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Abstract: Aiming at the problems of subjective enhancement caused by the discretization of credit
data and the lack of a multi-dimensional portrait of credit users in the current credit data research, this
paper proposes an improved Fuzzy MLKNN multi-label learning algorithm based on MLKNN. On the
one hand, the subjectivity of credit data after discretization is weakened by introducing intuitionistic
fuzzy numbers. On the other hand, the algorithm is improved by using the corresponding fuzzy
Euclidean distance to realize the multi-label portrait of credit users. The experimental results show
that Fuzzy MLKNN performs significantly better than MLKNN on credit data and has the most
significant improvement on One Error.
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1. Introduction

The Credit Reference Database of the People’s Bank in China is a fundamental credit
database in which the basic information and credit information of legal persons and
organizations are collected, sorted, preserved, and processed in accordance with the law,
where credit data are generally divided into corporate credit data and personal credit
data [1]. An enterprise’s credit report data report generally includes the basic information of
the enterprise, affiliated company information, financial statements, information summary,
credit history, etc., while in a personal credit report, the content generally includes basic
personal information, work, and residence. Information, individual credit card information,
default information, etc. [2]. With the expansion of credit reporting, the credit reporting
system is constantly being upgraded. The personal education and residence information
of the first-generation system has been further improved, and the loan repayment record
has been increased from two years to five years. It is known as “the most stringent credit
investigation system in history” [3]. From a macro perspective, based on credit data,
through database technology and the credit analysis system, it can help banks obtain
various credit reports, thereby providing a reference for credit demanders to formulate
plans and identify risks. At the same time, regularly publishing a blacklist of untrustworthy
enterprises, introducing honest enterprises, and releasing relevant information to the
public can play a role in monitoring bad business practices and encouraging honesty and
trustworthiness. Therefore, credit data is the basic link to the operation of the social credit
system, and it is of great significance for the realization of the functions of the social credit
system. From a micro perspective, the revealing function of personal credit data can help
individuals prove their credit status in a short period, thereby helping borrowers with good
credit to obtain loans quickly. For lending institutions, they can also quickly learn about
lenders to help judge and control credit risks and to assist them in credit management
activities on this basis [4].

Categorized from the perspective of data processing, credit data mainly includes
original survey data and processed data. From the perspective of data attributes, credit
data is mainly divided into quantitative and qualitative data. Qualitative data is a record
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of some facts described in language form, and quantitative data can be directly used for
quantitative analysis. Many qualitative data can be quantified, but credit data itself has
the characteristics of many variables, a large amount of sample information, and is non-
intuitive [5]. Therefore, how to intuitively obtain the user’s credit information from a large
amount of data has become an urgent problem to be solved. In recent years, research
on data mining has emerged. Some scholars have discussed the relationship between
data mining and credit reporting systems, sorted out the basic framework of applying
data mining in credit reporting systems, and applied traditional data mining methods to
handling credit data [6]. According to the characteristics of credit data, some scholars use
the method of feature selection and other basic machine learning algorithms to process
personal credit data to study the personal credit status of users [7,8].

However, the limitation of past research is that, on the one hand, the discretization
method used to process credit information data in the past process will weaken the objec-
tivity of the data. On the other hand, the classification method of classical machine learning
is used, along with a single label, such as portraits of users and “good” and “bad”, which
will bring about a lot of information loss. Therefore, developing a multi-label learning algo-
rithm suitable for analyzing credit data is the key problem to solving the multi-dimensional
portrait of credit users. Based on this, this paper first uses fuzzy Euclidean distance to
improve the classical MLKNN multi-label learning algorithm based on fuzzing the data
after the discretization of credit data. The improved algorithm is called Fuzzy MLKNN.
Then the processed data set is used to train the learner and implement multi-label portraits
of credit reporting users during the testing process. Provide technical support for digging
deeply into the characteristics of credit reporting user groups and interpreting credit re-
ports. The innovations of this paper are as follows: On the one hand, it provides a new
data processing method for the field of credit data mining and introduces an improved
multi-label learning algorithm, which expands the breadth of machine learning in the field
of credit data research. On the other hand, it creatively combines fuzzy set theory with
a multi-label learning algorithm and conducts more in-depth research on improving the
multi-label learning algorithm.

The structure of the rest of the paper is as follows. In Section 2, we summarize the
related work of multi-label learning; in Section 3, we propose the Fuzzy MLKNN algorithm;
Section 4 shows the experimental performance of Fuzzy MLKNN and traditional algorithms
and the comparison of Fuzzy MLKNN and other classic multi-label learning algorithms; in
Section 5 we use Fuzzy MLKNN to analyze the credit user portraits; in the final section we
summarize the research conclusions and put forward suggestions for further study.

2. Literature Review
2.1. Multi-Label Learning

Multi-label learning is an important branch of machine learning, which is different
from traditional single-label learning in that there are multiple labels corresponding to
each predicted sample [9]. In recent years, multi-label learning has been widely used in
text classification [10,11], sentiment analysis [12], image recognition, and other fields, and
various multi-label classification algorithms have emerged one after another. The existing
multi-label learning algorithms are mainly proposed from two perspectives: one is based
on transformation, and the other is self-adaptation [13].

