to be a plaintext (HAdd(ĉ, p̄)) or a constant (HAdd(ĉ, a)).

2.2. System Overview

System Model. The setting considered is one where N parties each locally hold a
partition of a global dataset wishing to collaboratively perform statistical analysis securely.
For the Welch’s t-test, we assume that the dataset is partitioned vertically whereas for
the χ2-test, we assume that the dataset is partitioned horizontally. Different types of
partitioning for the two statistical tests were focused so as to capture real world use cases
as explained in Section 4 and additionally to compare the scalability of the secure analytics
solutions with respect to the size of the dataset. For example, if the horizontal federated
setting was considered for the Welch’s t-test, then each party can simply compute the
mean and standard deviation on their local datasets and combine the results securely, thus
making the size of the dataset completely irrelevant in the performance analysis.

Threat Model. We consider the semi-honest setting with a dishonest majority where a
majority of parties can collude to share information and try to extract information about
the other parties.

3. Communication-Efficient Secure Batch Division

An important prerequisite for computing statistical tests securely is secure division.
There are two main algorithms that are used for division—Newton–Raphson and Gold-
schmidt. However, the Goldschmidt division (given below in Algorithm 1) is usually
preferred as the multiplications in each iteration can be done concurrently [18]. Moreover,
the Newton–Raphson method can only be used to calculate the inverse of the divisor with
the dividend being multiplied in the end to calculate the result. The Goldschmidt method,
on the other hand, is able to directly calculate the result, thus reducing the multiplicative
depth, which is a crucial consideration in the context of MHE.

Goldschmidt’s division algorithm begins with a “good” initial approximation and
iteratively improves upon the approximation. Specifically, a “good” initial approximation
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is defined as an approximation with relative error ε0 = 1− bw0 < 1 and it can be shown
through induction that after t iterations, at has relative error ε2t

0 [18], which makes this a
very efficient method.

Algorithm 1 Goldschmidt division

Require: a, b, T, w0 s.t. w0 is a “good” initial approximation to 1
b

Ensure: c ≈ a
b

a0 ← a
b0 ← w0
i← 0
while i < T do

ai+1 ← aiwi
bi+1 ← biwi
wi+1 ← 2− bi+1
i← i + 1

end while
return c = aT

Traditionally, in a SMPC setting, the initial approximation is obtained by normalizing
the denominator to the range (0.5, 1], where a well known “good” initial approximation
exists (w0 = 2.9142 − 2b, ε0 < 0.08578) [18]. The normalization is done through the
use of advanced operations such as Damgård et al.’s secure bit decomposition proto-
col [19]. However, in MHE, efficient secure bit decomposition protocols are not known
to exist, which forces us to obtain the initial approximation through other means. Our
solution is to relax the problem and assume that the denominator is known to exist
in some arbitrary range [b`, bu]. This is a safe assumption in the context of statistical
tests where the input variables are typically bounded, thus allowing us to compute the
bounds for the denominator as was the case for both our target applications of Welch’s
t test and χ2 test (see Section 4). Assuming that the denominator is in some arbitrary
range, we then construct a “good” initial approximation by utilizing optimal initial ap-
proximations that minimize the relative error of the initial approximation, which have
been published by Schlute et al. [20]. It can be shown that for a given denominator
b ∈ [b`, bu], the approximation w0 = −8

b2
`+6b`bu+b2

u
b + 8(b`+bu)

b2
`+6b`bu+b2

u
minimizes the relative error

ε0 = (bu−b`)2

b2
`+6b`bu+b2

u
=

b2
`−2b`bu+b2

u
b2
`+6b`bu+b2

u
< 1, which satisfies the constraint for a “good” initial

approximation for the Goldschmidt algorithm as well.
One important consideration in utilizing this method is that since we may not have tight

bounds on the denominator, the algorithm can take a large number of iterations—taking
more than 10 iterations for denominators in the range [1, 1× 104]—unlike the SMPC method,
which can finish within 2 iterations after normalization. While this theoretically results
in a high multiplicative depth circuit, we leverage the lightweight collective bootstrap-
ping protocol presented by Mouchet et al. [17] to trade off some communication cost for
computational efficiency.

