
Citation: Gao, L.; Huang, Y.;

Zhang, X.; Liu, Q.; Chen, Z.

Prediction of Prospecting Target

Based on ResNet Convolutional

Neural Network. Appl. Sci. 2022, 12,

11433. https://doi.org/10.3390/

app122211433

Academic Editors: Andrea Prati,

Luis Javier García Villalba

and Vincent A. Cicirello

Received: 11 September 2022

Accepted: 13 October 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Prediction of Prospecting Target Based on ResNet
Convolutional Neural Network
Le Gao 1, Yongjie Huang 1, Xin Zhang 1, Qiyuan Liu 2,* and Zequn Chen 3

1 Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
2 State Key Laboratory of Environmental Criteria and Risk Assessment,

Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3 Faculty of Social Sciences, Lingnan University, Hongkong 999077, China
* Correspondence: liu.qiyuan@craes.org.cn

Abstract: In recent years, with the development of geological prospecting from shallow ore to deep
and hidden ore, the difficulty of prospecting is increasing day by day, so the application of computer
technology and new methods of geological and mineral exploration is paid more and more attention.
The mining and prediction of geological prospecting information based on deep learning have become
the frontier field of earth science. However, as a deep artificial intelligence algorithm, deep learning
still has many problems to be solved in the big data mining and prediction of geological prospecting,
such as the small number of training samples of geological and mineral images, the difficulty of
building deep learning network models, and the universal applicability of deep learning models. In
this paper, the training samples and convolutional neural network models suitable for geochemical
element data mining are constructed to solve the above problems, and the model is successfully
applied to the prediction research of gold, silver, lead and zinc polymetallic metallogenic areas in
South China. Taking the Pangxidong research area in the west of Guangdong Province as an example,
this paper carries out prospecting target prediction research based on a 1:50000 stream sediment
survey original data. Firstly, the support vector machine (SVM) model and statistical method were
used to determine the ore-related geochemical element assemblage. Secondly, the experimental data
of geochemical elements were augmented and a dataset was established. Finally, ResNet-50 neural
network model is used for data training and prediction research. The experimental results show
that the areas numbered 9, 29, 38, 40, 95, 111, 114, 124, 144 have great metallogenic potential, and
this method would be a promising tool for metallogenic prediction. By applying the ResNet-50
neural network in metallogenic prediction, it can provide a new idea for the future exploration of
mineral resources. In order to verify the generality of the research method in this paper, we conducted
experimental tests on the geochemical dataset of B area, another deposit research area in South China.
The results show that 100% of the prediction area obtained by using the proposed method covers
the known ore deposit area. This model also provides method support for further delineating the
prospecting target area in study area B.

Keywords: earth sciences; convolutional neural network; deep learning; mining area

1. Introduction

Geological and mineral exploration is the core work of geologists to provide resources
and an energy guarantee for the stable development of society, and its main task is to use
scientific and technological methods to carry out reasonable metallogenic prediction, and
to discover and increase the reserves of resources [1]. In recent years, with the decrease
in surface ore and shallow ore, the difficulty of prospecting is increasing. Geological
prospecting and exploration work is gradually developing towards deep ore and hidden ore.
At present, the difficulties of geological and mineral exploration are mainly reflected in the
complex geological overlay, deep deposit burial resulting in weak prospecting information,
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complex deposit preservation environment factors, multi-stage mineralization resulting
in complex metallogenic information and so on. In order to solve the above problems,
geological experts and scholars pay more and more attention to the application of computer
technology and new methods in geological and mineral exploration research [2–7]. In recent
years, with the rapid development and gradual maturity of computer technology and
artificial intelligence technology, it has become possible to introduce computer technology
and deep learning methods into the field of geological prospecting and exploration.

