
Citation: Tan, J.; Zhang, L.; Zhong, Z.

Distinction of Scrambled Linear

Block Codes Based on Extraction of

Correlation Features. Appl. Sci. 2022,

12, 11305. https://doi.org/10.3390/

app122111305

Academic Editors: Przemysław

Falkowski-Gilski, Tadeus Uhl

and Zbigniew Lubniewski

Received: 7 September 2022

Accepted: 7 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Distinction of Scrambled Linear Block Codes Based on
Extraction of Correlation Features
Jiyuan Tan , Limin Zhang and Zhaogen Zhong *

Department of Information Fusion, Naval Aviation University, Yantai 264001, China
* Correspondence: zhongzhaogen@163.com

Abstract: Aiming to solve the problem of the distinction of scrambled linear block codes, a method
for identifying the scrambling types of linear block codes by combining correlation features and
convolution long short-term memory neural networks is proposed in this paper. First, the cross-
correlation characteristics of the scrambling sequence symbols are deduced, the partial autocorrelation
function is constructed, the superiority of the partial autocorrelation function is determined by
derivation, and the two are combined as the input correlation characteristics. A shallow network
combining a convolutional neural network and LSTM is constructed; finally, the linear block code
scrambled dataset is input into the network model, and the training and recognition test of the
network is completed. The simulation results show that, compared with the traditional algorithm
based on a multi-fractal spectrum, the proposed method can identify a synchronous scrambler, and
the recognition accuracy is higher under a high bit error rate. Moreover, the method is suitable
for classification under noise. The proposed method lays a foundation for future improvements in
scrambler parameter identification.

Keywords: scrambled linear block codes; cross-correlation of symbols; partial autocorrelation
function; convolutional long short-term memory neural networks

1. Introduction

In communication systems, a long 0-run or 1-run often appears in transmitted binary
sequences [1], and this affects the extraction of timing information in signals. To improve
the balance of 0 and 1 symbols in transmitted signals, transmitted signals are scrambled to
make it nearly completely random digital sequences [2]. Scrambling processing enhances
the reliability and security of signal transmission, so it is widely used in satellite communi-
cations, spread spectrum communications, and cryptography [3–5]. In non-cooperative
communication, the extraction of scrambled information must be descrambled first, so the
blind identification technology of scrambling code parameters is of great significance to the
extraction of non-cooperative information and the deciphering of ciphers [6,7].

A scrambling code is divided into a synchronous scrambling code and a self-
synchronous scrambling code [6,7]. Among these, the parameter identification of the
synchronous scrambling code is the identification of a generator polynomial and the initial
state, and the identification of the self-synchronous scrambling code is the identification
of a generator polynomial. In recent years, scrambling code parameter identification tech-
nology has been widely studied [6,7]. The methods of scrambling parameter identification
mainly focus on three types of situations: source unbalance [8–16], source balance (coding
scrambling) [17–21], and the estimation of scrambled sequences in a direct-sequence spread
spectrum [22–25].

In an actual communication system, signal transmission is often channel-coded, so
intercepted scrambled data are usually a source-unbalanced sequence that has been channel-
coded and then scrambled. A method for reconstructing the synchronous scrambling code
generator polynomial based on a dual code and double search was proposed by Liu [17],

Appl. Sci. 2022, 12, 11305. https://doi.org/10.3390/app122111305 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111305
https://doi.org/10.3390/app122111305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1228-2642
https://doi.org/10.3390/app122111305
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111305?type=check_update&version=2

Appl. Sci. 2022, 12, 11305 2 of 17

in which one must know the scrambling type; in addition, the detection performance index
always meeting the requirements cannot be maintained. In [18], a more robust sparse
double-search algorithm, which improved the recognition performance of the algorithm
under a low signal-to-noise ratio, was put forward. However, knowledge of the constraint
length of the encoding is required. In [19], a polynomial identification based on run-length
statistics was proposed to solve the self-synchronous scrambling of linear block codes. This
method does not require prior information, and the influence of bit errors and channel
noise is also not considered. The cost function of a generator polynomial based on the
known check vector of the dual code was constructed in [20], and the reconstruction of the
generator polynomial under the noisy condition of the convolutional code was completed.
The third-order correlation of a synchronously scrambled m-sequence was used in [21] to
complete the reconstruction of a generator polynomial under error conditions. This method
does not require the information of an a priori vector, nor does it consider the influence of
channel noise, but it requires the known coding of the constraint length.

From the above analyses, all the known scrambling code parameter identification
methods are based on the known channel coding and scrambling types, but the scrambling
code data intercepted by non-cooperative communication parties are unknown, so it is
necessary to analyze whether the outgoing signal is scrambled and what scrambling
method is adopted that can further identify the parameters. Based on this, a multitype
spectrum classification method, which solved the binary classification of linear block
codes and linear block code self-synchronous scrambling under error conditions, was
proposed in [26]. However, since the biased difference between linear self-synchronous
scrambling and linear synchronous scrambling is very small, the distinction between the
two leads to poor classification performance. At the same time, the influence of channel
noise and recognition performance under high error conditions must be further improved.
Reference [21] constructed a rank difference matrix, and when different scrambling methods
were used, there was a periodic loss of rank at the integer multiples of the code length,
which was used as a basis to judge the scrambling method. Reference [27] proposed to
apply neural networks in order to extract rank features for the purpose of classification.
However, the structure and parameters of the neural network were not given. Meanwhile,
when the BER is greater than 0.01, the matrix tends to be a random matrix, the rank feature
is not obvious, and the recognition rate tends to be 0. To summarize, due to the need
for accurate scrambling-type information, the existing algorithms cannot achieve the full
blind identification of linear block code scrambling. In recent years, deep learning methods
have achieved good results in signal recognition [28,29], modulation recognition [30,31],
malicious file detection [32,33], and other fields [34,35]. At the same time, deep-learning-
based methods avoid manual feature extraction and have high practical value.