From the transformation, it is always based on converting to binary classification,
typical methods directly convert multi-label problems into multiple single-label problems,
and each label is judged by the presence or absence [14–16]. The three most commonly
used problem transformation methods are Binary Correlation (BR) [17], Label Power Set
(LP) [18], and Chain of Classifiers (CC) [19]. BR transforms the multi-label problem into
a set of independent binary problems. Then, each binary problem is processed using a
traditional classifier. LP treats each unique label set as a class identifier, transforming
the original multi-label dataset into a multi-class dataset. After using it to train a regular
classifier, the predicted classes are inverse transformed to label subsets. However, with
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the number of tags increasing, the number of binary codes tends to increase exponentially,
affecting the algorithm’s performance, so it does not have good generalization ability. CC
is an extension of BR, which strings two classifiers into a chain for learning, considering the
correlation between labels, but the algorithm’s performance needs to be improved. Both
BR and LP are the basis of many multi-label ensemble-based methods. CC addresses the
BR limitation by considering the label association task. [20–22].

From the self-adaptation, it refers to the algorithms which can automatically adapt to
the multi-label classification problem [23–25]. Typical adaptive multi-label classification
algorithms are RankSVM, ML-DT, MLKNN, etc. RankSVM is an improvement to the
traditional SVM, which modifies the loss in SVM to a ranking loss and optimizes the
linear classifier to minimize the label ranking loss [26]. ML-DT is an improvement to the
traditional decision tree. It draws on the idea of the decision tree to filter features according
to the information gain to generate a classifier and uses the information gain to represent
the feature’s ability to discriminate all labels [27]. The MLKNN algorithm is a KNN-based
multi-label classification algorithm [28–30]. The algorithm finds the K nearest neighbor
samples. It performs statistical analysis on the labels of the K nearest neighbor samples to
obtain the probability that the predicted sample contains each label. MLKNN outperforms
some of the well-established multi-label learning algorithms mentioned above and is easy
to understand and implement [31]. Furthermore, MLKNN is less restrictive in its use and
is suitable for a wide variety of multi-label learning problems [28]. A summary of each
algorithm, as well as the advantages and disadvantages, can be found in Table 1.

Table 1. Summary of advantages and disadvantages of multi-label learning algorithms.

Algorithm Descriptions Advantages Disadvantages

Binary Correlation (BR) Individual classifier for each label Simple Ignores label correlations

Label Power Set (LP) Each unique label set as a
class identifier Simple Not applicable to more labels

Chain of Classifiers (CC) Extension of BR, String two
classifiers into a chain for learning Consider label correlations Performance depends on the

order of classifiers in the chain

RankSVM Improvement to the traditional SVM Performance improvement Not suitable for dealing with
high-dimensional samples

ML-DT Improvement to the traditional DT Performance improvement
Not suitable for processing
continuous variables, large
samples, and multi-class data

MLKNN Improvement to the traditional KNN Strong applicability,
Performance improvement Ignores label correlations

2.2. Application of Fuzzy Theory

Nowadays, fuzzy theory has also been used widely to measure uncertainty. It is a
form of alternative mathematics suited for vagueness, especially for small quantities [32].
According to the characteristics of the multi-label problem, most of the multi-labels can be
transformed into fuzzy numbers and then recognized and calculated through fuzzy rules us-
ing machine learning methods, such as clustering. The classic clustering algorithm is a fuzzy
mean clustering algorithm. FCM is the most common way of introducing the membership
function in fuzzy set theory into the calculation of distance to achieve better cluster divi-
sion [33]. In recent years, scholars have not only improved fuzzy mean clustering on fuzzy
computing rules [34–36] but also proposed a series of fuzzy clustering methods [37–39], such
as Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) [40]. PIFHC considers
intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using
traditional hamming distance or Euclidean distance measure to find the distance between
the data points, PIFHC uses the probabilistic Euclidean distance measure to propose a
hierarchical clustering approach. And from experiments with the real-world car dataset
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and the Listeria monocytogenes dataset, intuitionistic distance can improve by 1–3.5% in
the clustering accuracy.

Based on the above research, MLKNN is a multi-label learning algorithm with excellent
performance and strong applicability. At the same time, as an adaptive algorithm, it can
process a large amount of data information quickly, and the operation efficiency is fast.
Therefore, we select MLKNN as the learning algorithm, as the intuitionistic fuzzy number
can express the discretized attribute variable value more objectively. Meanwhile, the
distance calculation process existing in the MLKNN can be improved by a new fuzzy
distance formula. We explore the intuitionistic fuzzy distance to improve the MLKNN
algorithm, proposed as Fuzzy MLKNN.

3. Fuzzy MLKNN

This section will give a detailed introduction to Fuzzy MLKNN. Fuzzy MLKNN is
an improvement based on classic MLKNN, mainly in finding K nearest neighbor samples
in the traditional MLKNN algorithm. The distance between two sample points in high-
dimensional space is changed from the traditional Euclidean measure improved to a fuzzy
Euclidean one. Therefore, this part first defines the multi-label problem in Section 3.1, then
introduces the related concepts of fuzzy sets and fuzzy distance measurement in Section 3.2,
and finally introduces the specific process of Fuzzy MLKNN in Section 3.3.

3.1. Problem Definition

We define the problem to be studied in this paper as follows: Let X = {x1, x2, x3 . . . xn}
denote the sample space, L = {l1, l2, l3 . . . lm} denote the label set, Y = {y1, y2, y3 . . . yn}
represents the label space. For any item li in L (1 ≤ i ≤ m), there is li ∈ {0,1}, and when li
takes 0, it means that the label is no related label, when li is 1, it means the label is a related
label. Given training set D = {(xi, li) | 1 ≤ i ≤ n, xi ∈ X, li ∈ L}, the goal of multi-label
learning-Fuzzy MLKNN is to train from a given training set D, A multi-label classifier
Fuzzy MLKNN: X→ 2L, obtained through a training label classifier to predict the set of
labels contained in unknown samples.