Additionally, by leveraging the Single Instruction Multiple Data (SIMD) property
of MHE, our method allows us to compute an entire batch of divisions in one go, thus
resulting in much lower communication costs compared to performing a similar batch of
divisions in SMPC. Please see a full discussion based on the experimental results on the
tradeoffs of this method as compared to the standard SMPC method in Section 6. The full
secure division algorithm based on MHE is presented below in Algorithm 2.
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Algorithm 2 Homomorphic division (HDiv)

Require: Encryptions â, b̂, Range of denominator b`, bu, Number of iterations T
Ensure: Decode(ColDecrypt(ĉ)) ≈ a

b

ŵ0 = HAdd(HMul( −8
b2
`+6b`bu+b2

u
, b̂), 8(b`+bu)

b2
`+6b`bu+b2

u
)

â0 ← â
b̂0 ← ŵ0
i← 0
while i < T do

âi+1 ← HMul(âi, ŵi)
b̂i+1 ← HMul(b̂i, ŵi)
ŵi+1 ← HSub(2, b̂i+1)
if ŵi+1 will exceed mult. depth then

ColBootstrap(âi+1)
ColBootstrap(b̂i+1)
ColBootstrap(ŵi+1)

end if
i← i + 1

end while
return ĉ = âT

4. Secure Federated Statistical Tests
4.1. Welch’s t-Test

For the secure federated t-test, we focus on a problem setup where a global dataset is
split vertically amongst two clients. One of the clients holds the attributes of all samples
in the dataset whereas the other client holds the classes that each sample belongs to. This
is a practical setting especially in the healthcare industry where one entity has access to a
patient’s genotype information (attributes), whereas another entity has access to a patient’s
phenotype information (classes) and these entities collaborate to analyze their combined
data, as can be seen from Figure 2. One example of such an analysis is Polygenic Risk Score
Validation [21], which refers to the problem of verifying that genetic risk scores developed
on external populations (e.g., Caucasian) remain applicable to local populations (e.g., East
Asian). A common statistical test employed to do such testing is the t-test, which is a test
that compares the means of two groups.

Figure 2. Federated setting for Welch’s t-test. Institution A owns the genomic data, and institution B
owns the phenotype data, on the same set of patient IDs. They jointly do the federated t-test without
revealing any private data information to each other.

Formally, there are two clients. Client 1 has a vector of values v = [v1, . . . , vN ] such
that vi ∈ [0, 1] and client 2 has a vector of classes c = [c1, . . . , cN ] s.t. ci ∈ {0, 1}. Even
though, mathematically, vis do not need to be bounded, in the context of healthcare, these
values are usually normalized [22], thus making the assumption practical. If ci = 0, then vi
belongs to group 1 and if ci = 1, then vi belongs to group 2. The number of users in group 1
and group 2 are represented as n1 and n2 and are assumed to be publicly known. The task
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is to then calculate the t statistic t = X̄1−X̄2
s∆

securely where s∆ =

√
s2

1
n1

+
s2

2
n2

and X̄i and si

are the mean and standard error of samples in group i. Additionally, the degree of freedom

(
s2
1

n1
+

s2
2

n2
)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

is also calculated securely so that significance testing can be done. In order

to avoid having to calculate the square root securely, we instead calculate t2 = (X̄1−X̄2)
2

s2
∆

and leave the square root calculation to be done in cleartext without any additional leakage
of information.

In our method, we leverage the SIMD packing of MHE schemes to pack v and c into a
single ciphertext and calculate the numerators and denominators of the t2 and degree of
freedom values. We then use our secure batch division protocol presented in Section 3 to
perform the two divisions simultaneously before decrypting and releasing the results.

Note that since vi ∈ [0, 1], s2
1, s2

2 ∈ [0, 1], and the denominator of t2 is bounded in the
range [0, 1

n1
+ 1

n2
]. Meanwhile, the denominator of the degree of freedom is bounded in the

range [0, 1
n2

1(n1−1)
+ 1

n2
2(n2−1)

]. This information is used in our secure batch division protocol

to obtain the initial approximation to the denominator.

4.2. χ2-Test

For the secure federated χ2-test, we follow a similar problem setup as the one presented
by Wang et al. [14] where the global dataset is split horizontally amongst clients who
collaborate to perform the χ2-test to calculate the correlation between two attributes in the
dataset, which can be seen from Figure 3.

Figure 3. Federated setting for χ2-test. All the institutions own the same type of data, but for different
sample IDs. They jointly do the federated analytics on all the samples without revealing any private
data information to each other.