To solve the above-mentioned problems and the difficulty of manual feature extraction,
under the conditions of a high bit error rate (BER) and a low signal-to-noise ratio (SNR),
in this paper, we propose a linear block code scrambling-type identification based on
correlation feature extraction. The contributions of this paper are summarized as follows:

(1) We deduce the symbol cross-correlation of the scrambling sequence and construct
the partial autocorrelation function, both of which can reflect the correlation characteristics
of different scrambling methods.

(2) We construct a shallow network consisting of convolutional neural network (CNN)
and long short-term memory (LSTM) neural network models, which can accomplish the
identification of scrambled linear block codes under a high BER and a low SNR.

The remainder of this paper is organized as follows: In Section 2, we summarize the
principle and mathematical model of the scrambler. In Section 3, we analyze the cross-
correlation characteristics of the symbols and construct a partial autocorrelation function.
A correlation feature extraction network model is built in Section 4, and we analyze the
training process of the network. In Section 5, the proposed method is evaluated using
Monte Carlo simulations, and we compare its performance with that of the multi-fractal
spectrum method. Finally, a discussion is provided in Section 6.

Appl. Sci. 2022, 12, 11305 3 of 17

2. Scrambled Linear Block Code Model

The basis of the scrambling code is the linear-feedback shift register (LFSR), in which
the self-synchronous scrambling code introduces an exclusive OR logic between the feed-
back logic output and the first-stage register, and the obtained result is used as the input
of the register. The independent m-sequence generated by the LFSR is added to the in-
formation sequence, thereby generating the scrambling sequence. The self-synchronous
scrambler and synchronous scrambler are shown in Figure 1a,b, respectively.

Appl. Sci. 2022, 12, 11305 3 of 18

A correlation feature extraction network model is built in Section 4, and we analyze the

training process of the network. In Section 5, the proposed method is evaluated using

Monte Carlo simulations, and we compare its performance with that of the multi-fractal

spectrum method. Finally, a discussion is provided in Section 6.

2. Scrambled Linear Block Code Model

The basis of the scrambling code is the linear-feedback shift register (LFSR), in which

the self-synchronous scrambling code introduces an exclusive OR logic between the feed-

back logic output and the first-stage register, and the obtained result is used as the input

of the register. The independent m-sequence generated by the LFSR is added to the infor-

mation sequence, thereby generating the scrambling sequence. The self-synchronous

scrambler and synchronous scrambler are shown in Figure 1a,b, respectively.

D D D D

C0=1

Sk

C1 C2 CL-1 CL=1

yk-1 yk-2 yk-L+1 yk-L

Output sequence{yk}

Input sequence{xk}

...

...

D D D D

C0=1

Sk

C1 C2 CL-1 CL=1

Sk-1 Sk-2
Sk-L+1 Sk-L

Output sequence{yk}Input sequence{xk}

...

...

LFSR

(a) (b)

Figure 1. Scrambler schematic. (a) Self-synchronous scrambler; (b) Synchronous scrambler.

An L-stage LFSR’s feedback network is made up of L registers, such as the first-stage

register and the second-stage register, and an L-th stage register from left to right. Each

register can have two states, 0 and 1, and the operation  means the addition of modulo-

2. When a shift pulse is added, the output content of the previous moment is fed back to

the first-level register, the content of each level register is shifted to the next level, and the

current output t
s is generated by operation. Therefore, after giving the initial values,




0 1 1
, , ,

L
s s s , under the action of the shift pulse, the L-stage LFSR outputs a sequence  ts
, which satisfies the feedback logic

  
   

1 1 2 2t t t L t L
s c s c s c s , (1)

where    2 ,1
i

c GF i L . This sequence is called the LFSR sequence, and its linearity is

mainly reflected in its feedback logic being linear. Any consecutive L term in a sequence

of the L-stage LFSR is called the state of the sequence.  
0 1

, , ,
L

s s s is called the initial

state [16].

The self-synchronous scrambling process can be expressed as




  
1

L

k k i k i
i

y x c y . (2)

Additionally, the synchronous scrambling process can be expressed as

Figure 1. Scrambler schematic. (a) Self-synchronous scrambler; (b) Synchronous scrambler.

An L-stage LFSR’s feedback network is made up of L registers, such as the first-stage
register and the second-stage register, and an L-th stage register from left to right. Each
register can have two states, 0 and 1, and the operation ⊕ means the addition of modulo-2.
When a shift pulse is added, the output content of the previous moment is fed back to
the first-level register, the content of each level register is shifted to the next level, and
the current output st is generated by operation. Therefore, after giving the initial values,
s0, s1, . . . , sL−1, under the action of the shift pulse, the L-stage LFSR outputs a sequence
{st}, which satisfies the feedback logic

st = c1st−1 ⊕ c2st−2 ⊕ · · · ⊕ cLst−L, (1)

where ci ∈ GF(2), 1 ≤ i ≤ L. This sequence is called the LFSR sequence, and its linearity is
mainly reflected in its feedback logic being linear. Any consecutive L term in a sequence
of the L-stage LFSR is called the state of the sequence. (s0, s1, . . . , sL) is called the initial
state [16].