3.2. Basic Concepts of Intuitionistic Fuzzy Sets

Fuzzy set theory was first proposed by Professor Zadeh in 1965 and was first used
in fuzzy control [41]. It is an effective tool for dealing with uncertain information. Later,
with the deepening of research, in 1986, the concept of the intuitionistic fuzzy set (IFS)
was introduced into the traditional fuzzy sets [42]. Intuitionistic fuzzy sets can more
accurately describe the nature of fuzziness in information from the two dimensions of
membership and non-membership and have greater advantages and characteristics when
dealing with uncertainty and ambiguity. It has attracted more attention in the application
fields, such as pattern recognition, intelligent control, natural language processing, machine
learning, etc. [43].

Definition 1. Assuming that X is a non-empty set, A = {(x, µA(x), vA(x))|x ∈ X} is called an
intuitionistic fuzzy set.

Among them, µA(x) ∈ [0, 1] and vA(x) ∈ [0, 1] are the degree of membership and
non-membership of element x belonging to A, respectively, 0 ≤ µA(x) + vA(x) ≤ 1 ∀x ∈ X.
Also, πA(x) = 1− µA(x) − vA(x) is called the degree of hesitation that the element x
belongs to A. Generally, the intuitionistic fuzzy number is denoted as α = (µα, vα) [44].
The intuitionistic fuzzy set proposed by Atanassov is an extension of the traditional fuzzy
set [32]. The introduction of the non-membership function enables the intuitionistic fuzzy
set to express uncertain and fuzzy data more delicately and objectively.
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Definition 2. The Euclidean distance of any two intuitionistic fuzzy numbers α1 = (µα1, vα1) and
α2 = (µα2, vα2) is defined as:

d(α1, α2) =

√
1
2
(µα1 − µα2)

2 + (vα1 − vα2)
2 (1)

3.3. Fuzzy MLKNN

The basic idea of the traditional MLKNN algorithm is to draw on the idea of the KNN
algorithm to find K samples adjacent to the predicted sample, count the number of each
label in the K samples, and then calculate the probability of the test sample containing
each label through the maximum posterior probability [45]. The label whose predicted
probability is greater than a certain threshold is the label of the predicted sample.

The improved MLKNN algorithm using the intuitionistic fuzzy distance is mainly the
process of finding K nearest neighbor samples in the traditional MLKNN algorithm. The
measure of the distance between two sample points in high-dimensional space is improved
from the traditional Euclidean measure to the fuzzy Euclidean measure to find more
accurate nearest neighbor sample points with reference significance for label prediction.
The specific mathematical form and symbolic expression of the algorithm follow, and the
basic notation is shown in Table 2.

Table 2. Notation.

Variables Description

X Samples space
Y Labels space
xi Arbitrary i-th sample

αi
Feature vector of xi. The elements in αi are composed of intuitionistic
fuzzy numbers.

yi Label set of xi
L The label category vector
l Arbitrary single category label l ∈ L
N(x) The set of K nearest neighbors of x identified in the training set
Cx(l) The number of sample with label l in neighbor set N(x)
Hl

1 the event that x has label l
Hl

0 The event that x has not label l

El
j

The event that, among the K nearest neighbors of x, there are exactly j instances
with label l.

Suppose the training set is X = {x1, x2, x3 . . . xn}, indicating that there are n training
samples. The feature data in each training sample is represented by α = (α1, α2, . . . αt).
There are t features in total, and each feature data is represented by an intuitionistic fuzzy
number. The label set of the training sample is Y = {y1, y2, y3 . . . yn}, It represents the label
set corresponding to each sample. L = {l1, l2, l3 . . . lm} represents the label category vector,
and m represents the number of label types. It is known that the training sample is x ∈ X,
and its corresponding label set is yx ⊆ Y, If yx(l) = 1, it means that the label l is included
in the label set of the sample x, otherwise yx(l) = 0, it means that the label set of sample x
does not contain the label l. Furthermore, let N(x) denote the set of K nearest neighbors of
x identified in the training set, Cx(l) refers to the number of samples with label l in the K
nearest neighbors of x. Hl

1 represents the event that sample x has the label l, Hl
0 represents

the event that sample x has not the label l. El
j represents the event that, among the K nearest

neighbors of test sample x, there are exactly j samples with label l. At this time, the formula
of MLKNN for multi-label classification obtained according to Bayes’ theorem is as follows:

yx(l) = argmax
b∈{0,1}

P(Hl
b)P(El

q|Hl
b)

P(El
q)

= argmax
b∈{0,1}

P(Hl
b)P(El

q|Hl
b) (2)
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Among them, b takes 0 or 1. If we want to get whether the label l belongs to sample
x, we only need to judge which value of b can maximize the value of the formula. If the
formula value is the largest when b = 1, it is proved that yx(l) = 1, that is, the sample x has
the label l. On the contrary, if the value of the formula is the largest when b = 0, it is proved
that yx(l) = 0, that is, the sample does not have the label l. In calculating the K nearest
neighbor samples, the distance calculation between samples is involved, so we use fuzzy
Euclidean to measure the distance between fuzzy data. The specific measurement formula
is shown in the above Equation (2).

For each label l in the equation, its corresponding prior probability P(Hl
b) can be

calculated by Equation (3). That is, divide the number of samples with label l in the training
set by the total number of samples in the training set.

P(Hl
1) = (s +

n

∑
i=1

yx)/(s× 2 + n)

P(Hl
0) = 1− P(Hl

1) (3)

Among them, s is a smoothing parameter controlling the strength of uniform prior. In
this paper, s is set to be 1, which yields the Laplace smoothing, and ∑n

i=1 yx represents the
total number of samples with label l in the n training samples.

The posterior probability can be calculated by Equations (4) and (5).