The mining and prediction of geological prospecting information based on deep
learning have become a hot research field in earth science. As a deep artificial intelligence
algorithm, deep learning has been actively applied in the field of earth science research
and has made many innovative achievements [8–13]. The authors of [14] summarized the
achievements of artificial intelligence and big data technology in the field of earth science
in the past, and proposed that artificial intelligence and big data technology would be the
main development direction of earth science research in the future. The authors of [15] used
deep learning technology to predict the baseline map of geological disasters in Australia,
and the algorithm model obtained can provide technical support for related fields. In [16],
the authors established the HPC cluster platform, which provided platform support for
the application of deep learning technology in geosciences scientific data. The authors
of [17] used the deep learning algorithm and big data analysis to draw the mineral prospect
map, and the prediction results showed that the drawn prospect area had a strong spatial
relationship with the known mineralization location. The authors of [18] used machine
learning models and geostatistical methods to predict the geochemical concentration of
iron in the iron ore research area in southern Cameroon. The results showed that random
forest was the algorithm of choice for predicting Fe geochemical concentrations. The
authors of [19] compared the application of multiple deep learning methods in intelligent
mineral identification of different data types, and proposed that transfer learning can
effectively solve the problems of insufficient geological data samples and class imbalance.
The authors of [20] used deep learning methods to perform intelligent recognition of
polarizing microscopic images of five minerals and obtained good recognition results. The
authors of [21] used principal component analysis, cluster analysis and partial least squares
dimensionality reduction method to conduct targeted prospecting prediction for stream
sediment geochemical survey data. The analysis results have a high degree of coupling
with known geological conditions of ore deposits, which can provide reliable data support
for further prospecting in this area. In [22], the authors used the random forest algorithm
to identify geochemical anomalies and delineate three-dimensional metallogenic prospects.
The authors of [23] used the convolutional neural network to predict lead-zinc deposits in
Anhui Province and successfully delineated three prospecting targets. The authors of [24]
used the AlexNet network to predict sedimentary manganese deposits and delineated a
total of four metallogenic potential areas, with a high probability of undiscovered deposits
in the predicted area. It can be seen that computer technology and deep learning methods
are of great significance in the field of earth science research, which can effectively predict
the target areas of geological and mineral exploration to a certain extent.

However, deep learning methods are still in the exploration stage in geological
prospecting and metallogenic prediction, and there are still many problems to be solved.
There are a series of common problems, such as the small number of training samples of
geological and mineral images, the difficulty of building deep learning network models,
and the universal applicability of deep learning models. Aiming at the above problems,
this paper takes the stream sediment geochemical data in the Pangxidong research area,
Guangdong Province as the research object, constructs the training samples and ResNet-50
convolutional neural network model suitable for geochemical element data mining, and
compares the effect of this model with other deep learning models. We used the trained
model to predict the artificial intelligence mineral target area in the study area. In order to
verify the generality of the research method in this paper, we also conducted experimental
model testing and data analysis on the geochemical dataset of B area, another ore deposit
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research area in South China. Based on this, we discuss the significance of the research
method in this paper to provide technical support for the geological prospecting target area.

2. Study Area and Data
2.1. Geological Setting

The study area is located in the Pangxidong area of Guangdong Province, on the
southwestern edge of the Yunkai metamorphic body of a key metallogenic belt in China,
the southern part of the Qinhang metallogenic belt (combination zone) (Figure 1) [25]. The
Qin-Hang metallogenic belt is formed by the collision and splicing of the Yangtze plate
and the Cathaysia plate. It runs through eastern Hunan and central Jiangxi, winding in
the northeast direction with a length of about 2000 km and a width of about 70–130 km.
Hundreds of large- and medium-sized deposits have been proven in this metallogenic
belt. What is more, the Pangxidong area has developed into one of the most important
silver–gold polymetallic ore-producing areas in South China and even in China, with
excellent metallogenic geological conditions and great prospecting potential.
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Figure 1. The simple geological map of research area. (1, Quaternary; 2, Early-Yanshanian granite;
3, Late Yanshanian; 4, Upper Proterozoic migmatite; 5, Lower Member of Middle–Upper Proterozoic
Fengdongkou Formation; 6, Upper Member of Middle–Upper Proterozoic Fengdongkou Formation;
7, Middle–Upper Proterozoic Lankeng Formation; 8, Devonian Yangxi Formation; 9, Devonian Lao-
hutou Formation; 10, Devonian-Carboniferous Maozifeng Formation; 11, Devonian Xindu Formation;
12, Silurian Liantan Formation; 13, Faults; 14, Deposit).