The self-synchronous scrambling process can be expressed as

yk = xk ⊕
L

∑
i=1
⊕ciyk−i. (2)

Additionally, the synchronous scrambling process can be expressed as

yk = xk ⊕
L

∑
i=1

cisk−i, (3)

where ∑⊕ means modulo-2 accumulation. ci ∈ GF(2), i = 1, 2, . . . , L is the feedback
coefficient of the LFSR, GF(2) represents the 2-element domain, and the value of ci is 0 or 1,
c0 = cL = 1. The generator polynomial of the scrambling code can be expressed as

f (x) = 1 + c1x + c2x2 + · · ·+ cLxL. (4)

Appl. Sci. 2022, 12, 11305 4 of 17

In actual communication system information transmission, most of the sources become
unbiased sources through channel coding [17], so the signal model studied in this paper is
shown in Figure 2 [17,18].

Appl. Sci. 2022, 12, 11305 4 of 18




 
1

L

k k i k i
i

y x c s , (3)

where  means modulo-2 accumulation.   (2), 1,2, ,
i

c GF i L is the feedback co-

efficient of the LFSR, GF(2) represents the 2-element domain, and the value of i
c is 0 or

1, 0
1=

L
c c . The generator polynomial of the scrambling code can be expressed as

    2

1 2
() 1 L

L
f x c x c x c x . (4)

In actual communication system information transmission, most of the sources be-

come unbiased sources through channel coding [17], so the signal model studied in this

paper is shown in Figure 2 [17,18].

linear block
coding

channel

LFSR

sk

yk

xk

zk

noise

nk

biased source

rk

Figure 2. Signal model studied in the present paper.

The noise is Gaussian white noise with mean 0, variance  2 , and signal amplitude

A . The signal-to-noise ratio (SNR) is defined as

   A2 2SNR 10 log 2 . (5)

For the receiver, first, we intercept a sequence of code elements of a linear block code,

and we only need to determine whether the sequence of the code elements is scrambled

using LFSR. When scrambling is performed, it is further determined whether the code

element sequence employs a self-synchronous scrambler as shown in Figure 1a or a syn-

chronous scrambler as shown in Figure 1b. Further identification of the scrambling pa-

rameters is only possible when the above three types of code element sequences are dis-

tinguished. In the next section, we focus on how to effectively identify whether the inter-

cepted information sequence is scrambled and what kind of scrambling method is used.

3. Analysis of Correlation Characteristics of Scrambled Linear Block Code

3.1. Cross-Correlation Characteristics of Symbols

It can be seen from Equation (2) that the k-th symbol (ky) of the self-synchronous

scrambling sequence correlates with the previous L symbol  , = , , , 1 2k iy i L regard-

less of the state of the LFSR.

It can be seen from Equation (3) that the k-th symbol (
ky) of the synchronous scram-

bling sequence correlates with the first L states   =, , , , 1 2k is i L of the LFSR. The rela-

tionship between the kth symbol and the state of the LFSR is

   


  1 1 1
1

L

k k i k i
i

y x c s . (6)

Furthermore,

    


   1 1 1 1
1

L

k i k i k k
i

s c s y x . (7)

The state of the LFSR at each moment satisfies the following relationship [14]:

Figure 2. Signal model studied in the present paper.

The noise is Gaussian white noise with mean 0, variance σ2, and signal amplitude A.
The signal-to-noise ratio (SNR) is defined as

SNR = 10 · log
(

A2/2σ2
)

. (5)

For the receiver, first, we intercept a sequence of code elements of a linear block code,
and we only need to determine whether the sequence of the code elements is scrambled us-
ing LFSR. When scrambling is performed, it is further determined whether the code element
sequence employs a self-synchronous scrambler as shown in Figure 1a or a synchronous
scrambler as shown in Figure 1b. Further identification of the scrambling parameters is only
possible when the above three types of code element sequences are distinguished. In the
next section, we focus on how to effectively identify whether the intercepted information
sequence is scrambled and what kind of scrambling method is used.

3. Analysis of Correlation Characteristics of Scrambled Linear Block Code
3.1. Cross-Correlation Characteristics of Symbols

It can be seen from Equation (2) that the k-th symbol (yk) of the self-synchronous
scrambling sequence correlates with the previous L symbol (yk−i, i = 1, 2, . . . , L) regardless
of the state of the LFSR.

