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Abstract: Currently, air pollution is a highly important issue in society due to its harmful effects on
human health and the environment. The prediction of pollutant concentrations in Santiago de Chile
is typically based on statistical methods or classical neural networks. Existing methods often assume
that historical values are known at a fixed geographic point, such that air pollution can be predicted at
a future hour using time series analysis. However, these methods are inapplicable when it is necessary
to know the pollutant concentrations at every point of the space. This work proposes a method that
addresses the space-time prediction of PM2.5 concentration in Santiago de Chile at any spatial points
through the use of the LSTM recurrent network model. In particular, by considering historical values
of air pollutants (PM2.5, PM10 and nitrogen dioxide) and meteorological variables (temperature, wind
speed and direction and relative humidity), measured at fixed monitoring stations, the proposed
model can predict PM2.5 concentrations for the next 24 h in a new location where measurements
are not available. This work describes the experiments carried out, with particular emphasis on the
pre-processing step, which constitutes an important factor for obtaining relatively good results. The
proposed multilayer LSTM model obtained R2 values equal to 0.74 and 0.38 in seven stations when
considering forecasts of 1 and 24 h, respectively. As future work, we plan to include more input
variables in the proposed model and to use attention-based networks.

Keywords: space-time prediction; pollution model; PM2.5; recurrent neural networks

1. Introduction

In recent years, environmental pollution has become a source of great concern for the
countries of the world, since every year it causes the premature deaths of approximately
6.5 million people [1]. One of the most important components is particulate matter smaller
in diameter than 2.5 microns (PM2.5), which is composed of particles small enough to
penetrate the lungs. This implies an increased risk of mortality due to harmful effects
on the cardiovascular and respiratory systems [2–5]. Main emitters of PM2.5 are vehicles,
power plants, industrial factories, mining processing centers and houses that use wood
or coal as a heating source [6]. Santiago de Chile is one of the most polluted cities in the
South America. This is mainly due to its particular geographic position and to a not very
restrictive policy on the emission of contaminants. In particular, Santiago is located in a
valley with a smooth slope, surrounded by mountains (with altitudes between 1500 and
4000 m) which limit air circulation. In the winter period (from April to August), due to
strong thermal inversions and weak winds, the dispersion of atmospheric pollutants is
very poor, causing frequent episodes of high pollution [7,8] with negative effects on the
health. Evidence of the relation between particular matter pollutants (PM10 and PM2.5)
and mortality is shown by Ostro et al. [9] and Valdés et al. [10], whereas [11] studied the
correlation between PM2.5 concentrations and children hospitalized for respiratory diseases
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in Santiago. In the last few decades, the Ministry of Environment has been applying several
restriction measures to emission sources in order to protect human health. Theses measures
are based on the Chilean National Standards, which are not so stringent as the international
guidelines proposed by WHO [12,13]. For example, for the PM2.5, four ranges of increasing
concentrations define air quality, starting from the first level (good to moderate) including
a maximum 24 h average of PM2.5 less than 80 µg/m3, to the last level (hazardous) where
the 24 h average is greater than 170 µg/m3 [14,15]. Instead, the latest WHO guidelines
recommended 25 µg/m3 (24 h mean) and an annual level of 10 µg/m3 [13]. However, some
temporary measures implemented by the Chilean government allowed us to reduce the
particular matter concentrations of 20%, with a consequent benefit on the the population
health in the short run [16]. Measures that could reduce pollution in the short run refer,
mainly, to driving restrictions and temporarily shutting down or reducing the usage of
stationary emissions sources. A result of [16] was that after three days of an episode
of a high-pollution announcement, there were approximately fifteen fewer (cumulative)
deaths above the age of 64, and most of that reduction was due to decreases in deaths
due to respiratory causes. The impacts of short term exposure to air pollutants were also
demonstrated by [17,18] Hence, a good prediction of the pollution levels for the next few
hours or days could be very useful for environmental management, since it allows one to
alert the population of forthcoming high pollution episodes and to support decision makers
to implement restriction measures [14,16]. For example, Catalano et al. [19] integrated
two prediction pollution models in traditional traffic management support systems for a
sustainable mobility of road vehicles in urban areas; and Liu and Gao [20] reviewed the
evidence on greenhouse gas (GHG) mitigation measures and the related health co-benefits,
and provided recommendations for further development and implementation of climate
change response policies.

Several methods have been proposed in the literature for predicting the PM2.5 concen-
trations; most of them are based on statistical models [6,21–23] and neural networks [24,25].
In general, the existing works for the prediction of PM2.5 concentrations in Santiago de
Chile using neural networks are based on temporal models [8,14,25–27].

The main difficulty in predicting space-time pollution is due to the fact that air pollu-
tants are strictly correlated with meteorological variables (normally collected at the same
spatial points and temporal lags) which are often not available when the prediction at new
site has to be made. Additionally, the correlations of the pollutant concentrations with past
meteorological variables are often weak, complex and show nonlinear behavior. For this
reason, statistical spatio-temporal models which normally include linear relations with
exogenous variables cannot be used if predictions or simulations of these variables are not
provided (see, for example, [6,28]).

The long short term memory (LSTM) network proposed by Hochreiter and Schmid-
huber [29] is a recurrent neural network which is typically used for temporal predictions.
However, this model has the limitation that it does not allow predictions to be made at
points other than those available during training. Given that in Santiago de Chile, few
monitoring stations are available in the town, a space-time approach is necessary to predict
pollution at new locations where measurements are not available.

The main aim of this work is considering predictions at spatial points other than those
trained, by proposing a recurrent neural network that uses the historic information collected
by monitoring stations located at some geographic points for predicting the pollution at
new sites for n−ahead time steps. In particular, in this work we used the LSTM neural
network [29] for the prediction of PM2.5 concentrations in the city of Santiago de Chile,
considering the measurements of multiple meteorological variables (such as speed and
wind direction, temperature and relative humidity) and pollutants (nitrogen dioxide, PM2.5
and PM10) collected in the previous 24 h. In other words, the proposed model can be used
for forecasting the PM2.5 levels at any spatial point by generating a space-time prediction
using past information and spatial locations.
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The novelties of this work can be summarized in the following two points: (a) the
proposal of a space-time machine learning model for predicting the pollution at arbitrary
spatial points and at any future time; (b) the application to the pollution prediction in
Santiago de Chile, one of the cities with the worst pollution in the world. About the point
(a), the existing pollution prediction studies based on neural networks typically made
temporal predictions for different spatial points, without considering spatial correlations,
and other works used statistical space-time models where knowledge of future values of
meteorological variables is assumed. These variables are normally predicted or simulated
by complex deterministic models. In this proposal the prediction can be made at each
point in the space without knowing the past values at the same point and without the
need to run a different model for the prediction or simulation of the exogenous variables,
since the past variables of meteorological data are considered as the input of the proposed
model. About the point (b), few works have addressed space-time pollution prediction
in Santiago de Chile, especially due to the poor availability of monitoring stations. We
think that the proposed model could be used by the governmental decision makers for
implementing temporary restriction measures in areas where there are not available data,
and consequently reducing short term effects on human health due to PM2.5 exposure.