The study area has experienced the tectonic evolution history of the Jining movement,
the Caledonian movement and the Indosinian Yanshanian movement [26]. Tectonically, it
belongs to the southern margin of the Yunkai uplift area in western Guangdong. It has been
a long-term uplift area since the late Paleozoic, with complete stratigraphic outfall pairs,
complex structure and frequent magmatic activity [27]. There are three groups of deep
and large faults in the area according to the direction, including the NE-NE Bobai–Cenxi
fault zone, the Xinyi–Lianjiang fault zone, the Lianjiang–Yangjiang fault zone and the
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Luoding–Guangning fault zone. There is a close relationship between gold and silver
mineralization and deep faults in the Pangxidong area, which is controlled by a certain
tectonic system. The intrusive rocks are widely developed and mainly exposed in the west
and north of the study area.

2.2. Geochemical Data

In this study, the sampling area of stream sediment is 1,694 km2, and the average
sampling density is about 4.27 sample/km2. A total of 7234 samples, including sixteen
chemical elements, such As Cu, Pb, Zn, Mn, Sn, W, Ag, Au, B, Sb, Bi, Mo, Hg, F, Ba, were
analyzed and measured. Among them, Au was analyzed by chemical spectrometry; B,
Sn and Ag were analyzed by spectral quantitative method; Cu was analyzed by atomic
absorption method; Ba, Mn, Pb and Zn were analyzed by full spectrum spectrometry; As,
Sb, Bi and Hg were analyzed by atomic fluorescence method; and F was analyzed by ion
electrode method. The Mo and W elements were analyzed by catalytic polarography.

3. Study Method
3.1. Convolutional Neural Networks

The convolutional neural network (CNN) is currently one of the representative neural
networks in the field of deep learning technology [28] This theory was originally proposed
by Yann et al. and has only been rapidly developed and applied in recent years [29]. CNN
design originates from the research of visual neuroscience on simple cells and complex
cells of animal brain visual cortex, and constructs the neural network model by simulating
the processing process of cell visual information. CNN includes input, convolutional,
normalization, activation pooling, full connection, softmax output and other operations.
LeNet marked the official display of CNN, followed by AlexNet [30,31] and VGG [32,33],
and now ResNet [34,35] is widely used, CNN has been continuously improved and well
applied in various fields [36–39].

3.1.1. Convolutional Layer

The convolution layer of the convolutional neural network has two dimensions of
height and width, so it is most commonly used for two-dimensional convolution operations.
Generally, the convolution operation is realized by correlation operation, that is, a two-
dimensional kernel array (also called convolution kernel) is applied to the input data to
obtain new two-dimensional data. Then, the convolution kernel moves on the input data
through a certain step, and each move is a convolution operation. Through continuous
convolution operations on the input data, the features of the input data are extracted from
each convolution nuclear to extract one feature of the data, and N convolution nuclear to
extract N features.

3.1.2. Normalization Layer and Activation Function

Batch data are normalized before output, and normalized layers are placed between
each layer of the whole network, which can make the intermediate output of the whole
network stable in numerical terms, and prevent the gradient disappearance or gradient
explosion in the backpropagation of the neural network, so that the training is more stable.

The activation function can increase the nonlinearity of the neural network and
strengthen the learning ability of the neural network, such as the Rule activation function,
the Sigmoid activation function, the Tanh activation function and so on. The Rule activa-
tion function only keeps positive data and clears negative data to 0, and the derivative
of positive data is 1 during reverse propagation, which solves the problem of gradient
disappearance and has good operation efficiency. The Sigmoid activation function limits
the value range of the output to between (0, 1), making the data smoother and easier to
take the derivative. However, it is easy to lose the gradient when the derivative value is
(0, 0.25). Tanh activation function limits the value range of the output to between (−1, 1),
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and the derivative range is between (0, 1). Compared with the Sigmoid activation function,
the problem of gradient disappearance is alleviated.