Formally, there are n clients, and client i has a horizontal partition of the global dataset
Di = {(x, y, v(i)xy )} where x ∈ X and y ∈ Y are categories of the contingency table and

v(i)xy ∈ Z≥0 is the observed number of samples in category x and y in the client’s local

contingency table. The global dataset is D = {(x, y, vxy) : vxy = ∑i∈[n] v(i)xy}. For the
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purposes of the χ2-test, the data in the contingency table is assumed to be discrete and
marginal statistics are represented as vx = ∑y∈Y vxy, vy = ∑x∈X vxy and v = ∑x∈X ,y∈Y vxy.
Lastly, the expectation of vxy if x and y are not correlated is defined a v̄xy =

vx∗vy
v . The

task is to then calculate the statistic sχ2(D) = ∑x∈X ,y∈Y
(vxy−v̄xy)2

v̄xy
securely from the local

contingency tables Di.
One key difference between the formulation of Wang et al. and our formulation is

that they assume that the marginals {vx}x∈X and {vy}y∈Y are non-private information
once they have been securely aggregated and therefore can be made public. However, as
much of the literature in the area of differential privacy recognizes marginals (which are
basically histograms) as private information [23], we make no such assumption and arrive
at a solution that is truly end to end secure.

In our method, we leverage the SIMD packing of MHE schemes to pack the entire
contingency table into a single ciphertext and utilize the secure batch division protocol

presented in Section 3 to calculate all of the (vxy−v̄xy)2

v̄xy
terms simultaneously. Finally, we

calculate the inner sum of the resulting ciphertext to calculate the sχ2(D) statistic securely.
It is to be noted that in this case, we can clearly see that v̄xy must be in the range

[0, N] where N is the total number of samples, which is crucial in obtaining the initial
approximation in our secure batch division protocol.

5. p-Value Computation

In order to compute the p-value of the Welch’s t-test from the encrypted t2 and degree
of freedom values, we design and implement two sub protocols. The first sub protocol
converts the encrypted t2 and degree of freedom values in the CKKS variant of MHE into
secret shared data. The secret shared values are then converted into a secret shared index of
a p-value lookup table by evaluating a simple rounding function using SMPC. Note that this
conversion cannot be fully done in MHE as it requires the rounding operation necessary to
convert “real” numbers into integers, which has not been efficiently implemented in MHE
yet. The second protocol takes in the secret shared index and uses the rotation operation in
MHE (HRotate) in order to perform a table lookup on the p-value lookup table.

5.1. MHE to SMPC Protocol

In Ref. [17], Mouchet et al. present an encryption to secret share (Enc2Share) protocol
for the BFV scheme and use it for multiplication triple generation. In the protocol, each
party Pi (other than P1) samples its own secret share Mi ∈ Rt (where Rt is the plaintext
space of the BFV scheme) and sends a partial decryption of the ciphertext with its own secret
share subtracted to P1. P1 fully decrypts the partial decryptions to get M1 = m−∑N

i=2 Mi
where m is the plaintext and N is the number of parties.

While this method works for integer-based HE schemes such as BFV where the plain-
text space is small, allowing Mi to be easily sampled uniformly from Rt, in approximate
arithmetic schemes such as CKKS, the size of the plaintext space presents a challenge to
the Enc2Share protocol. Nevertheless, a solution is presented in the lattigo library that
leverages the noise smudging approach of Asharov et al. [24] to construct secret shared
polynomials in the plaintext space, whose sum is the target plaintext but are statistically
indistinguishable from random polynomials.

However, this results in secret shared polynomials that have very large coefficients,
and it is not clear how such a protocol can be used in practice to switch between the
ciphertext encrypting a vector of real numbers [v1, v2, . . . , vd] and a vector of secret shared
fixed-point real numbers [[v1], [v2], . . . , [vd]]. A naive method for doing so would be to sum
the plaintext polynomials and perform the decoding fully using SMPC, which would result
in huge communication costs due to the large degree of the plaintext polynomials.

Instead, in our method, each party Pi instead decodes the polynomials first using the
Fast Fourier Transform but using high precision arithmetic (128 bit floating point) to arrive
at a vector of floating point numbers [v(i)1 , . . . , v(i)d ]. We note that since the smudging lemma
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was used in the generation of the secret shares, each element in the vector can in fact be
summed across the parties to arrive at the expected value, i.e., ∀k vk = ∑N

i=1 v(i)k . We can

then continue our computation in SMPC by taking in the necessary v(i)k s as “real” valued
inputs from each party and adding them up by using SMPC to arrive at the secret shared
representation of the original encryption.