2. Related Works

Spatio-temporal prediction is a challenging issue, given that spatial and temporal
correlations of data have to be detected simultaneously. Many statistical and computational
models have been proposed for dvarious fields, including crime, traffic and transporta-
tion, climate and environment monitoring, hydrology and epidemiology [30]. Most of
the literature on spatio-temporal models presents statistical approaches based on sepa-
rable or no separable spatial and temporal covariance structures. An extensive review
of geostatistical space-time models for addressing environmental problems (monitoring
acid deposition, forecasting precipitation, pollution, etc.) is presented in [31]. Hierarchi-
cal spatio-temporal modeling concepts and computational methods are described in [32],
considering many issues, including environmental processes and climate trends, besides
mapping public-health data and the spread of invasive species. Recently, especially due to
the availability of big datasets, computational models based on deep neural networks have
arisen for predicting space-time data. Amato et al. [33] introduced a new framework for
the spatio-temporal prediction of climate and environmental data by decomposing time
series into a basis function and stochastic spatial coefficients. In [34], deep learning (DL),
and in particular, recurrent neural networks (RNNs), were implemented for wind speed
forecasting, motivated by the use of renewable energy in northeast of the U.S. Bay et al. [35]
proposed two adaptive modules for enhancing the graph convolutional network (GCN)
for understanding traffic dynamics and predicting the future status of an evolving traffic
system. A slightly different approach consists of splitting the whole dataset into several
subsets in a hierarchical manner and training a local prediction model for each subset, as
in Shang et al. [36], or considering a decomposition of the original series, as proposed by
Wang et al. [37].

Regarding the prediction of PM2.5 concentrations in Santiago de Chile, various models
have been proposed based on statistical methods or classical neural networks [6,8,26].
Nicolis et al. [6] proposed an improved Bayesian spatio-temporal dynamic model for the
prediction of PM2.5 in the city of Santiago de Chile by calibrating meteorological variables
derived from the Weather Research and Forecasting Model (WRF). From a neural-network
perspective, Pérez et al. [26] used an approach based on multiperceptron neural networks,
subsequently improving the quality of the model by considering meteorological variables
such as wind direction [8]. In southern Chile, Diaz-Robles et al. [27] proposed a pollution
prediction model based on a mixture of neural networks and ARIMA models.

Regarding the pollution study in other countries, Fan et al. [38] considered the use of
various stacked models of LSTM recurrent networks and multilayer perceptrons for the
prediction of pollution in North China, obtaining that the use of LSTM networks allows
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better performance. Huang and Kuo [39] proposed a mixed model consisting of a sequence
starting with a convolutional network whose output feeds a recurrent short-long memory
(LSTM) network for PM2.5 concentration prediction in Beijing and Shanghai. It achieved an
average of 97.8% correct prediction. Kris et al. [40] used satellite imagery combined with
ground-level measurements and deep convolutional neural networks, achieving a value of
0.75 for R2. Yanlin Qi et al. [41] combined convolutional networks with recurrent networks,
thereby achieving a mean square error value of 0.72 for the next 72 h in the Jing-Jin-Ji
area, Beijing. Fabiana et al. [42] was able to forecast the concentrations of PM2.5 and PM10
for the city of Bogotá (Colombia). They performed principal component analysis for the
development of forecast models and artificial neural network and clustering methods.
These models, although powerful, are highly complex, which requires careful management
of the parameters of the component networks.

Recently, there has been an emphasis on spatio-temporal models using deep neural
networks. For example, in [43–45], LSTM or attention-based networks were proposed to
perform this prediction; however, they use the historical values of the geographical point to
be predicted. They also use additional values such as PM2.5 measurements given by cheap
sensors. A similar work was provided by [46]; they proposed a novel hybrid deep learning
model that combines convolutional neural networks (CNN) and long short term memory
(LSTM) together to forecast air quality at high resolution.

In general, for the study of pollution in Santiago de Chile, there is not much literature
on the use of modern architectures of neural networks. The majority of studies focus on air
pollution in other countries, which is often characterized by different spatial and temporal
features. For these reasons, we explored the use of LSTM networks for the space-time
prediction of PM2.5 in Santiago de Chile. We emphasize the data pre-processing because it
is required for correct validation of models; the prediction is performed in a spatial point
without historical data.

3. Methods and Materials
3.1. Space-Time Prediction

Let us denote by p(si, tj) the PM2.5 pollution at site si = (xi, yi), with i = 1, . . . , S,
where (xi, yi) represents the vector of spatial coordinates, and time tj, with j = 1, . . . , T.
While in the temporal prediction the main goal is to forecast the level of pollution in a
given station s1 for n−ahead time steps (n ≥ 1), {p(s1, tT+1), . . . , p(s1, tT+n)}, considering
the historical information of pollution in the same site s1, {p(s1, t1), . . . , p(s1, tT)}, the
spatio-temporal prediction consists of predicting the pollutant concentration at new site
s0 where there are not monitoring stations—that is, the past information is not available,
but the past information of the nearest stations is used. Such prediction can be extended to
every point on a regular grid for producing a prediction map. Figure 1 shows an example
of the difference between temporal and spatio-temporal predictions. Mathematically, the
space-time prediction can be expressed as a nonlinear transformation f (·) of the past
pollution observations at different sites using no linear functions. Hence, the proposed
model can be written as

p̂(s0, tT+n) = f (p(sk, tT−m), X(sk, tT−m)),

where p̂(s0, tT+n) is the prediction of the PM2.5 concentration at the station s0 and time
tT+n; p(sk, tT−m) represents the sequence of past observations of PM2.5 at the sites {sk},
with k = 1, . . . , K, and at the past times {tT−m}, with m = 0, 1, . . . , M—that is, p(sk, tT−m) =
{p(s1, tT−1), . . . , p(sn, tT−m)}; finally, X(sk, tT−m) is a sequence of covariates given by past me-
teorological and pollutant variables—that is, X(sk, tT−m) = {X(s1, tT−1), . . . , X(sn, tT−m)}.
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Figure 1. Temporal prediction vs. spatio-temporal prediction. Green points indicate the sites of
monitoring stations where historical information (pollution and meteorological variables) is available,
p(s1, t−m), . . . , p(s1, t) for a target point s1, and temporal predictions at time t + 1, . . . , t + n can be
made at the same points. The red triangle indicates a point where the is not a monitoring station. In
this case, the proposed model uses the past (temporal and spatial) information of the other stations
for providing the spatio-temporal prediction p(s0, t + 1), . . . , p(s0, t + n).

3.2. Base Neural Network

The use of recurrent neural networks is proposed to obtain temporal and spatio-
temporal predictions, that is, to determine the possible values that a variable can obtain
at a certain number of hours ahead, or/and at a certain spatial point. To achieve these
predictions, the recurrent neural networks learn through historical information, generating
relationships between the delivered variables. For this particular case, it is very important
to study how the prediction of meteorological and pollutant variables are directly related
to the values of these variables in a time t− 1. The pre-processing of data will allow one to
choose which variables will be used in the models.

We propose the use of long short term memory (LSTM) [29], which has been estab-
lished as an efficient and scalable model for various types of problems. For this investiga-
tion, the LSTM network had additional time distributed in which it not only related the
values recorded in a single time t− 1 but also generated a relationship between all the
inputs t− 1. For example, to obtain the value at time t, it depends on the observations
recorded at time t− 1, t− 1′, t− 1′′, where each registered value corresponds to a different
spatial site but which also influences the prediction of the time variable t.