3.1.3. Pooling Layer

Pooling operation is mainly used for feature dimension reduction to reduce the number
of parameters, and reduce the fitting situation, as well as improve the fault tolerance
of the models at the same time. The common pooling operations include maximum
pooling and average pooling, and the operation is similar to the convolution operation,
which continuously moves the input data through a two-dimensional array and takes the
maximum or average value of the data in the two-dimensional array.

3.1.4. Full Connection Layer

After continuous feature extraction, the neural network will eventually access a full
connection layer. The full connection layer is connected with the nodes of the upper layer;
however, in order to solve the overfitting problem of the neural network model, the discard
method is generally used to discard the extracted features with a certain probability. The
full connection layer can increase the nonlinearity of the neural network, reduce network
parameters and obtain the final mapping result.

3.2. ResNet Neural Network

The ResNet neural network was proposed in Geosciences by authors [35]. A direct
channel is established through ResNet neural network, which combines input and output,
effectively alleviates the loss and loss of geoscience information caused by convolution
operation and, also plays a positive role in solving the problem of gradient disappearance
or explosion in the deep network. As shown in the network structure in Figure 2, the
identity block defines three convolution operations and protects the integrity of geoscience
information through direct channels. After convolution, the feature map is normalized in
batches and processed by the activation function, so as to enhance the ability of the model
to simulate synthetic ore prediction. Specifically, first, use 7 × 7 and the maximum pooling
layer to extract sample features and reduce dimensions. Then, the geoscience features of
the samples are further extracted through four convolution layers containing 3, 4, 6 and
3 identity blocks, respectively. Then, the global average pooling layer is used to further
reduce the sample dimension, and finally, the full connection operation is performed to
obtain the mineralization prediction. It is worth noting that the input size of W × H × n
is obtained by preprocessing the geochemical data, where W denotes width, H denotes
height and n denotes the number of geochemical elements. The data preprocessing method
is covered in Section 4.1. The output is the probability of mines and without mines.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

Figure 2. The structure chart of Resnet-50. 

3.3. Data input and Softmax output 

The input data is made up of different dimensions, which can vary greatly in value. 

Therefore, the data needs to be normalized and the value of each dimension value is de-

termined to be in the range of [0, 1]. For the lack of training data, input data is generally 

augmented. Then, more data can be generated by randomly flipping, translating and clip-

ping the input data. After these processes, the data will be trained as a model of the neural 

network. 

The output of each node in the full connection layer is a numerical value in machine 

learning; however, a probability is needed to judge the quality of the classification model. 

Therefore, the softmax function is widely used to evaluate the output of the full connec-

tion layer as Equation (1). This function would map the output of the fully connected layer 

to the interval of [0, 1], and the output result can be regarded as the probability value of 

each category. 

1

softmax( )
i

i

z

i K z

k

e
z

e
=

=


 (1) 

where Zi is the output of the ith node of the full connection layer, K is the number of output 

nodes of the full connection layer, that is, the number of classification categories. 

  

Figure 2. The structure chart of Resnet-50.



Appl. Sci. 2022, 12, 11433 6 of 14

3.3. Data Input and Softmax Output

The input data is made up of different dimensions, which can vary greatly in value.
Therefore, the data needs to be normalized and the value of each dimension value is
determined to be in the range of [0, 1]. For the lack of training data, input data is generally
augmented. Then, more data can be generated by randomly flipping, translating and
clipping the input data. After these processes, the data will be trained as a model of the
neural network.

The output of each node in the full connection layer is a numerical value in machine
learning; however, a probability is needed to judge the quality of the classification model.
Therefore, the softmax function is widely used to evaluate the output of the full connection
layer as Equation (1). This function would map the output of the fully connected layer
to the interval of [0, 1], and the output result can be regarded as the probability value of
each category.

softmax(zi) =
ezi

∑K
k=1 ezi

(1)

where Zi is the output of the ith node of the full connection layer, K is the number of output
nodes of the full connection layer, that is, the number of classification categories.