It can be seen from Equation (3) that the k-th symbol (yk) of the synchronous scrambling
sequence correlates with the first L states (sk−i, i = 1, 2, . . . , L) of the LFSR. The relationship
between the kth symbol and the state of the LFSR is

yk−1 = xk−1 ⊕
L

∑
i=1
⊕cisk−i−1. (6)

Furthermore,

sk−1 =
L

∑
i=1
⊕cisk−i−1 = yk−1 ⊕ xk−1. (7)

The state of the LFSR at each moment satisfies the following relationship [14]:

sk =
L

∑
i=1

cisk−i. (8)

Combining Equations (2) and (6)–(8), it can be deduced that the following correlation
exists between the k-th symbol and the first L symbol:

yk = xk ⊕ sk = xk ⊕ c1sk−1 ⊕ c2sk−2 ⊕ · · · ⊕ cLsk−L
= xk ⊕ c1 · (xk−1 ⊕ yk−1)⊕ c2(xk−2 ⊕ yk−2)⊕ · · · ⊕ cL(xk−L ⊕ yk−L)

(9)

However, when the linear block code is not scrambled, the preceding and following
symbols have no correlation with the LFSR, and they are only related to the generator

Appl. Sci. 2022, 12, 11305 5 of 17

matrix of the linear block code. In summary, the linear block code scrambling correlation
distribution is shown in Figure 3.

Appl. Sci. 2022, 12, 11305 5 of 18




 
1

L

k i k i
i

s c s . (8)

Combining Equations (2) and (6)–(8), it can be deduced that the following correlation

exists between the k -th symbol and the first L symbol:

     
  

     

      

        





1 1 2 2

1 1 1 2 2 2

k k k k k k L k L

k k k k k L k L k L

y x s x c s c s c s

x c x y c x y c x y
. (9)

However, when the linear block code is not scrambled, the preceding and following

symbols have no correlation with the LFSR, and they are only related to the generator

matrix of the linear block code. In summary, the linear block code scrambling correlation

distribution is shown in Figure 3.

y(k)y(k-1)...y(4)y(3)y(2)y(1)

y(k)y(k-1)...y(4)y(3)y(2)y(1)

y(k)y(k-1)...y(4)y(3)y(2)y(1)

Linear block code

Self-synchronous of
linear block code

Synchronous of
linear block code

No correlation with LFSR

 relevant relevant relevant

 relevant
 relevant

s(k)s(k-1)...s(k-L)

 relevant

State of LFSR

A total of L
symbols

 relevant

 relevant

 relevant relevant

Figure 3. Symbol correlation analysis of linear block code scrambling.

It can be seen in Figure 3 that there is no correlation between the symbols of the linear

block code and the LSFR; there is a correlation between the two symbols of the linear block

code self-synchronous scrambling, and the symbols have nothing to do with the state of

the LFSR; there is a correlation between the symbol and states of the first L LFSRs at the

moment of the synchronous scrambling of the symbols of the linear block code, and, at

the same time, this leads to a correlation between the symbols. It can be seen from the

above analysis that scrambling causes a correlation between the preceding and following

symbols. This correlation is related to the state of the LFSR (synchronous scrambling) or

is independent (self-synchronous scrambling), so the intercepted symbol sequence can be

used as a correlation feature that is used for linear block code scrambling classification.

3.2. Biased Autocorrelation Characteristics of Symbols

From the analysis in Section 3.1, there are correlation characteristics between the sym-

bols scrambled by the linear block code, and they have relatively good correlation charac-

teristics. Next, the biased autocorrelation function [36] of the symbol sequence is con-

structed as follows:

 



 

 




    
1

0

1
= 0 1

N
'

yy k k
k

r Y Y , ,N
N

. (10)

where  1 2k kY y .

The unbiased autocorrelation function is defined as

Figure 3. Symbol correlation analysis of linear block code scrambling.

It can be seen in Figure 3 that there is no correlation between the symbols of the linear
block code and the LSFR; there is a correlation between the two symbols of the linear block
code self-synchronous scrambling, and the symbols have nothing to do with the state of
the LFSR; there is a correlation between the symbol and states of the first L LFSRs at the
moment of the synchronous scrambling of the symbols of the linear block code, and, at
the same time, this leads to a correlation between the symbols. It can be seen from the
above analysis that scrambling causes a correlation between the preceding and following
symbols. This correlation is related to the state of the LFSR (synchronous scrambling) or
is independent (self-synchronous scrambling), so the intercepted symbol sequence can be
used as a correlation feature that is used for linear block code scrambling classification.

3.2. Biased Autocorrelation Characteristics of Symbols

From the analysis in Section 3.1, there are correlation characteristics between the
symbols scrambled by the linear block code, and they have relatively good correlation
characteristics. Next, the biased autocorrelation function [36] of the symbol sequence is
constructed as follows:

r′yy(τ) =
1
N

N−τ−1

∑
k=0

YkYk+τ , τ ∈ [0, N − 1]. (10)

where Yk = 1− 2yk.
The unbiased autocorrelation function is defined as

ryy(τ) =
1

N − τ

N−τ−1

∑
k=0

YkYk+τ . (11)

The relationship between the unbiased and biased autocorrelation functions is ex-
pressed as follows:

r′yy(τ) =
N − τ

N
ryy(τ), (12)

where ryy(τ) is an unbiased estimate, and the following formula can be obtained:

E
[
r′yy(τ)

]
=

N − τ

N
ryy(τ). (13)

Appl. Sci. 2022, 12, 11305 6 of 17

It can be seen from Equation (13) that r′yy(τ) is a biased estimate but is asymptotically
unbiased, and its offset is

B =
τ

N
ryy(τ). (14)

The variance of the estimator is

var
[
r′yy(τ)

]
=

(
N − τ

N

)2
· var

[
ryy(τ)

]
(15)

It can be deduced that

var
[
r′yy(τ)

]
≤ 1

N

N−τ−1

∑
m=1+τ−N

[
r2

yy(m)+ ryy(m + τ)ryy(m− τ)
]

(16)

When N → ∞ , var
[
r′yy(τ)

]
→ 0 , and we have

var
[
r′yy(τ)

]
≤ var

[
ryy(τ)

]
. (17)

It can be seen from the above analysis that, although the biased autocorrelation
function is biased, it is asymptotically consistent, and the variance in the estimator is
smaller than that in the unbiased estimate.