P(El
j |Hl

1) = (s + c[j])/(s× (k + 1) +
k

∑
p=0

c[p]) (4)

P(El
j |Hl

0) =
(
s + c′[j]

)
/(s× (k + 1) +

k

∑
p=0

c′[p]) (5)

Among them, j represents the number of samples with label l in the K nearest neighbor
samples of test sample x. c[j] represents the number of samples in all training samples
whose K neighbors have j samples with label l, and themselves also have label l. And c′[j]
means the number of samples in all training samples whose K neighbors have j samples
with label l, but the samples themselves do not contain label l. Then, this paper calculates
the probability that sample x contains label l by Equation (6).

P(l) = P(Hl
1)P(El

j |Hl
1)/P(Hl

1)P(El
j |Hl

1) + P(Hl
0)P(El

j |Hl
0) (6)

The whole algorithm can be found in Appendix A.

4. Experiments
4.1. Evaluation Metrics

The general performance evaluation metrics of multi-label learning algorithms have
been extensively studied and sorted out by researchers [46,47]. In this paper, we select the
five most commonly used indicators to compare the performance of the algorithms. Among
them, HammingLoss is considered from the perspective of samples. The other four indicators
are considered from the perspective of label ranking. They include Average_Precision,
RankingLoss, OneError, and Coverage. The specific calculation form of these indicators will
be explained below.

HammingLoss refers to the average number of misclassifications of multiple labels on a
single sample. The smaller the indicator, the better the performance of the algorithm.

HL =
1
t

t

∑
i=1

1
m
|Zi∆Yi|
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where t is the number of test samples, m is the number of labels, Zi is the predicted label
set, Yi is the real label set, and | | represents the difference between the two sets, that is,
the number of errors between the predicted labels and the true labels.

Average_Precision is different from Precision in single-label classification. It is not
the average Precision of all training samples on each label but represents the average
probability that the order of the predicted relevant labels is before the specific real relevant
labels. The larger the index, the better the performance.

averagePrecision =
1
t

t

∑
i=1

1
|Yi| ∑y∈Yi

|{y′|rank f (xi, y′) ≤ rank f (xi, y), y′ ∈ Yi}|
rank f (xi, y)

RankingLoss indicates an incorrect ranking in the ranking sequence of the label set
owned by the sample, that is, the number of times that the ranking of the relevant labels
appears behind the irrelevant labels. The smaller the index, the better the performance of
the algorithm.

RL =
1
t

t

∑
i=1

1
|Yi||Yi|

|{(y′, y′′ )| f (xi, y′) ≤ f (xi, y′′ ), (y′, y′′ ) ∈ Yi ×Yi}|

where Yi is the complementary set of Yi to the total label set L.
OneError refers to the number of times that the first-ranked label in the predicted label

of the sample does not belong to the sample-related label. The smaller the index, the better
the performance of the algorithm.

oneError =
1
t

t

∑
i=1

(argmax
li∈L

f (xi, lj) /∈ Yi)

Coverage can be understood as the step size in the sorted sequence of predicted label
sets that needs to be traversed to get all the true relevant label sets. Likewise, the smaller
the metric, the better the algorithm performance.

coverage =
1
t

t

∑
i=1

maxrank f
y∈Yi

(xi, y)− 1

where−1 ensures there is no limit case of misclassification; that is, the top-ranked predicted
labels are their true labels.

4.2. Experiment Setting

The data in this experiment is the credit data of some users from 2008 to 2012 provided
by the Credit Center of the People’s Bank of China, including about 10,000 user records. The
attributes involved in the data include three aspects: basic personal information, account
opening information, and credit activity information. There are 37 attributes, including
6 binary attributes, 12 nominal attributes, and 19 numerical attributes. There are 8 pieces
of corresponding label information, which are considered from three aspects: personal
development and stability, frequency of credit activities, and attention to credit status.
This part of the information is obtained from financial institutions. However, there is a lot
of missing data and incomplete information in these data. Therefore, before conducting
experiments, data cleaning and data preprocessing are required to ensure the quality of
data used for model training.

First, after removing privacy variables, such as ID number, telephone number, address,
etc., the correlation test of variables was carried out, and some variables with a correlation
exceeding 0.7 were removed. A total of 11 attribute variables were selected from 37 attribute
variables for the experiment (including 2 nominal attributes and 9 numerical attributes).
The correlation matrices of some variables are shown in Table 3.
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Then delete the missing and obviously unreasonable data in these attribute data,
and finally, select 1000 pieces of data with complete information for the experiments.
The basic information of the data set used for the experiments is described in Table 4.
Cardinality represents the average number of labels per sample; Density represents the
label density, which is calculated by dividing Cardinality by the number of labels, and
Proportion represents the specific label proportion of the samples.

Table 3. Correlation matrices of some variables.

Coefficient of Correlation (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) year_income 1 0 0 0 0.01 0.01 0 0 0.04 0.03
(2) credit_over_amount 0 1 0.02 0.03 −0.02 −0.03 −0.02 −0.02 −0.01 −0.02
(3) loan_over_amount 0 0.02 1 1 −0.01 −0.01 −0.02 −0.02 0 −0.01
(4) total_over_amount 0 0.03 1 1 −0.01 −0.01 −0.02 −0.02 0 −0.01
(5) bank_legal_org_num 0.01 −0.02 −0.01 −0.01 1 0.99 0.94 0.94 0.58 0.64
(6) bank_org_num 0.01 −0.03 −0.01 −0.01 0.99 1 0.93 0.93 0.59 0.65
(7) credit_legal_org_num 0 −0.02 −0.02 −0.02 0.94 0.93 1 1 0.58 0.63
(8) credit_org_num 0 −0.02 −0.02 −0.02 0.94 0.93 1 1 0.58 0.63
(9) total_credit_amount 0.04 −0.01 0 0 0.58 0.59 0.58 0.58 1 0.52
(10) query 0.03 −0.02 −0.01 −0.01 0.64 0.65 0.63 0.63 0.52 1

Table 4. Original dataset information.