4. Results and Discussion
4.1. Data Preprocessing

At first, the geochemical data, including the latitude and longitude coordinates of each
sampling point and the information on 16 kinds of geochemical elements of sediments,
were made into a data set. In this study, inverse distance weighted interpolation was used
to process sediment data with 3072 × 3072 grid cells, as displayed in Figure 3. The grid
map generated by Au, Ag, Cu and Hg can also be regarded as an element content map.
Grid data are normalized to make the mean value as 0 and variance as 1 by following the
normalization formula Equation (2).

X′ =
X− X

σ
(2)

where X′ is the normalized value, X represents the mean value of element data and σ is the
variance of the element data.
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In this study, geochemical elements related to mineralization were selected from 16
geochemical elements, and the Area Under Curve (AUC) value and ZAUC value of each
element were calculated using the traditional support vector model [40,41]. The theoretical
background of the SVM emanates from the principles of empirical risk and structural risk
minimization principle [42]. The basic idea of SVM algorithm is to solve the separation
hyperplane that can correctly partition the training data set and has the largest geometric
interval. The results are shown in Table 1.

Table 1. The AUC value and ZAUC value of each element.

Element AUC ZAUC Element AUC ZAUC

Au 0.6024 2.8395 B 0.5901 2.4839

Sn 0.6065 2.9595 Cu 0.6311 3.6977

Ag 0.6762 5.1563 Ba 0.6147 3.2020

Mn 0.5573 1.5617 Pb 0.5778 2.1341

Zn 0.5450 1.2232 As 0.5655 1.7893

Sb 0.5942 2.6017 Bi 0.5901 2.4839

Hg 0.6393 3.9516 Mo 0.5983 2.7203

W 0.5778 2.1341 F 0.5696 1.9037

The area enclosed by the Receiver Operating Characteristic Curve (ROC) drawn by
geochemical data classification is the AUC value, which ranges from (0.5, 1) [41]. The
higher the AUC value is, the better the performance of the classification model is. The
random variable ZAUC satisfies the standard normal distribution, and the critical value is
obtained by comparing the standard normal distribution table to detect whether there is a
significant difference between AUC and 0.5. For example, when the significance level is
0.01 and ZAUC = 2.58, it can be considered that there is a 99% probability that the AUC
value and 0.5 have a significant difference. The critical value 2.58 was selected as the ZAUC
value was greater than the significance level 0.01. In other words, a total of eight elements
including Au, Sn, Cu, Ag, Ba, Sb, Hg and Mo were selected as indicative elements for ore
target prediction.

4.2. Data Set Construction

In order to solve the problem of classification imbalance in geochemical data, which
has few ‘known ore’ locations and many ‘unknown ore’ locations, the method of data
augmentation has been adopted to slide the ore point [43]. As shown in Figure 4, Data
were amplified to generate 212 areas with ‘ore’ locations and randomly searched for
225 areas with “no ore”. In this study, the grid graphs generated by eight elements are
integrated together to form a data training set consisting of 437 data sets with each data
set of 256 × 256 × 8. Before each iteration, the data were randomly flipped horizontally
and vertically and trimmed to 224 × 224 as the text input of the neural network.
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Figure 4. The process of sliding the data.

In this study, a grid of 3072 × 3072 was divided and 144 (12 × 12) data were generated.
As shown in Figure 5, among them, there are 29 ‘ore’ areas and 115 ‘no ore’ areas, that is,
the test set of the study consists of 144 data sets with each contains 256 × 256 × 8 data. The
test set was cut into 224 × 224 grids and used as the input of neural network to test the
performance of the trained model.
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Figure 5. Test experimental data. (1, Quaternary; 2, Early-Yanshanian granite; 3, Late Yanshanian;
4, Upper Proterozoic migmatite; 5, Lower Member of Middle–Upper Proterozoic Fengdongkou
Formation; 6, Upper Member of Middle–Upper Proterozoic Fengdongkou Formation; 7, Middle–
Upper Proterozoic Lankeng Formation; 8, Devonian Yangxi Formation; 9, Devonian Laohutou
Formation; 10, Devonian–Carboniferous Maozifeng Formation; 11, Devonian Xindu Formation;
12, Silurian Liantan Formation; 13, Faults; 14, Deposit; 15, Test data point).
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4.3. Experiments Based on ResNet-50

The experimental platform is Tesla V100 32 GB GPU, and the deep learning framework
is Pytorch. Accuracy, AUC and F1 values are used to verify the performance of the model.