In Figure 2, we can see an operating scheme of the recurrent neural network LSTM.
In a simplified way, an LSTM neural network assumes a multidimensional input xt that
interacts with the previous network state rt−1, where it first passes through the input gate
having it as output, which enters the memory cell that is affected by the forget gate output
given by ft in order to generate the memory cell output ct. This, in turn, is fed to the hidden
state variable h, which passes by the output gate originating the output variable ot. Finally,
the output ot in conjunction with the hidden state of the network h determines the current
state of the network rt, which eventually can feed back the previous gates a predefined
number of times. This recurrent network is based on sequential processing of information,
where particularly long-term information can be controlled through the forgetting gate.
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Figure 2. LSTM recurrent network scheme: the current state of the network depends on the previous
state and the input, which are weighted by gate functions.

4. Pre-Processing of Data and Selection of Neural Model
4.1. The Dataset

The database used in this work was obtained from monitoring sites of the Ministry
of the Environment of Chile (National Air Quality Information System (SINCA), http:
//sinca.mma.gob.cl, accessed on 1 January 2020).

For this study, the following observations were selected: temperature (temp), relative
humidity (hrel), wind direction (dirv), wind speed (velv), particulate matter with diameter
less than 10 microns (PM10), particulate matter with diameter less than 2.5 microns (PM2.5)
and nitrogen dioxide (NO2).

As the objective of our study focuses on the Metropolitan region, the information
recorded from 2010 to 2018 by the meteorological stations located in the capital was used,
which are: Cerrillos, Cerro Navia, El Bosque, Independencia, La Florida, Las Condes,
Pudahuel, Puente Alto, Quilicura, Parque O’Higgins and Talagante. Figure 3 shows their
geographical locations.

Figure 3. Google map of the the Metropolitan region (Chile) with the locations of the 11 meteorologi-
cal stations.

http://sinca.mma.gob.cl
http://sinca.mma.gob.cl
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Table 1 shows the base structure of the data obtained by SINCA from the 11 meteo-
rological stations, in which the name of the file indicates the polluting or meteorological
variable that is recorded (a). Within these files, 3 columns are stored, which identify the
date (b), the time (c) and the observed value (d).

Table 1. Basic structure of meteorological and pollutant data.

PM2.5 (a) . . . Wind Speed (a)

Date
(D-M-Y) (b)

Hour
(H:M) (c) (d) . . . Date

(D-M-Y) (b)
Hour
(H:M) (c)

(d)

1 January 2010 00:00 65 . . . 1 January 2010 00:00 2.20
1 January 2010 01:00 70 . . . 1 January 2010 01:00 1.93
1 January 2010 02:00 41 . . . 1 January 2010 02:00 1.27

. . . . . . . . . . . . . . . . . . . . .
31 December 2018 23:00 75 . . . 31 December 2018 23:00 2.42

4.2. Analysis and Pre-Processing

Once the information of each station was stored, the first data pre-processing step
was carried out, where the normalization of the meteorological and pollutant variables
corresponding to the date and time of capture was implemented. Table 2 describes the
meaning of each of the variables. It is relevant to indicate that the time series that make
up the database consider a time step of one hour, which was used in all the experiments
carried out.

Table 2. Description of the columns once the first pre-processing step was carried out.

Variable Description

Station Register the name of the station
E East coordinate (UTM)
N North coordinate (UTM)
Year Year of registration of the observation
Month Observation registration month
Day Observation record day
Hour Observation record time
N◦ of week Records the week number(1–52)
N◦ of day Register day of the week (1–7) from Monday
type of day Register if weekend (0–1)

Season
year Record the season of the year (1–4) from Summer

hrel, NO2, temp
PM10, dirv,
velv and PM2.5

Record the value of the observation

Once the variables were selected, the appropriate consecutive years were considered
as training and testing sets. Using the data provided and considering the percentage of
missing values per year (less than 5%), the years 2012 and 2013 were considered in our
experiments. Unfortunately, in the 2010–2011 period, not all of the 11 stations indicated
yet existed. On the other hand, in 2014 and 2015, some stations were not operational, or
measurements of some pollution variables such as NO2 were not recorded. This generated
discontinuity for using later years. Given that the time series require that the study period
be contiguous and that we propose using the maximum number of operating stations, 11,
the two indicated years were chosen. We hope in a later study to be able to incorporate
a greater number of years considering at least approximate data from the stations with
missing data using more complex data imputation models.
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Given that we only have two years available according to the stated requirements,
in our experiments we considered the out-of-sample approach, where an initial dataset
formed the training set and the final data corresponded to the test set [47]. As previously
indicated, in future works we plan to use more years with which even more exhaustive
evaluation schemes could be considered, such as blocked cross-validation [47].

In relation to the experiments and following the out-of-sample approach, the year
2012 was selected as the training set, covering a total of 96,624 observations, and the year
2013 was used for the test set, covering a total of 96,360 observations. The difference in
observations between these two datasets is due to the fact that 2012 is considered a leap year,
giving an additional 24 h of observations for each of the stations. Note that the complete
year is considered in each set because the information of the past months or seasons (winter
or summer) can be relevant in the prediction.

The missing values of the selected sets were imputed by using the algorithm MICE [48],
considering the same variables at different sites. The time series were generated according
to the number of hours necessary for the prediction of future hours. In this particular case,
and after some preliminary analysis, we decided to take the observations of the last 24 h in
order to predict the values of the following hours.

The time series used for the input and output of the neural network model were
generated as follows: first, the entry and output periods were selected, corresponding
to the first 24 h available and 25th hour, respectively. The variables to be considered for
each hour were extracted and concatenated in an array. Then, the generation process
started from the following hour, taking the interval 2–25 for the input period and the 26th
hour for the output period. Again, the variables were extracted and a list was generated.
This process was repeated, concatenating the arrays in a data matrix, which was used
for both training and test data. This procedure is called sliding window [49] and can be
seen in Figure 4. It should be noted that the data obtained in each hour correspond to
those given by each station. To denote each station, its coordinates (latitude and longitude)
were added.
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Figure 4. Visualization of sliding window procedure for the generation of time series considering 7 h
of input and 1 h of output.

Given that we have 24 h, 11 stations and 7 selected variables (defined in Section 4.3.1),
in addition to the two location variables of each station, we have that the number of input
variables in each time series corresponds to 11 ×(2 + 7 × 24) = 1870. In the output only one
variable is required, PM2.5. In the experiments where the number of stations varies, the
number of data inputs will also be changed. The generated layout can be viewed in the
header of the Table 3.
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Table 3. Data structure expressed in time series.

E
(Es-01)

N
(Es-01)

PM2.5
(Es-01)
(t-23)

. . .
PM2.5
(Es-01)

(t-0)

E
(Es-02) . . .