Examples Features Labels

train test Nominal Numeric Numbers Cardinality Density Proportion
700 300 2 9 8 3 0.375 0.018

Second, in the process of data preprocessing, since the original attribute data are
different in nature and magnitude, this paper needs to uniformly convert nominal attributes
and numerical attributes into discrete variables and perform segmentation processing.
However, this process will cause the subjectivity of the real data to be amplified. Therefore,
we intuitively fuzzify the discrete data to ensure the objectivity and accuracy of the original
data as much as possible and to facilitate our calculations.

Therefore, we need to process the data in two stages. The first is discretization, and
the second is fuzzification. According to the objective data interval distribution of the
variables themselves after discretization, we assign corresponding fuzzy numbers to each
group of variables using the cumulative probability distribution in probability statistics.
For example, for the discrete variable distribution of annual income, we will count the
probability of each discrete variable, such as “1”, “2”, “3”, etc., and then calculate its
cumulative distribution to determine the membership degree which belongs to the income
set. In addition, for the convenience of calculation, the hesitation degree is set to 0, so
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the non-membership degree is 1 minus the membership degree. The specific processing
processes are shown in Tables 5 and 6.

Table 5. Representative the credit variable data conversion process record.

Attribute Name Data Conversion Process

education
Primary school = 1; Secondary technical school = 2; Junior high
school = 3; Senior middle school =4; Junior college = 5;
University = 6; Postgraduate = 7

year_income
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; more
than 1,000,000 RMB = 6

career

Soldier = 1; Heads of state agencies, party organizations,
enterprises, and institutions = 2; Clerks and related personnel = 3;
Production personnel in agriculture, forestry, animal husbandry,
fishery, and water conservancy = 4; Commercial and service
industry personnel = 5; Professional skill worker = 6;
Production and transportation equipment operators and related
personnel = 7

credit_account 1~5 = 1; 6~10 = 2; 11~20 = 3; 21~50 = 4; more than 50 = 5;

Table 5. Cont.

Attribute Name Data Conversion Process

loan_strokecount 0~2 times = 1; 3~5 times = 2; 6~8 times = 3; 9~11 times = 4; more
than 11 times = 5

total_credit_amount
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; More
than 1,000,000 RMB = 6

total_use_amount
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; More
than 1,000,000 RMB = 6

credit_amount_utilization_rate 0~0.3 = 1; 0.3~0.6 = 2; 0.6~0.9 = 3; 0.9~1 = 4

query 1~5 times = 1; 6~10 times = 2; 11~20 times = 3; 21~50 times = 4;
51~100 times = 5; more than 100 times = 6

credit_over_amount No overdraft = 0; Overdraft = 1

total_over_amount No overdue = 0; Overdue = 1

Table 6. Fuzzification process.

Attribute Name Corresponding Intuitionistic Fuzzy Number

education 1:(0.01, 0.99); 2:(0.10, 0.90); 3:(0.17, 0.83); 4:(0.41, 0.59);
5:(0.79, 0.21); 6:(0.98, 0.02); 7(1, 0)

year_income 1:(0.01, 0.99); 2:(0.40, 0.60); 3:(0.73, 0.27); 4:(0.95, 0.05);
5:(0.98, 0.02); 6:(1, 0)

credit_amount_utilization_rate 1:(0.09, 0.91); 2:(0.20, 0.80); 3:(0.58, 0.42); 4:(0.97, 0.03); 5:(1, 0)

After the attributes are processed, the label information must be converted into nu-
merical values. The label information is obtained from the experience data of financial
institutions. The specific label information and serial numbers are shown in Table 7. In
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the process of experimental testing, any one of the 8 labels may exist in the label set of the
predicted sample.

Table 7. Label information conversion process record.

Coding 1 2 3 4 5 6 7 8

Labels Name
Personal

development
stability

Personal
development

instability

Low
frequency of

credit activities

Medium
frequency of

credit activities

High frequency
of credit activities

Low
attention to
credit status

Normal
attention to
credit status

High
attention to
credit status

In the experiment, we refer to the method of the paper [48], use the matrix to represent
the situation between the sample and the label, establish an m*n matrix, let n be the number
of samples, m the number of labels, let minj = −1 or 1, where =1 represents the jth sample
and has the label i, otherwise meaning the sample does not have the label i.

The experimental environment in this research is MATLAB (R2019b). There are
two parameters involved in the experiment. One is the selection of the K value; the other is
the setting of smoothing parameters. Regarding the choice of K value, generally speaking,
if the K value is too small, it is easily affected by abnormal points. The model is easy to
overfit, while if the K value is too large, it is more likely to suffer from problems caused by
unbalanced samples, resulting in under-fitting; such results can be seen in the work of [49].
Therefore, in this paper, K is changed from 2 to 40, and the traditional MLKNN algorithm
and the improved MLKNN algorithm are compared. A total of 80 experiments are carried
out to obtain the performance change effect chart, to determine the optimal K value under
the two algorithms, and to compare the results. Regarding the smoothing parameter, we
are consistent with the existing literature and are set to the default value of 1.

4.3. Comparison with Fuzzy MLKNN and Other Multi-Label Learning Algorithms

After determining the most suitable K value, this paper further compares the per-
formance of the improved algorithm proposed with other commonly used multi-label
learning algorithms on the credit data set. According to the classification of multi-label
learning algorithms, this paper considers two types of multi-label learning algorithms. One
is the multi-label algorithm based on problem transformation, including Binary Relevance
and Classifier Chain, and the other is the adaptive algorithm Rank SVM. As a result, the
performance of the algorithm is studied. The comparison results are shown in Table 8.