In this study, the ResNet-50 convolutional neural network was used to train the
comprehensive training set, and the SGD optimizer was used for training [44,45]. The
momentum is 0.1, the weight decay is 1e-4, the loop iteration is 120 times and the initial
learning rate is 0.01, every 30 times. The attenuation is 50%, and the batch size is 32.

Table 2 shows the experimental results of ResNet-50 compared with various popular
CNN algorithms. ResNet is superior to other algorithms in Accuracy, AUC and Recall. This
proves the effectiveness of using Resnet for prospecting target prediction.

Table 2. Experimental results.

Method Accuracy AUC Recall

MobileNet [46] 55.82 55.44 16.66

GoogleNet [47] 54.36 54.03 19.60

ShuffleNet [48] 55.33 54.97 17.64

ResNet 56.79 56.53 24.50

The training results of the experimental training set are shown in Figure 6. With the
increase in training times, the loss of cross entropy decreases and the accuracy increases.
Figure 6a shows the accuracy of training results. After the 60th iteration, the increase rate of
accuracy began to decline until the 95th iteration began to stabilize, the accuracy rate was
around 99% and the highest accuracy reached 99.31%. Figure 6b shows the cross-entropy
loss image. The cross-entropy loss decreases after 40 iterations and becomes stable after
100 iterations. And the cross-entropy loss is about 0.04 and the lowest cross-entropy loss is
0.02381. The experimental results show that the model can predict the prospecting target
area effectively after training.
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In this study, accuracy AUC and F1 scores were used as indicators to evaluate the
prediction performance of the neural network model. F1 score is an indicator to measure
the performance of the binary model. F1 values of each category were calculated and then
averaged. The evaluation index of the prediction results of this experiment are with an
accuracy of 86.11%, AUC of 0.7454 and F1 score of 0.7653, respectively. The experiment
shows that it is effective and reliable to use the existing geochemical data to train the neural
network model and use the model to predict the ore target area.
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Figure 7 is a visual display of prediction results. For 144 data in the test set, numbered
from 1 to 144, a total of 23 regions are predicted to be favorable metallogenic target areas,
and 121 regions are general areas. In 23, an advantage, including mining domain, numbers
27, 29, 50, 56, 62, 64, 66, 85, 96, 97, 107, 113, 141, 142, 143 consistent with research in the
known ore target area, is given to illustrate the effectiveness of the model prediction results.
While the eight regions, including 9, 38, 40, 95, 111, 114, 124, 144, are the metallogenic
prospects predicted by this research model, and are not marked as ore area data at present,
so it is predicted that these eight regions have great ore-bearing potential.
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Figure 7. The prediction results. (1, Quaternary; 2, Early-Yanshanian granite; 3, Late Yanshanian;
4, Upper Proterozoic migmatite; 5, Lower Member of Middle–Upper Proterozoic Fengdongkou
Formation; 6, Upper Member of Middle–Upper Proterozoic Fengdongkou Formation; 7, Middle–
Upper Proterozoic Lankeng Formation; 8, Devonian Yangxi Formation; 9, Devonian Laohutou
Formation; 10, Devonian–Carboniferous Maozifeng Formation; 11, Devonian Xindu Formation;
12, Silurian Liantan Formation; 13, Faults; 14, Deposit; 15, Predicting area).

Figure 8 is a confusion matrix, showing the number of True Negative (TN), False
Positive (FP), False Negative (FN) and True Positive (TP) samples. From the figure, we
can see that TN is the highest, followed by TP. This proves that ResNet-50 can effectively
identify samples without mines and has a certain effect on the prospecting target prediction.