To facilitate comparison and analyses, the biased autocorrelation function is normal-
ized. Under the conditions that the BER is 0.1 and SNR = 6 dB, the normalized partial
autocorrelation functions are shown in Figures 4 and 5, respectively.

Appl. Sci. 2022, 12, 11305 6 of 18

 =





 





1

0

1 N

yy k k
k

r Y Y
N

. (11)

The relationship between the unbiased and biased autocorrelation functions is ex-

pressed as follows:

   =' 
 


yy yy

N
r r

N
, (12)

where  yyr is an unbiased estimate, and the following formula can be obtained:

   ' 
 


   yy yy

N
E r r

N
. (13)

It can be seen from Equation (13) that  ' yyr is a biased estimate but is asymptoti-

cally unbiased, and its offset is

 =


yyB r
N

. (14)

The variance of the estimator is

   'var var


 
          

2

yy yy

N
r r

N
 (15)

It can be deduced that

        'var




  
 

  

         
N

yy yy yy yy
m N

r r m r m r m
N

1
2

1

1
 (16)

When  N ,  'var     0yyr , and we have

   'var var       yy yyr r . (17)

It can be seen from the above analysis that, although the biased autocorrelation func-

tion is biased, it is asymptotically consistent, and the variance in the estimator is smaller

than that in the unbiased estimate.

To facilitate comparison and analyses, the biased autocorrelation function is normal-

ized. Under the conditions that the BER is 0.1 and SNR = 6 dB, the normalized partial

autocorrelation functions are shown in Figures 4 and 5, respectively.

Figure 4. Normalized partial autocorrelation function diagram when BER = 0.1. Figure 4. Normalized partial autocorrelation function diagram when BER = 0.1.

It can be seen in Figures 4 and 5 that the normalized partial autocorrelation functions
of the different scrambling types have different peaks and periodic changes at each moment
under the conditions of bit error and noise, so they can be used as another classification feature.

Since it is difficult to manually extract the above features, a method based on a convo-
lutional LSTM neural network is established for feature extraction and training learning.

Appl. Sci. 2022, 12, 11305 7 of 17
Appl. Sci. 2022, 12, 11305 7 of 18

Figure 5. Normalized partial autocorrelation function diagram when SNR = 6 dB.

It can be seen in Figures 4 and 5 that the normalized partial autocorrelation functions

of the different scrambling types have different peaks and periodic changes at each mo-

ment under the conditions of bit error and noise, so they can be used as another classifi-

cation feature.

Since it is difficult to manually extract the above features, a method based on a convolu-

tional LSTM neural network is established for feature extraction and training learning.

4. Scrambled Linear Block Code Identification Based on Correlation Features

Extraction Network

4.1. Correlation Feature Extraction Network Model

In this paper, the received scrambling sequence features are divided into two lines:

one line contains the original symbol sequence of the cross-correlation feature, and the

other is the normalized partial autocorrelation function of the sequence; and the two form

the 2 -dimensional matrix feature as the input of the network.

It can be seen from the analysis in Section 2 that the scrambling sequence has timing-

related characteristics. As a special recurrent neural network, LSTM has achieved good

results in processing timing-related information [37,38]. In the present study, CNN and

LSTM are combined. The structure of the network, which is mainly composed of two con-

volutional layers, i.e., one LSTM layer and one fully connected layer, is shown in Figure

6. The activation function of the convolutional layer adopts RELU, the activation function

of the LSTM layer adopts tanh, the final fully connected layer uses the normalized expo-

nential function (SoftMax) for classification, and the output is a dimensional one-hot en-

coding form, corresponding to linear block codes, linear block code self-synchronous

scrambling, and linear block code synchronous scrambling.

To prevent overfitting, we first introduce a Dropout layer after each layer of the net-

work to randomly drop some neurons in order to reduce the overfitting phenomenon of

the network. Moreover, the EarlyStopping function is used to detect the loss value and to

stop training when it is not decreasing.

Figure 5. Normalized partial autocorrelation function diagram when SNR = 6 dB.

4. Scrambled Linear Block Code Identification Based on Correlation Features
Extraction Network
4.1. Correlation Feature Extraction Network Model

In this paper, the received scrambling sequence features are divided into two lines:
one line contains the original symbol sequence of the cross-correlation feature, and the
other is the normalized partial autocorrelation function of the sequence; and the two form
the 2× β-dimensional matrix feature as the input of the network.