PM2.5
(Es-01)
(t + 24)

. . .
PM2.5
(Es-N)
(t + 24)

A B 38.0 . . . 35.0 C . . . 36.0 . . . 36.5
A B 34.0 . . . 33.0 C . . . 30.0 . . . 33.4
A B 27.0 . . . 28.6 C . . . 30.0 . . . 25.0

The variables presented in Table 3 refer to those mentioned in the Table 2 during a
certain period of time; this means that, for example, columns E(Es-01) and E(Es-02) refer
to the easting (longitude) coordinates for stations 01 and 02, respectively, and N(Es-01) is
the northing (latitude) coordinate for station 01. The letters A, B and C indicate the UTM
coordinates. In general, we differentiate the coordinates by unique letters of the alphabet.
Additionally, column PM2.5 (Es-01)(t − 23) refers to the PM2.5 concentration 23 h before
the reference time t for station 01, and column PM2.5 (Es-02)(t + 24) refers to the value of
PM2.5 at 24 h after the reference time t for station 02. The pre-processed dataset with the
data from the 11 stations is available to the community (https://1drv.ms/u/s!AnkU8l4
kGM9wlhWy22fexCGzHByp?e=ZQ9Hqd, accessed on 1 January 2020).

4.3. Training Net Selection

For the selection of the architecture of the network, first we considered models for
temporal prediction of PM2.5, which is an easier task. The resulting model was used as
a basis for the final space-time neural model. For the training network selection, a new
dataset was generated based on Table 3.

In this task, we considered 24 h for input and 1 h for output. Input variables are
indicated by columns with expression (t − n), where n takes values from 0 to 23, and
output variables are indicated by expression (t + n) in an analogous way. Note that each
input series was concatenated with the 11 stations which are identified by the coordinates
E (longitude) and N (latitude). To achieve a temporal forecast, we first (i) selected a station
to forecast. In this case we eliminated all the columns of the output variables that do not
correspond to the station we sought to predict. Then (ii) we modified the input variables of
the station to be predicted by replacing them with −1, with the exception of the coordinate
of the station itself. Finally, (iii) the two previous steps (i and ii) were repeated for all the
stations in all the data of Table 3. In this way it was expected that the neural network
learned that the values to be predicted correspond to the locations that contain values of
−1. Relevantly, it should be noted that this step only considered the original training data,
that is, from the year 2012, and that it was aimed at finding an initial network structure
for our models; that is, the weights learned in the experiment were not used anymore in
space-time. The reason for this step was the difficulties in finding a good initial structure in
the space-time problem, which is why it was decided to first obtain a solution in a more
relaxed problem, in this case only temporarily. An alternative is to eliminate a station
in each test, which required a high computational cost, since the experiment had to be
repeated for each station. However, we expected that the bias effect would be reduced,
since it was only considered in the selection of the network structure. Subsequently, a new
pre-processing stop will be carried out to adapt it to a spatio-temporal modeling. Table 4
presents a summary of the results of this procedure.

https://1drv.ms/u/s!AnkU8l4kGM9wlhWy22fexCGzHByp?e=ZQ9Hqd
https://1drv.ms/u/s!AnkU8l4kGM9wlhWy22fexCGzHByp?e=ZQ9Hqd
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Table 4. Structure of the data expressed in time series. The columns to predict are indicated using
padding with value −1.

E
(Es-01)

N
(Es-01)

PM2.5
(Es-01)
(t-23)

. . .
PM2.5
(Es-01)

(t-0)

E
(Es-02)

N
(Es-02)

PM2.5
(Es-02)
(t-23)

. . .
PM2.5
(Es-02)

(t-0)
. . . PM2.5

(t+1)

A B −1 . . . −1 C D 36.5 . . . 40.2 . . . 36.0
A B 34.0 . . . 33.0 C D −1 . . . −1 . . . 22.0
A B 27.0 . . . 28.6 C D 30.2 . . . 36.0 . . . 25.0

In Table 4 the new dataset is presented. The first row has the predicted values of
PM2.5 of station 01; therefore, its columns (Es-01) have values of −1. For the second row,
the values of predicted PM2.5 for station 02, and again, its corresponding columns have
values −1.

4.3.1. Network Selection

For the selection of the architecture of the LSTM network, a group of networks with
different architectures were generated, where the dropout values varied between 0 and
0.3 with steps of 0.05 and the number of neurons per layer was between 100 and 250 (both
included) in multiples of 50, except for the last LSTM layer, for which there were 25, 50, 75,
100, 150, 200 or 250 neurons. The activation functions of the intermediate-layer neurons
correspond to hyperbolic tangent functions. Finally, a final time distribution layer was
added using a linear activation function. This layer is very important because the input
variables are not only directly related to their previous values, but they are also related
to the previous observations of the other meteorological stations. The mean square error
was used as the objective function, optimizing the cost function with the adaptive moment
estimation (Adam) algorithm [50].

We used a greedy strategy for the architecture selection of the neural network to reduce
the search space of the structure due to the exponential number of possible configurations.
We started by optimizing the first layer and after finding the best configuration according to
the 7 neuron values and 6 dropout values. We optimized the network by adding a second
layer and fixing the configuration of the first, and we continued until a third layer. In
this way, we tested a total of 39 neural network configurations according to the number
of neurons and the dropout operator. In this case, we used as the network input data
configuration the schema given in Table 4. Eleven meteorological stations were used. The
variables temp and PM2.5 of the last 24 h were used as input, and PM2.5 forecast 1 h ahead
was output.

Next, Table 5 provides a summary of the 6 networks with the highest values of R2 of
the 39 tested in total. The networks that stand out in terms of R2 in their training set are
identified. Finally, although the values of R2 do not suffer variations of more than 2 points,
we selected R36 (Table 5) as our candidate because, in addition to having the highest values
of R2 in training and validation, we grant the possibility that being a deep network, it can
learn a greater number of relationships that exist between the data.

Table 5. Selection of six neural networks that present the highest values of R2 in the dropout selection
training group, number of neurons and LSTM layers.

Code
LSTM Network

Neurons
for Layer Dropout R2 in

Train
R2 in

Validation

R02 200 0.7661 0.6681
R07 200 0.1 0.7611 0.6544
R15 200 0.15 0.7599 0.666
R23 200–100 0.1–0.15 0.7786 0.6554
R30 200–100 0.1–0.3 0.7725 0.6567
R36 200–100–50 0.1–0.15–0.3 0.7794 0.6682
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The selection of input variables was based on the R36 network considering the value of
R2 obtained in the validation set for the prediction of PM2.5. As a result of this experiment,
the input variables were PM2.5, PM10, NO2, temp, velv, hrel and hour, which are detailed
in Table 2. To optimize results, only PM2.5 was left as the output variable.

4.4. Spatio-Temporal Prediction
4.4.1. Test and Training Sets

In order to carry out the space-time prediction of PM2.5, the following steps were
considered: (i) First, the training and testing set were modified (see, Table 4) by inserting 2
new columns, (E’ and N’), representing the spatial coordinates of the location where we
need to predict the PM2.5. The inclusion of these two new input variables is necessary
for associating the geographic coordinate to the station to be predicted, which we call the
target station. Then, (ii) the variables of the target station were filled with −1. The previous
step (ii) was replicated for all stations (iii) which generated the database that was the input
of the neural network. For example, if we have 11 stations, during the training there will
be 10 stations that generate the input variables with values different from −1, and the
target station to predict, that is, the 11th, will be the only station that will provide the
output. In addition, in the input variables, the coordinates of the target station will appear
at the beginning, and in contrast, the historical variables of contamination or others of this
station will not appear. By not including the historical information of the target station to
be predicted as input variables, we prevented this prediction using the information which
corresponds to a typical temporal model. An example of the resulting input can be seen in
Table 6. Since the coordinates vary in the input variables, and this can change arbitrarily
even when the other input variables remain the same, this process allows generating a
space-time prediction. Note that this process is repeated for both the training and testing
processes; the only difference is that in testing the station to consider in the output variables
corresponds to the target station. To strengthen the prediction, so that most of the stations
were considered, high dropout values (greater than 0.4) were used in the neural networks
tested. At the same time, this complete procedure was repeated for all the stations in order
to evaluate the model in different target stations. Finally, it should be noted that in this
process the weights of the neural networks were initialized randomly—that is, only the
structure of the previous step given in Section 4.3 was considered.