Appl. Sci. 2022, 12, 11433 11 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 

Figure 7. The prediction results. (1, Quaternary; 2, Early-Yanshanian granite; 3, Late Yanshanian; 4, 

Upper Proterozoic migmatite; 5, Lower Member of Middle–Upper Proterozoic Fengdongkou For-

mation; 6, Upper Member of Middle–Upper Proterozoic Fengdongkou Formation; 7, Middle–Upper 

Proterozoic Lankeng Formation; 8, Devonian Yangxi Formation; 9, Devonian Laohutou Formation; 

10, Devonian–Carboniferous Maozifeng Formation; 11, Devonian Xindu Formation; 12, Silurian 

Liantan Formation; 13, Faults; 14, Deposit; 15, Predicting area). 

Figure 8 is a confusion matrix, showing the number of True Negative (TN), False 

Positive (FP), False Negative (FN) and True Positive (TP) samples. From the figure, we 

can see that TN is the highest, followed by TP. This proves that ResNet-50 can effectively 

identify samples without mines and has a certain effect on the prospecting target predic-

tion. 

 

Figure 8. Confusion matrices. Figure 8. Confusion matrices.

Finally, in order to verify the generality of the research method in this paper, we
conducted experimental tests on the geochemical dataset of Area B, another deposit research
area in South China. The prediction results are shown in Figure 9. The experimental results
show that 100% of the predicted area obtained by the research method in this paper
covers the known ore deposit area, and the experimental results also provide indicative
significance for further delineating the prospecting target area in study area B.
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5. Conclusions

Based on artificial intelligence deep learning, this paper uses the convolutional neural
network to learn the spatial distribution relationship between stream sediment geochem-
ical element datasets and known minerals in the Pangxidong research area, Guangdong
Province. A variety of machine learning methods were used to construct and test the
algorithm model, and metallogenic prediction and delineation of prospecting targets were
carried out to explore the possibility of geological and mineral mineralization prediction
based on the deep learning algorithm. The main conclusions are as follows:

(1) When the number of training samples of geological and mineral images is small,
deep learning is also feasible for metallogenic prediction, which can achieve the goal of
automatic data acquisition and metallogenic prediction by computer. In this study, through
the ResNet-50 convolutional neural network, the goal of researchers’ input of geochemical
and geological data and computer intelligent prediction has been preliminarily achieved.

(2) The support vector machine method was used to process 16 kinds of geochemical
data to obtain the AUC value of each element, and then the ZAUC value was calculated by
statistical method. The eight elements, Au, Sn, Cu, Ag, Ba, Sb, Hg and Mo, were identified
as ore-related elements by comparison with the standard positive gravity distribution table.
The influence of unrelated geochemical elements on the experiment is greatly reduced, and
the complexity of the neural network model is also reduced.

(3) The convolutional neural network can effectively explore the coupling relationship
between surface geochemical element concentration distribution and underground mineral
space emplacement. After 95 training times in this study, the accuracy of the ResNet-50
convolutional neural network model is 99%, and the loss entropy is 0.04. We can consider
that the neural network model is successfully trained and the accuracy is effective and
reliable. The neural network model is scientific and effective in predicting the ore-forming
target area in the experimental area.

(4) The study area was divided into 144 subregions (12 × 12), and the two trained
models were used for prediction, and the experimental results confirmed each other. The
accuracy of the experimental results was 86.11%. Among them, 15 ore-bearing regions
coincide with the known ore-bearing regions. In addition, the model of this study predicts
that these areas, numbered 9, 38, 40, 95, 111, 114, 124, 144, have a high probability of
mineralization, which can be further studied and exploration recommendations can be
made for these areas.

(5) In order to verify the generality of the research method in this paper, we conducted
experimental tests on the geochemical dataset of study area B of the deposit. The experi-
mental results show that 100% of the prediction area obtained by the research method in
this paper covers the known ore deposit area, and the model provides a scientific basis
for the prediction of metal ore in study area B, indicating that the model has universal
applicability.
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