It can be seen from the analysis in Section 2 that the scrambling sequence has timing-
related characteristics. As a special recurrent neural network, LSTM has achieved good
results in processing timing-related information [37,38]. In the present study, CNN and
LSTM are combined. The structure of the network, which is mainly composed of two
convolutional layers, i.e., one LSTM layer and one fully connected layer, is shown in
Figure 6. The activation function of the convolutional layer adopts RELU, the activation
function of the LSTM layer adopts tanh, the final fully connected layer uses the normalized
exponential function (SoftMax) for classification, and the output is a dimensional one-hot
encoding form, corresponding to linear block codes, linear block code self-synchronous
scrambling, and linear block code synchronous scrambling.

Appl. Sci. 2022, 12, 11305 8 of 18

Input

2 

cov1

64 (2 1) 

cov2

linear block code

self-synchronizing
scrambler

LSTM

32
Dense

6

...

synchronous scrambler

32 (1 2) 

y

...

 ' 1yyr

(y  

 '
yyr 

Figure 6. Correlation feature extraction network model diagram.

4.2. Network Training Process

The convolution kernel of convolutional layer 1 is 2 × 1. Since the input sample is a

sequence of the code elements of the receiver signal and autocorrelation features, which

form the real and imaginary parts of the input sample, respectively, the input sample is

not the received sequence      , , ,   0 1 1z z z z k . Therefore, it is necessary to first

combine the real and imaginary parts of the scrambled sequence and to then extract the

features based on the correlation.

As can be seen in Figure 3, when the 1 × 2-dimensional convolution kernel is used to

extract the signal features of the scrambled sequences, the deep features obtained from

their convolution must show different patterns due to the different correlations of the lin-

ear block code, the self-synchronization of the linear block code, and the synchronization

of the linear block code. In fact, the process of the convolution of the received sequence

using a 1 × 2-dimensional convolution kernel is similar to the calculation of its correlation

features under time delay. However, for the self-synchronization of linear block code and

the synchronization of linear block code, the correlation features of code elements sepa-

rated by more than two code elements are not as obvious as those of two adjacent code

elements, so convolutional kernels with lengths longer than 1 × 2 dimensions do not have

this differentiation advantage, and they increase the parameters of network training and

increase network complexity. Therefore, the 1 × 2-dimensional convolution kernel is used

to convolve the layer 1 output features in order to obtain correlation features that are more

consistent with the nature of scrambled signals.

The weight and bias training update of the correlation feature extraction network is

mainly divided into two processes: forward propagation and back propagation. Among

them, the forward propagation process is to use the input training samples in order to

calculate the neuron activation value of the network, and the back propagation process is

to perform a reverse calculation in order to obtain the gradient corresponding to the

weight and bias of each error; finally, the gradient-descent algorithm is used to calculate

the weight and to offset update adjustment.

Consider the training data                , , , ,， ，1 1 2 2 m my q y q y q with a sample size of

m , where    , , , 1 2iy i m is the input scrambled data, and    , , , 1 2iq i m is the

type label corresponding to the scramble code. The W and b update formulas are, re-

spectively, expressed as follows:

 1
, ; ,




 


t t

t

J W b y q
W W

W
, (18)

 , ; ,



 


t t

t

J W b y q
b b

b
1 . (19)

Figure 6. Correlation feature extraction network model diagram.

To prevent overfitting, we first introduce a Dropout layer after each layer of the
network to randomly drop some neurons in order to reduce the overfitting phenomenon of
the network. Moreover, the EarlyStopping function is used to detect the loss value and to
stop training when it is not decreasing.

Appl. Sci. 2022, 12, 11305 8 of 17

4.2. Network Training Process

The convolution kernel of convolutional layer 1 is 2 × 1. Since the input sample is a
sequence of the code elements of the receiver signal and autocorrelation features, which
form the real and imaginary parts of the input sample, respectively, the input sample is
not the received sequence z = [z(0), z(1), . . . , z(k− 1)]. Therefore, it is necessary to first
combine the real and imaginary parts of the scrambled sequence and to then extract the
features based on the correlation.

As can be seen in Figure 3, when the 1 × 2-dimensional convolution kernel is used
to extract the signal features of the scrambled sequences, the deep features obtained from
their convolution must show different patterns due to the different correlations of the
linear block code, the self-synchronization of the linear block code, and the synchronization
of the linear block code. In fact, the process of the convolution of the received sequence
using a 1 × 2-dimensional convolution kernel is similar to the calculation of its correlation
features under time delay. However, for the self-synchronization of linear block code
and the synchronization of linear block code, the correlation features of code elements
separated by more than two code elements are not as obvious as those of two adjacent code
elements, so convolutional kernels with lengths longer than 1 × 2 dimensions do not have
this differentiation advantage, and they increase the parameters of network training and
increase network complexity. Therefore, the 1 × 2-dimensional convolution kernel is used
to convolve the layer 1 output features in order to obtain correlation features that are more
consistent with the nature of scrambled signals.

The weight and bias training update of the correlation feature extraction network is
mainly divided into two processes: forward propagation and back propagation. Among
them, the forward propagation process is to use the input training samples in order to
calculate the neuron activation value of the network, and the back propagation process is
to perform a reverse calculation in order to obtain the gradient corresponding to the weight
and bias of each error; finally, the gradient-descent algorithm is used to calculate the weight
and to offset update adjustment.