Table 6. Structure of dataset used in spatio-temporal experiments.

E’ N’ E
(Es-02)

N
(Es-02)

PM2.5
(Es-02)
(t-23)

. . .
PM2.5
(Es-02)

(t-0)

E
(Es-03)

N
(Es-03)

PM2.5
(Es-03)
(t-23)

. . .
PM2.5
(Es-03)

(t-0)
. . . PM2.5

(t+24)

C D C D −1 . . . −1 E F 25.1 . . . 18.2 . . . 32.1

E F C D 35.1 . . . 32.8 E F −1 . . . −1 . . . 35

G H C D 25.3 . . . 30.4 E F 17.4 . . . 22.9 . . . 24.1

Initially, we eliminated the input data of the station to be predicted during the training
to prevent the network from looking only at the historical data of the station; however,
the results improved when considering it. We believe this happened because valuable
information was not lost during training, and on the other hand, the dropout operator
allowed the network to consider all available stations.

4.4.2. LSTM Neural Network Tuning

Finally, we fit the multilayer LSTM neural network according to the two experiments
specified in Section 5 which consider 7 and 11 input stations with 1 and 24 h as prediction
outputs, respectively. The network needs to be specified because the numbers of input and
output variables varies. In the case of the experiments with seven stations and 1 h as output,
the network R36 was taken as the base considering {200, 100, 50} neurons and dropout rates
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of {0.1, 0.3, 0.5} in a greedy way, to avoid trying an exponential number of combinations.
In addition, the entry of a fourth layer was allowed. The selection was based on the value
of R2 on a validation set given by the 30% of the original test set (details in Section 5). The
experiments indicated that the network with the best results turned out to have four LSTM
layers with {200, 50, 100, 30} neurons with dropout rates of {0, 0.5, 0.5, 0.5}, respectively.
We call this network LSTM-4.The training of the proposed model typically manages to
control overfitting by considering the indicated dropout rates. As an example, Figure 5
shows the evolution of the mean squared error (MSE) loss function using the LSTM-4
network for the 1 h forecast at Cerro Navia station using six closest stations as input. In the
graph it can be seen that the training and validation loss curves tend to converge.

Figure 5. Evolution of loss function during training of LSTM-4 neural network model for one-hour-
ahead PM2.5 prediction of station Cerro Navia using the 6 closest stations as input.

5. Experiments

In this section, we present two experiments used to validate the proposed models
and analyze the results of the space-time predictions for Santiago. First, a short-term
prediction is proposed, one hour in the future (Section 5.1). This was expected to be the
most reliable prediction due to the short time in the future to be predicted. In addition, a
medium-term prediction was performed, 24 h into the future (Section 5.2). In this case, the
predictions from (t+1) to (t+24) were done simultaneously considering the data recorded
in the previous 24 h (from (t-23) to (t)). The reason for this experiment was to test how
the network behaves over a longer horizon, in addition to analyzing its behavior when
it has multiple outputs. Indeed, the prediction of a 24 h period did not produce the best
prediction for any particular hour. On the other hand, we also considered different areas
within Santiago as input for the neural network. We first studied the set of seven nearby
stations: Cerrillos, Cerro Navia, El Bosque, Independencia, La Florida, Parque O’Higgins
and Pudahuel. We then studied all eleven stations available in the database. The reason for
this differentiation is that we observed that there are stations very far from others, such
as Talagante (see Figure 3). Normally, very distant stations contain contamination values
that are poorly correlated with the others due to their particular conditions (sources of
emissions or meteorological factors). Since the predictions in a given location are based on
input variables which are collected in different spatial points, the space-time prediction
quality could be affected by farthest stations. Hence, we removed the four furthest stations:
Las Condes, Quilicura, Puente Alto and Talagante.

Regarding the design of experiments, in addition to the indicated training and testing
sets, we proceeded to divide the testing set: 30% for validation and the rest for testing. In
relation to the compared models, we tested five models: a multivariable linear regression
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(LR), a feed forward neural network (FFN), an LSTM neural network (LSTM), a multilayer
gated recurrent units (GRU) neural network and a multilayer LSTM neural network. This
last network is identified by LSTM-X, where X is the number of stacked LSTM layers.
The validation of the results was carried out considering the following standard metrics:
the coefficient of determination (R2), the square root of the squared error (RMSE) and
the median absolute error (MAE). A demo source code with the tested models is made
available to the community (https://github.com/sagagk/ExperimentosPM25, accessed on
1 January 2020).

Finally, regarding the configurations of the stacked LSTM neural network, in the
prediction experiments at 1 and 24 h, the LSTM-4, detailed in Section 4.4.2, was used.
Regarding the GRU model, the same number of layers and dropout operators given in the
stacked LSTM configurations where the LSTM layer was replaced by a GRU were used.
The LSTM model had the configuration of the first layer of the LST3 and LSTM-4 model,
having 200 neurons without dropout. The FFN model was multilayered and consisted
of 512 and 64 neurons. This setup was based on a greedy search using a validation set
with {64, 128, 256, 512} neurons in each layer. On the other hand, the LR model did not
require configuration, since it corresponds to a linear combination of the input variables.
This section is divided into two subsections which detail the short-term forecast (1 h in
the future) and medium-term forecast (24 h ahead), each considering both seven and
eleven stations.

5.1. One-Hour-Ahead Forecasting

We applied the different models to forecast the PM2.5 one hour ahead. This task is the
prediction which had the highest expected certainty because there was less discontinuity
with the historical data. We used two experiments: (i) first we considered the seven nearby
stations, and then (ii) the eleven available stations. We complement these experiments by
visually displaying the prediction results at a particular station. In this way we hope to see
the effect of the more distant stations on the quality of the predictions.

(i) Prediction considering the seven closest stations: In Table 7, each of the seven trained
networks is displayed, where the column Station refers to the station to be predicted. In
relation to metric R2, the results show that LSTM-4 obtained the best results in comparison
to other alternative methods. In particular, the station Cerro Navia delivered the highest
prediction quality of the PM2.5 pollutant with R2 of 0.844, followed by Pudahuel, Cerrillos
and El Bosque. On the other hand, the lowest quality of prediction was obtained on La
Florida with an R2 of 0.679. On average, the prediction quality remained relatively high
with a R2 of 0.741. We think that these good results are explained by these stations being
close. Regarding RMSE and MAE, the results are similar to the R2 results: LSTM-4 was
the best method again. LSTM obtained the best results for MAE. We also tested a simple
baseline prediction based on the mean of the last value of PM2.5; however, the results are
poor: the average R2, RMSE and MAE were 0.002, 25.7 and 20.4. In general, we found that
the methods based on recurrent neural networks perform better than simpler methods such
as FFN or LR.

https://github.com/sagagk/ExperimentosPM25
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Table 7. Metrics of space-time predictions considering 7 stations, of 1 h in the future. Bold font
indicates best results.