5.2. Private Table Lookup

We first assume that each party Pi has a share of the secret index ki such that the secret
index k = ∑N

i ki mod N2 where there are N parties andN is the ring dimension of the MHE
scheme. P0 additionally has the lookup table L = [`1, `2, . . . , `N

2
] such that the parties want

to compute `k securely.
Firstly, P0 rotates the table by k0 rotations and encrypts it and sends this ciphertext to

Party 1. Each subsequent party Pi+1 then rotates the ciphertext received from Pi further
by ki+1. The last party, PN−1, sends the resulting ciphertext to P0, which multiplies the
ciphertext by the encoding of the vector [1, 0, . . . , 0] before all parties collectively decrypt the
ciphertext. The result will be the vector [`k, 0, . . . , 0] since rotations in MHE happen modulo
N
2 . Furthermore, as all but the resulting lookup value is masked in the final calculation and

the index of lookup value is not leaked in any way, we can conclude that this protocol is
indeed secure. Crucially, we notice that for lookup tables of size up to N2 (which in practice
is usually quite large—16,384), the number of rounds of this protocol is constant compared
to equivalent SMPC protocols where the number of rounds would depend on the size of
the lookup table. Further analysis of the communication efficiency and runtime can be
found in Section 6.4.

6. Benchmarks

Our benchmarks are run with two or three parties communicating over a LAN network
with an average bandwidth of 1 Gbps. Our MHE protocol is written using the lattigo [25]
library implementing the CKKS scheme [16] instantiated with the standard parameters
to achieve 128-bit security for a ring size of N = 32,768 (log QL = 730, log scale = 40).
Batches of size N2 = 16,384 can be processed simultaneously in this setting using the SIMD
property of the CKKS scheme.

Our methods are compared with equivalent algorithms written in the MP-SPDZ
framework based on the SPDZ2K protocol, which is stripped of the steps required for
malicious security (also known as semi honest mode) with a statistical security of 40-bits.
While we are using the 2 and 3 party settings to demonstrate the utility of our methods
over traditional SMPC approaches, it is to be noted that both our methods and the SMPC
approaches are flexible and can be extended to more parties.

6.1. Secure Batch Division

In comparing our secure batch division protocol, we fix three parties and focus on
two settings—one consisting of a small batch of divisions (N = 2) and one consisting of a
large batch of division (N = 128), which corresponds to the required number of divisions
for the Welch’s t-test and χ2-test, respectively. We then linearly extrapolate the runtime and
communication overhead of running the SMPC approach for a batch of 16384 divisions, as
this is not practical to test.

Assuming that we have a set of numerators a1, a2, . . . , aN and a set of denomina-
tors b1, b2, . . . , bN that are either encrypted (for our MHE protocol) or secret shared (for
the SMPC method), the task is to compute either encrypted or secret shared versions of
c1, c2, . . . , cN s.t. ci ≈ ai

bi
. In order to demonstrate the robustness and relative error of our

protocol, ai, bi are additionally randomly chosen from two ranges—a small positive range
[1× 10−4, 1] and a large positive range [1, 1× 104]. We compare three different metrics
averaged across five runs of each computation—communication overhead (MB), runtime
(s), and relative error (%)—and present the results in Tables 1–3, respectively. As the com-
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munication overhead and runtimes are similar in both ranges, only the results for the large
range is presented.

Table 1. Communication overhead (MB) of performing a batch of N divisions where numerators and
denominators are randomly chosen from [1, 1× 104].

N = 2 N = 128 N= 16,384

MHE SMPC MHE SMPC MHE SMPC

65.5 46.5 65.5 1852 65.5 234,743

Table 2. Runtime (s) of performing a batch of N divisions where numerators and denominators are
randomly chosen from [1, 1× 104].