Consider the training data
{(

y(1), q(1)
)

,
(

y(2), q(2)
)

, · · · ,
(

y(m), q(m)
)}

with a sample

size of m, where y(i)(i = 1, 2, . . . , m) is the input scrambled data, and q(i)(i = 1, 2, · · · , m)
is the type label corresponding to the scramble code. The W and b update formulas are,
respectively, expressed as follows:

Wt+1 = Wt − α
∂J(W, b; y, q)

∂Wt , (18)

bt+1 = bt − α
∂J(W, b; y, q)

∂bt . (19)

where α is the learning rate, and J(·) is the loss function. The loss function used is categori-
cal_crossentropy, which is a loss function for mul-ticlass classification tasks and is suitable
for the multiclass problem.

The expression of J(·) is

J(W, b; y, q) = − 1
m

m

∑
i=1

q(i) · log
(

f
(

W, b; y(i)
))

+ λ∑ ‖W‖2. (20)

where λ is the regularization coefficient used to prevent the network from overfitting.
The input x(l)m (j) and output y(l)m (j) of each layer of neurons in the network have the

following relationship:
y(l)m (j) = f

(
x(l)m (j) + b(l)m (j)

)
. (21)

where l is the layer number of the network, j is the j-th neuron of the feature map, m is the
m-th feature map in the network layer number, f (·) is the activation function used by this
layer, and b is the bias.

Appl. Sci. 2022, 12, 11305 9 of 17

4.3. Input–Output Relationship of Each Network Layer

The input 2 × β training data are represented as IN,T , where N represents the di-
mension of the two features, and T is the number of sampling points. The input–output
relationship of each network layer is detailed as follows:

(1) Input layer:
Input = IN,T . (22)

(2) Convolutional layer:

y(2)m (j, k) = f (
3

∑
i=1

Ij,(k−1)×1+i × ker(2)m + b(2)m (j, k)). (23)

(3) LSTM layer:
ht = f (Whxy(3)m,t(j) + Whhht−1 + bh), (24)

hn
t = f (Whn−1hn hn−1

t + Whnhn hn
t−1 + bn

h), (25)

y(4)m (j) = WhN yhN
t + by, (26)

where Whx represents the weight matrix between the input layer and the hidden layer, Whh
represents the weight matrix between the hidden layers, ht represents the hidden activation
at time t, n(n = 1, 2, . . . , N) represents the current network layer, and hn

t represents the n
layer and output at time t.

(4) SoftMax layer:

y5(j) = f (
n4

∑
i=1

y(4)(i)× w(5)(i) + b(5)(j)). (27)

where w(5)
i (l) represents the connection weight between the fifth and sixth layers, and n4 is

the number of neurons in the fifth layer.
The SoftMax layer calculates the probability estimate of the corresponding category in

the sample, and the learned hypothesis function hθ(x) is expressed as follows:

hθ(yi) =


p(q(i) = 1

∣∣∣y(i); θ)

p(q(i) = 2
∣∣∣y(i); θ)

· · ·
p(q(i) = k

∣∣∣y(i); θ)

 =
1

k
∑

j=1
eθT

j y(i)
. (28)

where θ1, θ2, . . . , θk ∈ Rn+1 is the model parameter. To simplify the model, we define
the function

l{α} =
{

1, α = true
0, α = f alse

. (29)

The cost function of the SoftMax layer can be further expressed as

J(θ) = − 1
m
[

m

∑
i

k

∑
j=1

l{q(i) = j} log
eθT

j y(i)

k

∑
l=1

eθT
j y(i)

. (30)

By superimposing the k values, the probability that the network classifies the scram-
bled data into the j-th category is

p(q(i) = j|y(i); θ) =
eT

j y(i)

k

∑
l=1

eT
j y(i)

. (31)

Appl. Sci. 2022, 12, 11305 10 of 17

where the maximum probability corresponds to the classification category of the
scrambling code.

We first extract the autocorrelation and the intercorrelation features of the code element
data used as input data; compared with the method in [27], the training and learning
of the neural network are carried out, and the biggest advantage of a neural network
over manually extracting features is that it can learn the training autonomously, so the
recognition effect is better than simply manually extracting features. Compared with
the method in Reference [26], a detailed neural network model is constructed, but the
autocorrelation features and the intercorrelation features extracted in this paper have better
anti-BER and noise performance than the matrix rank features in Reference [26]. When the
BER is greater than 0.1, the matrix rank features become extremely insignificant because of
erroneous code elements, and this leads to weaker features extracted by the neural network.
Therefore, the current method in this paper achieves better results.

5. Results
5.1. Experimental Dataset

Two datasets were constructed, i.e., a scrambled dataset of 2000 frames under the
condition of bit error (a bit error rate of 2000), and a scrambled dataset of 2000 frames under
the condition of white Gaussian noise (with an SNR in the range of 10–15 dB).

During the training process, 80% of the total samples were randomly selected as training
data, with the rest used as test data. The datasets and labels are shown in Tables 1 and 2.

Table 1. Linear block code scrambling dataset under bit error.

Dataset Label Number of Signals Number of Samples (2×400)

linear block code 0 2000× 400 2000
self-synchronous

scrambler 1 2000× 400 2000

synchronous
scrambler 2 2000× 400 2000

Table 2. Linear block code scrambling dataset with noise.

Dataset Label Number of Signals Number of Samples (2×800)

linear block code 0 2000× 800 2000
self-synchronous

scrambler 1 2000× 800 2000

synchronous
scrambler 2 2000× 800 2000

The simulation experiment was conducted on an Inteli7-9700K CPU with 16 Gb of
memory and an RTX3080 graphics card running Windows 10; the model was built and
trained based on TensorFlow.