Station Metric LR FFN LSTM GRU LSTM-4

Cerrillos

R2 0.533 0.699 0.725 0.732 0.733

RMSE 13.35 10.73 10.25 10.12 10.10

MAE 7.44 4.83 4.60 4.43 4.38

Cerro Navia

R2 0.678 0.707 0.828 0.836 0.844

RMSE 14.27 13.62 10.43 10.19 9.93

MAE 6.80 4.96 3.82 3.82 3.83

El Bosque

R2 0.523 0.646 0.684 0.706 0.707

RMSE 15.52 13.37 12.63 12.18 12.17

MAE 8.57 5.96 5.49 5.43 5.58

Independen.

R2 0.041 0.529 0.688 0.698 0.699

RMSE 14.27 10.00 8.13 8.01 8.00

MAE 7.27 4.66 4.12 4.15 4.20

La Florida

R2 0.169 0.464 0.667 0.679 0.676

RMSE 15.41 12.38 9.75 9.57 9.63

MAE 8.57 5.96 5.49 5.43 5.58

P.O’Higgins

R2 0.568 0.696 0.717 0.691 0.729

RMSE 11.69 9.81 9.46 9.88 9.26

MAE 6.56 4.53 4.33 4.76 4.24

Pudahuel

R2 0.511 0.691 0.785 0.800 0.802

RMSE 15.49 12.33 10.29 9.92 9.87

MAE 9.11 4.78 3.75 4.09 3.79

Average

R2 0.432 0.633 0.728 0.735 0.741

RMSE 14.29 11.75 10.13 9.98 9.85

MAE 7.74 5.08 4.41 4.48 4.40

(ii) Prediction considering all 11 stations: Table 8 displays the results for each of the
11 trained networks, where the Station column indicates the station to predict. When
considering the metric R2, it appears again that the LSTM-4 algorithm obtained the highest
value, it being very close to the one given by GRU. As in the previous experiment, the
Cerro Navia station delivered the highest PM2.5 forecast quality with a maximum R2 of
0.816 (LSTM-4), followed by Pudahuel (LSTM), Quilicura ( LSTM-4) and Cerrillos (GRU).
On the other hand, the lowest prediction quality was obtained in the stations of Puente
Alto and Las Condes with R2 of 0.461 and 0.489, when considering the LSTM-4 method.
On average, the quality of the predictions was still relatively high, given an R2 of 0.657,
although clearly lower than the result obtained using the seven nearby stations. We believe
that this decrease in accuracy can be explained by the incorporation of very distant stations,
which could have confused the neural network. Regarding RMSE, the results are similar to
those of R2: the LSTM-4 algorithm was again the best method, closely followed by GRU. In
MAE, the LSTM network obtained the best average result. Additionally, we also tested a
simple benchmark prediction based on the mean of the last values of PM2.5. In this case,
the results were not good, given average R2, RMSE and MAE of -0.501, 22.3 and 13.77,
respectively. We found that methods based on recurrent neural networks with multiple
layers obtained the best performance on average.
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Table 8. Metrics of space-time predictions considering 11 stations, of 1 h in the future. Bold font
indicates best results.

Station Metric LR FFN LSTM GRU LSTM-4

Cerrillos

R2 0.566 0.656 0.708 0.712 0.710

RMSE 12.94 11.51 10.62 10.53 10.57

MAE 7.08 5.20 4.42 4.63 4.67

Cerro Navia

R2 0.619 0.662 0.811 0.802 0.816

RMSE 15.59 14.67 10.96 11.23 10.82

MAE 7.36 5.36 3.96 3.82 4.07

ElBosque

R2 0.522 0.641 0.668 0.688 0.675

RMSE 15.58 13.50 12.98 12.59 12.85

MAE 8.33 6.07 5.57 5.89 5.69

Independencia

R2 0.329 0.624 0.619 0.656 0.667

RMSE 12.06 9.03 9.09 8.64 8.50

MAE 7.22 4.63 4.48 4.33 4.31

LaFlorida

R2 0.407 0.574 0.663 0.671 0.673

RMSE 13.12 11.12 9.89 9.77 9.75

MAE 7.80 5.37 4.61 5.31 5.18

Las Condes

R2 −0.595 −0.404 0.451 0.485 0.489

RMSE 15.91 14.93 9.33 9.04 9.00

MAE 8.92 6.70 4.82 4.73 4.79

P.O’Higgins

R2 0.498 0.678 0.677 0.665 0.674

RMSE 12.69 10.16 10.17 10.37 10.22

MAE 6.97 4.60 4.71 4.60 4.91

Pudahuel

R2 0.538 0.658 0.779 0.777 0.759

RMSE 15.13 13.03 10.46 10.50 10.93

MAE 8.47 4.50 3.98 4.51 4.42

Puente Alto

R2 0.277 0.357 0.398 0.461 0.461

RMSE 19.73 18.60 18.01 17.04 17.04

MAE 10.64 10.55 8.79 8.70 8.69

Quilicura

R2 0.590 0.689 0.710 0.718 0.720

RMSE 11.01 9.59 9.26 9.14 9.11

MAE 6.10 4.44 4.07 4.08 4.12

Talagante

R2 0.370 0.532 0.587 0.573 0.581

RMSE 14.06 12.11 11.38 11.58 11.47

MAE 7.21 4.97 4.68 4.45 4.66

Average

R2 0.375 0.515 0.643 0.655 0.657

RMSE 14.35 12.57 11.10 10.95 10.93

MAE 7.83 5.67 4.92 5.00 5.05

Next, we visually analyze the results of the 1 h spatio-temporal prediction of the
LSTM-4 neural network considering the Cerro Navia station. Figure 6 shows the forecast
for 24 h ahead—9 August 2013. We chose this day because it corresponds to a winter one,
which is a season where greater pollution changes occur. In particular, we note that the
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network was able to predict the peak of PM2.5 that usually occurs around 9 am ([8]) due
to the high traffic. In general, we note that the network managed to reasonably predict
pollution, especially during the hours when the people are most exposed (i.e., from 7 am to
9 pm).
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Figure 6. Comparison of real and one-hour-ahead values of PM2.5 at the Cerro Navia station during
9 August 2013.

5.2. 24-h-Ahead Forecasting

In this experiment we performed space-time prediction of 24 h in the future. This
problem is more difficult than the 1 h prediction because there were more variables to adjust
simultaneously, which was verified in the results. In this case, we again performed two
experiments, as in the previous Section: (i) we first evaluated the seven nearby stations, and
then (ii) the eleven available stations. We also complement these experiments by visually
displaying the results of the evolution of R2 and the 24 h predictions at a particular station.