N = 2 N = 128 N= 16,384

MHE SMPC MHE SMPC MHE SMPC

7.54 0.73 7.54 9.75 7.54 1232

Table 3. Relative error (%) of performing secure batch division where numerators (ai) and denomina-
tors (bi) are randomly chosen from various ranges.

ai, bi ∈ [1× 10−4, 1] ai, bi ∈ [1, 1× 104]

MHE SMPC MHE SMPC

0.0316 0.0126 0.0424 0.00294

We can see that while the SMPC method requires less communication and is 10× faster
when the number of divisions is low, even when the number of divisions is moderate, it
requires 30×more communication than our MHE method. This communication overhead
makes a difference even in the LAN setting, thus making our MHE method faster for a
moderate number of divisions. At scale, when considering the full supported batch of
divisions in MHE, we can clearly see that the SMPC method requires 235 GB of data to
be transferred between the parties, thus making it impractical even in a LAN setting. The
full amortized runtime cost of running secure batch division using our MHE method is
4.60× 10−4 s/division compared to the SMPC method’s 7.52× 10−2 s/division, which is a
more than a 100× improvement in runtime.

In terms of relative error, while we can see that the MHE method appears slightly more
accurate than the SMPC method, this is most likely due to the larger number of iterations
that the Goldschmidt division has to be run for in our MHE method owning to the large
range of possible values.

6.2. Secure Federated t-Test

We tested our secure federated t-test protocol against a polygenic risk score validation
use case using the 1000Genomes dataset [26]. We conduct a t-test based on the polygenic
risk score for cholesterol (PGS000192 [27] from the PGS Catalog) against three pairs of
classes—American and East Asian (Data ID 1, 1075 samples), European and African (Data
ID 2, 1526 samples), and Male and Female (Data ID 3, 3202 samples). We similarly compare
the communication overhead (MB), runtime (s), and relative error (%) of computing the t2

value and degree of freedom across the three pairs of classes in Tables 4–6, respectively.
It is clear that even when working with a small number of samples as in the American

and East Asian setting, the calculation of the mean and variance of the two groups creates
a huge bottleneck for the SMPC method, which has to exchange 50×more data amongst
the two parties, thus resulting in a 2× slowdown in runtime when compared to our MHE
method. This effect is further exacerbated in the other settings with the SMPC method
requiring 12 GB of communication between the parties in the Male and Female setting. This
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clearly shows that for even medium scale computations, the SIMD property of MHE vastly
improves performance and can potentially overcome the efficiency losses of performing
more complicated operations such as division.

Table 4. Communication overhead (MB) of running the secure federated t-test on each pair of classes
as indicated by the ID.

ID MHE SMPC

1 86.0 4008
2 86.0 5661
3 86.0 11,810

Table 5. Runtime (s) of running the secure federated t-test on each pair of classes as indicated by the ID.

ID MHE SMPC

1 25.3 42.9
2 25.5 60.9
3 29.2 129

Table 6. Relative error (%) of calculating t statistic and degree of freedom (d.f.) in the secure federated
t-test on each pair of classes as indicated by the ID.

ID
t d.f.

MHE SMPC MHE SMPC

1 4.04 0.0433 0.0897 0.0286
2 4.23 0.0161 0.0317 1.75
3 4.07 0.341 0.363 12.7

Overall, both methods have roughly the same relative error with our MHE method
being more accurate in calculating the degrees of freedom whereas the SMPC method is
more accurate in calculating the t statistic. On the whole, our MHE method has an average
relative error of 2.14% compared to the SMPC method’s 2.45%, which shows that both
methods are relatively accurate.

6.3. Secure Federated χ2-Test

We tested our secure federated χ2-test protocol against 3 of the 12 real world datasets
used by Wang et al. [14] listed below in Table 7. The three datasets (Mushroom, Credit, and
Adult) were chosen to cover a range of sizes for the contingency table (|D|) while keeping
the number of divisions practical for the SMPC method. We compare the communication
overhead (MB), runtime (s) and relative error (%) of computing the χ2-statistic across the
three datasets in Tables 8–10, respectively.

Table 7. Details of datasets used in benchmarking the secure federated χ2-test on various datasets.

Dataset Mushroom Credit Adult

Attr 1 Cap color Feature 6 Occupation
# Attr 1 10 10 14
Attr 2 Odor Feature 7 Native Country
# Attr 2 9 10 41
|D| 90 100 574
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Table 8. Communication overhead (MB) of running the secure federated χ2-test on various datasets.

Dataset |D| MHE SMPC

Mushroom 90 196 7814
Credit 100 196 8680

ADULT 574 196 49,631

Table 9. Runtime (s) of running the secure federated χ2-test on various datasets.

Dataset |D| MHE SMPC

Mushroom 90 19.0 41.8
Credit 100 19.3 46.9

ADULT 574 19.3 267

Table 10. Relative error (%) of calculating χ2-statistic in the secure federated χ2-test on various
datasets.