Table 8. Performance comparison between different multi-label algorithms.

Binary Relevance Classifier Chain Rank SVM Fuzzy MLKNN

HammingLoss 0.1947 0.2584 0.1688 0.0867

Average_Precision 0.8652 0.7542 0.8944 0.9436

RankingLoss 0.1281 0.2410 0.0900 0.0500

OneError 0.0852 0.2130 0.0667 0.0133

Coverage 3.0500 3.5200 2.9900 2.5267

By comparing the five indicators in the table, it is found that the improved Fuzzy
MLKNN shows better and better performance in learning the credit data set. Among
them, the two indicators of HammingLoss and OneError have the most obvious advantages.
This paper finds that its learning time is relatively short. In addition, comparing the five
indicators of other algorithms, it is found that the performance of Rank SVM is second,
the performance of the RankingLoss indicator is relatively good, and the performance of
Classifier Chain on the credit data set is the worst. Therefore, this paper further uses the
improved MLKNN to predict the test set data.
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4.4. Comparative Analysis of Fuzzy MLKNN with MLKNN

According to the above parameter settings, two sets of comparative experiments are
carried out on the preprocessed data set to observe the performance under different K
values and compare the advantages and disadvantages of the traditional algorithm and the
improved algorithm. The results are shown in Figures 1–5.
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Figure 1. HammingLoss values under different K values.
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The smaller the HammingLoss, the smaller the average number of misclassifications,
and therefore the better the performance. From Figure 1, it can be directly seen that the
HammingLoss value of the improved algorithm has an overall improvement compared with
the traditional algorithm. The HammingLoss value of the traditional algorithm is between
0.12 and 0.15, and the mean value is 0.132. The overall fluctuation is relatively stable, and
the distribution of the smallest HammingLoss value is not obvious, which is obtained at
K = 14, 28, 31, and 34, respectively. The HammingLoss value of the improved algorithm is
between 0.08 and 0.11, with an average value of 0.096. During the change from K = 10 to 35,
the overall trend decreases. The smallest HammingLoss value can be easily obtained from
the figure at K = 35. At the same time, we can find that the algorithm’s performance before
and after the improvement in HammingLoss is not synchronous with the variation of the K
value. From the perspective of HammingLoss only, the value of K selected for the optimal
performance of the traditional algorithm and the improved algorithm is different.

The higher the Average_Precision, the better the performance of the multi-label learning
algorithm. It can be observed from Figure 2 that the Average_Precision of the improved
algorithm is significantly better than the traditional algorithm, and the gap between the
two becomes more obvious with the increase of the K value. The value of Average_Precision
of the traditional algorithm is between 0.89 and 0.92, with an average value of 0.909, and as
the value of K increases, the overall trend decreases. The algorithm performs best when
K = 14. The value of Average_Precision of the improved algorithm is between 0.92 and 0.95,
with a mean value of 0.938, and with the increase of the K value, the overall trend is upward.
When the value of K takes a value near 36, the performance is optimal, and when K = 36,
the value of Average_Precision is at most 0.944.

Since Rankingloss and OneError are considered indicators based on the order of labels
and are in the same order of magnitude, the smaller the two indicators are, the better the
performance is. This paper considers these two indicators at the same time. In Figure 3, the
blue line is the RankingLoss with MLKNN, and in Figure 4, the green columnar presents
OneError values with MLKNN. Respectively, the red line in Figure 3 and the orange
columnar in Figure 4 are the RankingLoss and OneError values of Fuzzy MLKNN.

First of all, from the value of RankingLoss, the improved algorithm is better than the
traditional algorithm, and as the value of k increases, this advantage is gradually obvious.
The average value of the traditional algorithm on RankingLoss is 0.08, and the low values
are obtained at K = 8, 11, and 14. The mean RankingLoss of the improved algorithm is
0.055, and the minimum value is obtained at K= 36. Secondly, from the perspective of the
OneError value, it can be seen from the figure that the OneError value of the traditional
algorithm is significantly higher than that of the improved algorithm, and the former value
fluctuates greatly. The average OneError value of the traditional algorithm is 0.063, while
the average OneError value of the improved algorithm is 0.016. Based on the consideration
of the OneError value, the optimal K value of the traditional algorithm is obtained when
K = 14; the optimal K value of the improved algorithm is obtained when K = 17.

Figure 5 shows the performance of Coverage under different K values. Coverage is
the step size required to traverse the correct label. The smaller the index, the better the
performance. From the figure, we can see that the Coverage of the improved algorithm
is also significantly lower than that of the traditional algorithm. The mean value of the
improved algorithm on Coverage is 2.585, and the traditional algorithm is 2.822. The
minimum Coverage values of the improved algorithm can be obtained at 24~26, 36, while
the minimum Coverage values of the traditional algorithm are obtained at 10, 11, and 14.

Through the analysis of the above experimental results, we find that the improved
algorithm is better than the traditional algorithm in all evaluation metrics, and the per-
formance of the OneError value is the most significant, proving that the fuzzy distance
measure is effective in the multi-label learning process of credit data. In addition, through
the analysis of the optimal selection of the K value on different indicators, this paper finds
that the traditional algorithm and the improved algorithm are not consistent in the selection
of the optimal K value. The selection of the optimal K value of the traditional algorithm is
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significantly lower than the improved algorithm. From the comprehensive consideration
of the performance of the above five indicators, it is more appropriate to take 14 for the
optimal K value of the traditional algorithm. And the optimal K value of the improved
algorithm is 36. Therefore, for these two results, we mainly use the improved algorithm
with better performance in the following analysis process and select the K value of 36 to
conduct further in-depth research on the data.