(i) Prediction considering the seven closest stations: Table 9 presents the results
considering all the techniques proposed for the 24 h prediction. The results of the R2 metric
show that the LSTM-4 neural network obtained the best results, closely followed by the
GRU network. As when predicting 1 h ahead, the Cerro Navia station provided the highest
PM2.5 prediction quality, with an R2 of 0.411 using the LSTM method, followed by El
Bosque (LSTM) and Cerrillos (LSTM-4), which provided values higher than 0.4. On the
other hand, the lowest prediction quality was obtained in Florida, with an R2 of 0.330. On
average, the quality of the prediction was relatively low, with a R2 of 0.38. Note that this
R2 corresponds to the mean of 24 values of R2, one for each hour. The values for the first
hour were much better than for hours 12 or 24. For example, in Cerro Navia, the R2 was
0.62 for hour 1 and 0.37 for hour 24. Regarding RMSE and MAE, the results are similar for
R2: the LSTM-4 algorithm appears to been the method with the best results, being closely
followed by GRU. Again, we tested a simple prediction based on the mean of the last 24
PM2.5 values for all training stations. The results were very poor, being on average −0.588,
24.4 and 18.8 for the R2, RMSE and MAE, respectively. In summary, the methods based on
recurrent networks appear to be the ones with the best performances.
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Table 9. Metrics of space-time prediction considering 7 stations, of 24 h in the future. Bold font
indicates best results.

Station Metric LR FFN LSTM GRU LSTM-4

Cerrillos

R2 −0.153 0.347 0.389 0.392 0.401

RMSE 20.99 15.79 15.28 15.24 15.12

MAE 12.85 7.20 6.57 6.85 6.39

Cerro Navia

R2 0.193 0.393 0.411 0.383 0.408

RMSE 22.43 19.46 19.17 19.63 19.21

MAE 11.80 7.40 7.26 8.38 6.67

ElBosque

R2 −0.145 0.387 0.403 0.399 0.402

RMSE 24.02 17.58 17.36 17.41 17.37

MAE 14.99 8.25 7.51 7.71 7.23

Independencia

R2 −0.767 0.133 0.282 0.377 0.352

RMSE 19.44 13.62 12.39 11.54 11.77

MAE 12.37 7.18 6.16 6.50 6.10

LaFlorida

R2 0.085 0.137 0.284 0.330 0.327

RMSE 16.20 15.73 14.32 13.86 13.89

MAE 8.73 8.32 6.78 7.25 6.72

P.O’Higgins

R2 −0.122 0.305 0.370 0.391 0.377

RMSE 18.86 14.84 14.13 13.90 14.05

MAE 11.70 7.62 6.65 6.74 6.37

Pudahuel

R2 0.112 0.360 0.383 0.373 0.393

RMSE 20.69 17.56 17.24 17.38 17.11

MAE 11.31 7.15 7.03 7.36 6.40

Average

R2 −0.114 0.295 0.360 0.378 0.380

RMSE 20.38 16.37 15.70 15.57 15.51

MAE 11.96 7.59 6.85 7.26 6.56

(ii) Prediction considering 11 stations: Table 10 shows the results all the methods for
24 h predictions. In relation to metric R2, in this case the neural network GRU obtained the
best results. In particular, Cerro Navia delivered the highest prediction quality of the PM2.5
pollutant with an R2 of 0.45, followed by Quilicura, Pudahuel, and El Bosque. On the other
hand, the lowest-quality predictions were obtained for Las Condes, with an R2 of 0.292.
On average, the prediction quality remained relatively low with an average R2 of 0.38. We
note that this R2 corresponds to the average of 24 R2, one for each hour. The values for the
first hour are much better than for the 12th or 24th hours. For example, for Cerro Navia,
the R2 was 0.74 for hour 1 and 0.35 for hour 24. This behavior was repeated for all stations.
In subsequent analysis, we will focus on this point for one station. Regarding RMSE and
MAE, the results are similar to those of R2: the GRU algorithm was the best method again.
We also tested a simple baseline prediction based on the mean of the last 24 values of PM2.5
for all training stations. In this case, the results were very poor; the average R2, RMSE and
MAE were −1.12, 40.3 and 18.2. Similarly to the previous experiment, we found that the
methods based on recurrent neural networks preformed better than simpler methods, such
as FFN and LR.
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Table 10. Metrics of space-time prediction considering 11 stations, of 24 h in the future. Bold font
indicates best results.

Station Metric LR FFN LSTM GRU LSTM-4

Cerrillos

R2 0.343 0.375 0.383 0.392 0.393

RMSE 15.89 15.50 15.40 15.29 15.27

MAE 7.66 7.20 6.51 6.46 6.46

Cerro Navia

R2 0.364 0.384 0.450 0.449 0.445

RMSE 20.04 19.73 18.64 18.67 18.73

MAE 8.77 8.17 6.71 5.98 6.13

El Bosque

R2 −0.268 0.394 0.417 0.422 0.416

RMSE 25.36 17.54 17.19 17.12 17.22

MAE 15.45 7.97 7.63 7.29 7.47

Independen.

R2 −1.220 0.371 0.386 0.402 0.401

RMSE 21.85 11.62 11.49 11.34 11.34

MAE 13.64 6.23 5.99 6.16 6.08

La Florida

R2 −0.862 0.352 0.379 0.425 0.386

RMSE 23.20 13.69 13.40 12.90 13.33

MAE 14.93 6.98 6.52 6.60 6.53

Las Condes

R2 −2.686 −0.351 −0.137 0.292 0.248

RMSE 24.21 14.66 13.45 10.62 10.94

MAE 15.65 7.81 6.72 5.87 5.91

P.O’Higgins

R2 −0.634 0.374 0.387 0.383 0.392

RMSE 22.88 14.15 14.01 14.05 13.95

MAE 14.61 7.19 6.89 6.57 6.57

Pudahuel

R2 0.348 0.375 0.407 0.410 0.404

RMSE 17.85 17.48 17.01 16.98 17.06

MAE 7.08 6.95 6.67 6.28 6.54

Puente Alto

R2 −0.434 0.108 0.112 0.185 0.160

RMSE 27.75 21.89 21.83 20.92 21.24

MAE 16.92 10.74 10.61 10.53 10.47

Quilicura

R2 −0.747 0.404 0.424 0.428 0.439

RMSE 22.62 13.21 12.99 12.94 12.81

MAE 14.29 6.60 5.94 5.93 6.03

Talagante

R2 −0.672 0.294 0.333 0.367 0.339

RMSE 22.98 14.93 14.51 14.13 14.44

MAE 14.27 7.39 6.08 6.11 6.38

Average

R2 −0.588 0.280 0.322 0.378 0.366

RMSE 22.24 15.85 15.45 15.00 15.12

MAE 13.03 7.57 6.93 6.71 6.78

We note that the most distant stations, in particular, Las Condes, Puente Alto and
Talagante, but not Quilicura, have the poorest metrics. We believe that this was due to a
variety of phenomena, such as the great distances between stations, the different emission
sources and the altitude of each (see, for example, the works of [6,51]).
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In Figure 7 we visually analyze the results of R2 for each of the 24 h at Cerro Navia
station. It can be seen that the recurrent networks have high values of R2 for the first
hour (0.71), and then they steadily decay. Around hour 12, the value of the metric slowly
decays. This is explained by the greater uncertainty due to the accumulated time. The
same behavior is evident for the simpler methods, such as FFN and LR, those their results
are generally much lower in quality compared to those of the recurrent networks. This
behavior was repeated for the other stations and in the other metrics; the global metrics
must be carefully analyzed.