Dataset |D| MHE SMPC

Mushroom 90 1.06× 10−6 1.60× 10−5

Credit 100 2.03× 10−6 4.50× 10−5

ADULT 574 3.19× 10−3 1.51× 10−4

For the secure federated χ2-test, we can see that our MHE method is clearly much
more efficient in terms of the communication overhead and runtime as this is the perfect
setting to leverage the amortized cost of our secure batch division protocol. The minimum
number of divisions required is 90 for the Mushroom dataset where our MHE method is
already 2× faster than the SMPC method. At the high end, the ADULT dataset required
574 divisions to be performed simultaneously, resulting in a 10× improvement in runtime
and 300× improvement in communication for our MHE method over the SMPC method.

The secure batch division protocol remained highly accurate in this setting, with an
average relative error of 1.06× 10−3% for calculating the χ2 statistic in our MHE method
and 2.06× 10−4% in the SMPC method.

6.4. p-Value Computation

We tested our hybrid protocol for p-value computation that starts from encrypted t2

and degree of freedom values and performs the lookup using our MHE method against an
equivalent SMPC protocol, which starts from the secret shared t2 and degree of freedom
values and performs the lookup using SMPC. The size of the lookup table used was 16,320.
For the SMPC table lookup, we use the semi-bin-party from the MP-SPDZ library that
implements a semi-honest SMPC protocol over the binary domain instead of the SPDZ2K
protocol previously used for other benchmarks so as to present a fair comparison as lookup
operations are far more efficiently implemented in the binary domain as opposed to an
arithmetic domain. The runtime (s) and absolute error of computing the p-value across the
three test cases from the 1000Genome dataset previously used in Section 6.3 can be found
in Tables 11 and 12, respectively. The absolute error has been reported here instead of the
relative error as some of the p-values are very close to 0.

Table 11. Runtime (s) of calculating the p-value of the t statistic and degree of freedom previously
calculated in Table 6.

ID Hybrid SMPC

1 6.24 9.08
2 7.72 8.64
3 6.79 8.99
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Table 12. Absolute error of calculating the p-value of the t statistic and degree of freedom previously
calculated in Table 6.

ID Hybrid SMPC

1 5.45× 10−3 5.47× 10−3

2 1.68× 10−9 1.53× 10−12

3 2.52× 10−2 2.52× 10−2

We notice that our hybrid method is much faster compared to the pure SMPC method.
This is mainly due to the number of rounds of communication taken up by the SMPC
lookup, which was 33,245. Compared to the SMPC lookup, our hybrid method only took
1150 rounds, which is 30× less. In fact, the number of rounds of communication made
such an impact that even though our hybrid method resulted in 236 MB of communication
compared to the SMPC lookup, which only took 126 MB, our hybrid method was up to
1.5× faster than the SMPC method in the LAN environment. The increase in communica-
tion for the MHE lookup is mainly due to the extra MHE to SMPC protocol that had to be
run before the lookup could be performed, with the actual lookup protocol only taking
about 36 MB of communication. This clearly shows that our hybrid method is far more
efficient than the pure SMPC method for p-value calculation. We see that the table lookup
method is fairly accurate with very small errors across the three experiments.

7. Conclusions

This work considered the problem of computing statistical tests securely in a federated
setting using MHE. To that end, we presented a new method for secure division based
on MHE that is communication efficient when performing large batches of divisions
simultaneously. We applied this method to two common statistical tests—Welch’s t-test
and χ2-test—in the vertical and horizontal federated settings, respectively. We evaluated
our methods against equivalent methods over secret shared data using the MP-SPDZ
framework and found that our methods are a lot more communication-efficient. Even
when the parties are communicating over a high speed LAN network, this communication
efficiency is leveraged to achieve a maximum of 5× and 10× improvement in runtime
when computing the Welch’s t-test and χ2-test, respectively. Moreover, we designed and
implemented novel protocols to switch between MHE and SMPC for the CKKS scheme and
to perform a table lookup using a secret shared index. We used the protocols to compute
the p-value for the Welch’s t-test and found that our method was 1.5× faster than the pure
SMPC-based method. We believe that our method opens up the possibility to perform large
scale complicated analyses on encrypted data efficiently by switching between MHE and
SMPC for approximate arithmetic, which was not previously possible with integer-based
arithmetic. As for future work, we plan to expand our work and apply our methods to
more applications with larger scale settings.
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