5. User Portrait

To make a portrait of users, we need to describe the distribution characteristics of
labels. Referring to [50,51], we choose the best parameter with Fuzzy MLKNN, K = 36, and
then conduct the algorithm with the whole dataset. The results are shown in Table 6 and
Figure 6. Table 6 summarizes the proportion of one label, and Figure 6 describes user labels.
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Figure 6. The distribution of user labels.

Firstly, from the learning results of one label in Table 9, users with low credit frequency
account for the largest proportion, accounting for about 73%, followed by users with
relatively stable personal development, accounting for about 67%, and the third is users
with low credit concerns account for about 47%. It is more consistent with the actual
situation. Most credit users have a low frequency of credit activities. The proportion
of users with a medium frequency of credit activities is the least, indicating that the
polarization of credit users is more serious in terms of credit activities.

Table 9. Proportion of one label.

Label Code Labels Name Proportion

1 Personal development stability 0.670

2 Personal development instability 0.330

3 Low frequency of credit activities 0.733

4 Medium frequency of credit activities 0.040

5 High frequency of credit activities 0.143

6 Low attention to credit status 0.470

7 Medium attention to credit status 0.260

8 High attention to credit status 0.173
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Secondly, from the learning results of user labels, the proportion of credit users with
predicted labels [136], [236], and [137] reached 59%, accounting for more than half of the
total number of credit users, similar to the actual life situation. The user group represented
by [136] has stable personal development, low credit frequency, and low credit concern.
These users account for about 30% of the total number of users. [236] represents groups with
unstable personal development, low credit frequency, and low credit concern, accounting
for about 17% of the total users. From this, we can find that there is no significant correlation
between the personal stability status and the credit status of credit reporting users to a
certain extent. [137] represents groups with stable personal development, low credit
frequency, and moderate credit concern, accounting for about 12% of the total population.
The fourth and fifth place are [158] and [237], respectively, representing groups with
stable personal development, high credit frequency, and high credit status concern, and
individuals with unstable personal development, low credit frequency, and medium credit
concern. This result also verifies the earlier conclusion that an individual’s stability does
not directly affect his credit status. In addition, we also found a relationship between the
frequency of credit activities and attention to the credit situation. High credit frequency is
accompanied by high credit attention, while low and medium credit frequency also pays
less attention to credit status, which aligns with real life.

6. Conclusions

This paper proposes a systematic clustering algorithm–Fuzzy MLKNN, which uses
intuitionistic fuzzy sets to conduct distance metrics, and then improves the MLKNN multi-
label learning algorithm. From the experiments, we find it has three advantages over the
classical algorithm. Firstly, by fuzzing the data, the subjectivity of the original data in the
process of data discretization can be weakened, and the objectivity and authenticity of the
experimental data can be enhanced simultaneously. Secondly, the classical algorithm is
improved by using the Euclidean fuzzy distance formula; to a certain extent, the distance
between sample points is more representative than the original distance. Third, the fuzzy-
improved algorithm outperforms the classical algorithm in multiple performance indicators,
among which the OneError indicator is the most obvious.

The limitation of this paper is that it only considers the advantages of the improved
algorithm from an experimental point of view and has not yet obtained relevant theoretical
proof. Therefore, some questions worthy of further study remain. Theoretical analysis
concerning the effectiveness of Fuzzy MLKNN will need more discussion. Moreover, as
with other multi-label algorithms, Fuzzy MLKNN may suffer from missing labels and noisy
labels, which will need more data to test.
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Appendix A

function [Prior,PriorN,Cond,CondN]=MLKNN_train(train_data,train_target,Num,Smooth)
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%MLKNN_train trains a multi-label k-nearest neighbor classifier
%
% Syntax
%
% [Prior,PriorN,Cond,CondN]=MLKNN_train(train_data,train_target,num_neighbor)
%
% Description
%
% KNNML_train takes,
% train_data - An MxN array, the ith instance of training instance is stored in train_data(i,:)
% train_target - A QxM array, if the ith training instance belongs to the jth class, then train_target(j,i) equals +1,
otherwise train_target(j,i) equals -1
% Num - Number of neighbors used in the k-nearest neighbor algorithm
% Smooth - Smoothing parameter
% and returns,
% Prior - A Qx1 array, for the ith class Ci, the prior probability of P(Ci) is stored in Prior(i,1)
% PriorN - A Qx1 array, for the ith class Ci, the prior probability of P(~Ci) is stored in PriorN(i,1)
% Cond - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance in Ci will belong to Ci, is stored in Cond(i,k+1)
% CondN - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|~Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance not in Ci will belong to Ci, is stored in CondN(i,k+1)

[num_class,num_training]=size(train_target);

%Computing distance between training instances
dist_matrix=diag(realmax*ones(1,num_training));

for i=1:num_training-1
if(mod(i,100)==0)

disp(strcat('computing distance for instance:',num2str(i)));
end
vector1=train_data(i,:);
for j=i+1:num_training

vector2=train_data(j,:);
dist_matrix(i,j)=sqrt(sum((vector1-vector2).ˆ2));
dist_matrix(j,i)=dist_matrix(i,j);

end
end

%Computing Prior and PriorN
for i=1:num_class

temp_Ci=sum(train_target(i,:)==ones(1,num_training));
Prior(i,1)=(Smooth+temp_Ci)/(Smooth*2+num_training);
PriorN(i,1)=1-Prior(i,1);

end

%Computing Cond and CondN
Neighbors=cell(num_training,1); %Neighbors{i,1} stores the Num neighbors of the ith training instance
for i=1:num_training