In Figure 8 we visually analyze the 24 h forecasts for 1 July 2013 at the Cerro Navia
station. It can be seen that the LSTM-4 model managed to predict PM2.5 values quite well;
however, for the afternoon it tended to be imprecise. This behavior was expected due to
the greater uncertainty in hours far from those of the training set.

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour ahead

0.3

0.4

0.5

0.6

0.7

R²

LST3
GRU
LST
FFN
LR

Figure 7. Behavior of R2 for the PM2.5 24 h forecasts at Cerro Navia station during 2013 for each hour
of the day using different methods.
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Figure 8. 24 h-ahead forecast for the day 1 July 2013 at Cerro Navia’s meteorological station, using
the information of the other 10 stations as input data.
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Note that the 24 h prediction lowers the 1 h-prediction accuracy, which is because the
neural network seeks to predict multiple outputs simultaneously. This problem has the
difficulty that the pollution data from the same station were not used to make the prediction,
which made it difficult to obtain accurate relationships between the available stations with
respect to the location of the target station. For example, there may be local events that can
alter measurement levels that are not captured by the model input variables. We believe
that the use of additional information such as altitude can improve the prediction.

6. Discussion

When analyzing the results of the experiments considering the prediction for one hour
in the future, it can be observed that the use of seven stations allowed us to obtain better
predictions than considering eleven stations, which included the four furthest stations: Las
Condes, Puente Alto, Quilicura and Talagante. We believe that this was due to the fact that
the four outer stations observe values that have lower correlations with those of the seven
closest stations. Therefore, this theoretically affects the quality of the short-term forecasts
enough to reduce their quality. For example, regarding the R2 for Cerro Navia and Cerrillos,
they decreased from 0.84 and 0.73 to 0.82 and 0.71, respectively, when considering the
data from the 11 stations. We think that this may have been due to the presence of factors
that could alter pollution, such as some particular sources of emissions (traffic, heating,
factories, etc.) or particular meteorological conditions (temperature, wind, humidity, etc.).

Remarkably, we observe that the 24 h forecasts did not differ majorly when considering
seven and eleven stations. In particular, we observe that the best average values of R2

and MAE occurred when considering seven stations, though slightly, but the best RMSE
occurred for 11 stations. We can suggest that there is no best configuration in this case,
unlike the case of predicting one hour in the future. We think that this result is explained
because when considering 24 h, it is possible that the use of more stations can influence
the prediction. That is, the patterns of the remote stations may be more correlated when
considering a longer horizon than just 1 h in the future. However, in practical terms,
although there is no greater difference in performance, naturally a model that considers
more stations appears to be more applicable.

When comparing the results of predictions both 1 h ahead and 24 h ahead, it is evident
that the results were much better for 1 hour ahead for all tested models. We believe there
are two main reasons for this difference in performance. Firstly, when predicting 24 h
simultaneously, the neural network generates a weight configuration that tries to respond
to all the hours of the output variables simultaneously. In other words, learning seeks to
adjust many outputs simultaneously, which may mean that performance must be reduced
in one output variable to improve another. The second reason is that the prediction at a
longer temporal distance is naturally more uncertain. This can be seen in Figure 7, where as
the hour to be predicted moves further away from the input hours, the performance drops
noticeably. The R2 is greater than 0.7 in the first hour, and ends up less than 0.4 at hour 24.
A possible solution is to make predictions for every hour in order to maximize the use of
the neural network; however, this can be expensive. Another way would be to explore new
neural architectures that better handle adaptation to different output variables.

In relation to the pre-processing, the training process considered all the stations,
though the information of the target station was canceled while maintaining its coordinates.
In this way we hoped that the model would learn to use the other stations to predict a
particular station, and thus we avoided typical temporal modeling. The use of all stations
can be seen as similar to other PM2.5 spatio-temporal prediction work [41], although they
did not perform applied information override. An interesting alternative is to remove a
training station while it is being used for testing. The problem that appears is that when
training, it is necessary to eliminate the station associated with the output variable (in order
to imitate the procedure in the testing process), for which the number of stations is reduced
by one. In further experiments, we found that this reduction causes the performance of the
tested network to drop. We believe that reducing the already reduced number of stations



Appl. Sci. 2022, 12, 11317 21 of 24

in the city under study will affect the quality of the predictions; however, we hope to carry
out a comparative experiment in a later work.

In relation to the models, the results suggest that in the case of prediction 1 h into
the future, the multilayer LSTM model is better on average, although the GRU and LSTM
models produced similar results. On the other hand, in the case of the 24 h forecast, the
results varied, LSTM-4 and GRU being better on average depending on whether 7 or
11 stations were processed, although their performances were very similar. Therefore, we
believe that the implementation of these models requires an optimization of the neural
network structure for both architectures, LSTM and GRU, according to the available data.

Finally, in relation to the space-time models that are the state of the art, although they
produce excellent results, most of them are not comparable, since they have been applied in
areas where a large number of monitoring stations are available or simulated meteorologi-
cal variables are provided for each point of the space. When considering the predictions for
Santiago de Chile, temporal models are often used which do not include the space com-
ponent. Although these models are particularly good for modeling PM2.5 concentrations
when the historical values are known, they are not adequate for forecasting pollution at
new sites where data are not available. See, for example, the works of [8,14,26]. During
the preliminary analysis of data, we considered a temporal model, where we obtained on
average an R2 greater than 0.95 when predicting one hour ahead with seven stations’ data.
With the proposed space-time model, we obtained on average an R2 of 0.74 (Table 7) in the
same hour-ahead predictions with the same stations’ data. This implies that the space-time
problem is a more difficult task, since the historical information of the spatial points to
be predicted is not included in the training process. If we compare the proposed model
with the results of a statistical space-time model proposed by Nicolis et al. [6], in some
cases, our RMSE values are lower. However, many differences characterize the two models:
(i) while the RMSE in our model is evaluated for one year of prediction using one year for
training the model, in the the statistical model of [6], the RMSE is evaluated for one day
after using two and a half months for training the model; (ii) the statistical model uses WRF
simulations for predicting the meteorological variables, whereas in our case we only use
past values collected by monitoring stations located at points of interest for the forecasting
of PM2.5. We think that our method could improve their predictions if simulations of WRF
models or/and other variables are considered as additional input.

7. Conclusions

In this work we have used the LSTM recurrent network for a prediction of PM2.5
concentration levels for the city of Santiago de Chile with 11 meteorological stations. By
using a recurrent model composed of space-time pollutant and meteorological data, we
were able to predict the concentrations of PM2.5 in Santiago during the next hour and
the next 24 h, reaching values of 0.74 and 0.38 for average R2 when considering 7 and
11 stations, respectively. This research shows that the task of spatio-temporal prediction
of PM2.5 pollutant concentration is a more difficult task than typical temporal forecasting
because the historical data of the target station are not used in the input data of the training
process of the model.

As future work, we propose to improve the prediction quality of these networks by
increasing the number of training variables and looking for the relationship that exists in
each of the monitoring stations through the distance and positioning of each of these. We
also plan to consider different input variables, such as the outputs of meteorological models.
Finally, the use of new attention-based architectures or the use of spatial information
through convolutional networks stacked with recurrent networks could be proposed for
further improving the results. In conclusion, we think that the proposed model constitutes
a new approach for space-time pollution prediction that could be used by governmental
decision makers for implementing restrictive measures which could prevent negative
effects on the human health.
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