[temp,index]=sort(dist_matrix(i,:));
Neighbors{i,1}=index(1:Num);

end

temp_Ci=zeros(num_class,Num+1);
temp_NCi=zeros(num_class,Num+1);
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for i=1:num_training
temp=zeros(1,num_class);
neighbor_labels=[];
for j=1:Num

neighbor_labels=[neighbor_labels,train_target(:,Neighbors{i,1}(j))];
end
for j=1:num_class

temp(1,j)=sum(neighbor_labels(j,:)==ones(1,Num));
end

for j=1:num_class
if(train_target(j,i)==1)

temp_Ci(j,temp(j)+1)=temp_Ci(j,temp(j)+1)+1;
else

temp_NCi(j,temp(j)+1)=temp_NCi(j,temp(j)+1)+1;
end

end
end
for i=1:num_class

temp1=sum(temp_Ci(i,:));
temp2=sum(temp_NCi(i,:));
for j=1:Num+1

Cond(i,j)=(Smooth+temp_Ci(i,j))/(Smooth*(Num+1)+temp1);
CondN(i,j)=(Smooth+temp_NCi(i,j))/(Smooth*(Num+1)+temp2);

end
end

Function
[HammingLoss,RankingLoss,OneError,Coverage,Average_Precision,Outputs,Pre_Labels]=MLKNN_test(train_data,
train_target,test_data,test_target,Num,Prior,PriorN,Cond,CondN)

%MLKNN_test tests a multi-label k-nearest neighbor classifier.
%
% Syntax
%
%
[HammingLoss,RankingLoss,OneError,Coverage,Average_Precision,Outputs,Pre_Labels]=MLKNN_test(train_data,train

_target,test_data,test_target,Num,Prior,PriorN,Cond,CondN)
%
% Description
%
% KNNML_test takes,
% train_data - An M1xN array, the ith instance of training instance is stored in train_data(i,:)
% train_target - A QxM1 array, if the ith training instance belongs to the jth class, then train_target(j,i)
equals +1, otherwise train_target(j,i) equals -1
% test_data - An M2xN array, the ith instance of testing instance is stored in test_data(i,:)
% test_target - A QxM2 array, if the ith testing instance belongs to the jth class, test_target(j,i) equals +1,
otherwise test_target(j,i) equals -1
% Num - Number of neighbors used in the k-nearest neighbor algorithm
% Prior - A Qx1 array, for the ith class Ci, the prior probability of P(Ci) is stored in Prior(i,1)
% PriorN - A Qx1 array, for the ith class Ci, the prior probability of P(~Ci) is stored in PriorN(i,1)
% Cond - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance in Ci will belong to Ci, is stored in Cond(i,k+1)
% CondN - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|~Ci) (0<=k<=Num), i.e.,
k nearest neighbors of an instance not in Ci will belong to Ci, is stored in CondN(i,k+1)
% and returns,
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% HammingLoss - The hamming loss on testing data
% RankingLoss - The ranking loss on testing data
% OneError - The one-error on testing data as
% Coverage - The coverage on testing data as
% Average_Precision- The average precision on testing data
% Outputs - A QxM2 array, the probability of the ith testing instance belonging to the jCth class is
stored in Outputs(j,i)
% Pre_Labels - A QxM2 array, if the ith testing instance belongs to the jth class, then Pre_Labels(j,i) is
+1, otherwise Pre_Labels(j,i) is -1

[num_class,num_training]=size(train_target);
[num_class,num_testing]=size(test_target);

%Computing distances between training instances and testing instances
dist_matrix=zeros(num_testing,num_training);
for i=1:num_testing

if(mod(i,100)==0)
disp(strcat('computing distance for instance:',num2str(i)));

end
vector1=test_data(i,:);
for j=1:num_training

vector2=train_data(j,:);
dist_matrix(i,j)=sqrt(sum((vector1-vector2).ˆ2));

end
end

%Find neighbors of each testing instance
Neighbors=cell(num_testing,1); %Neighbors{i,1} stores the Num neighbors of the ith testing instance
for i=1:num_testing

[temp,index]=sort(dist_matrix(i,:));
Neighbors{i,1}=index(1:Num);

end

%Computing Outputs
Outputs=zeros(num_class,num_testing);
for i=1:num_testing

% if(mod(i,100)==0)
% disp(strcat('computing outputs for instance:',num2str(i)));
% end

temp=zeros(1,num_class); %The number of the Num nearest neighbors of the ith instance which belong to the
jth instance is stored in temp(1,j)

neighbor_labels=[];
for j=1:Num

neighbor_labels=[neighbor_labels,train_target(:,Neighbors{i,1}(j))];
end
for j=1:num_class

temp(1,j)=sum(neighbor_labels(j,:)==ones(1,Num));
end
for j=1:num_class

Prob_in=Prior(j)*Cond(j,temp(1,j)+1);
Prob_out=PriorN(j)*CondN(j,temp(1,j)+1);
if(Prob_in+Prob_out==0)

Outputs(j,i)=Prior(j);
else
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Outputs(j,i)=Prob_in/(Prob_in+Prob_out);
end

end
end

%Evaluation
Pre_Labels=zeros(num_class,num_testing)
for i=1:num_testing

for j=1:num_class
if(Outputs(j,i)>=0.5)

Pre_Labels(j,i)=1;
else

Pre_Labels(j,i)=-1;
end

end
end
HammingLoss=Hamming_loss(Pre_Labels,test_target)
RankingLoss=Ranking_loss(Outputs,test_target);
OneError=One_error(Outputs,test_target);
Coverage=coverage(Outputs,test_target);
Average_Precision=Average_precision(Outputs,test_target);
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