5.2. Network Model Parameters

Because the Adam optimizer was chosen in this manuscript, the optimizer adaptively
adjusts the learning rate, and the automatic learning rate is not a function of epoch. So,
there was no need to consider learning rate schedule as a function of epochs. The network
model parameters are shown in Table 3.

5.2.1. Effect of LSTM Layers and Parameters on Recognition Rate

We analyzed the effects of the number of LSTM layers and cells on the recognition rate
of the algorithm, as shown in Figures 7 and 8, respectively.

Appl. Sci. 2022, 12, 11305 11 of 17

Table 3. Network model parameters.

Network Parameters Numerical Value

batch size 20
learning rate initial value 1× 10−4

final number of epochs 100
validation part of training set 25% of the training set

initial value of the weight constraint coefficient 0.01
number of LSTM units with shared weights 6

Appl. Sci. 2022, 12, 11305 11 of 18

Table 2. Linear block code scrambling dataset with noise.

Dataset Label Number of Signals
Number of Samples

 2 800

linear block code 0 2000 800 2000

self-synchronous scrambler 1 2000 800 2000

synchronous scrambler 2 2000 800 2000

The simulation experiment was conducted on an Inteli7-9700K CPU with 16 Gb of

memory and an RTX3080 graphics card running Windows 10; the model was built and

trained based on TensorFlow.

5.2. Network Model Parameters

Because the Adam optimizer was chosen in this manuscript, the optimizer adaptively

adjusts the learning rate, and the automatic learning rate is not a function of epoch. So,

there was no need to consider learning rate schedule as a function of epochs. The network

model parameters are shown in Table 3.

Table 3. Network model parameters.

Network Parameters Numerical Value

batch size 20

learning rate initial value  41 10

final number of epochs 100

validation part of training set 25% of the training set

initial value of the weight constraint coefficient 0.01

number of LSTM units with shared weights 6

5.2.1. Effect of LSTM Layers and Parameters on Recognition Rate

We analyzed the effects of the number of LSTM layers and cells on the recognition

rate of the algorithm, as shown in Figures 7 and 8, respectively.

Figure 7. Effect of the number of LSTM layers on the performance of the algorithm. Figure 7. Effect of the number of LSTM layers on the performance of the algorithm.

Appl. Sci. 2022, 12, 11305 12 of 18

Figure 8. The effect of the number of cells of LSTM on the performance of the algorithm.

In Figures 7 and 8, we can see that the recognition rate is the highest when the number

of LSTM layers is 1, and the recognition results are better when the number of cells is 32

or 68. However, the training time of the network increases a lot when the number of cells

is 68, so for the number of cells, 32 was chosen, as it has a shorter training time.

5.2.2. Effect of CNN Layers and Parameters on Recognition Rate

We analyzed the effects of the number of CNN layers and cells on the recognition

rate of the algorithm, as shown in Figures 9 and 10, respectively.

Figure 9. Effect of the number of CNN layers on the performance of the algorithm.

Figure 10. The effect of the number of cells of LSTM on the performance of the algorithm.

P
ro

ba
bi

li
ty

 o
f

co
rr

ec
t

re
co

gn
it

io
n

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
BER

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

CNN1(64)-CNN2(32)
CNN1(64)-CNN2(16)
CNN1(64)-CNN2(64)
CNN1(64)-CNN2(128)
CNN1(32)-CNN2(16)
CNN1(32)-CNN2(32)
CNN1(32)-CNN2(64)

Figure 8. The effect of the number of cells of LSTM on the performance of the algorithm.

In Figures 7 and 8, we can see that the recognition rate is the highest when the number
of LSTM layers is 1, and the recognition results are better when the number of cells is 32 or
68. However, the training time of the network increases a lot when the number of cells is
68, so for the number of cells, 32 was chosen, as it has a shorter training time.

5.2.2. Effect of CNN Layers and Parameters on Recognition Rate

We analyzed the effects of the number of CNN layers and cells on the recognition rate
of the algorithm, as shown in Figures 9 and 10, respectively.

As can be seen in Figures 9 and 10, the highest recognition rate is achieved when the
number of CNN layers is 2; the recognition effect is better when the number of convolutional
layer cells in the first layer is 32, and the number of convolutional layer cells in the second
layer is 68.

Appl. Sci. 2022, 12, 11305 12 of 17

Appl. Sci. 2022, 12, 11305 12 of 18

Figure 8. The effect of the number of cells of LSTM on the performance of the algorithm.

In Figures 7 and 8, we can see that the recognition rate is the highest when the number

of LSTM layers is 1, and the recognition results are better when the number of cells is 32

or 68. However, the training time of the network increases a lot when the number of cells

is 68, so for the number of cells, 32 was chosen, as it has a shorter training time.

5.2.2. Effect of CNN Layers and Parameters on Recognition Rate

We analyzed the effects of the number of CNN layers and cells on the recognition

rate of the algorithm, as shown in Figures 9 and 10, respectively.

Figure 9. Effect of the number of CNN layers on the performance of the algorithm.

Figure 10. The effect of the number of cells of LSTM on the performance of the algorithm.

P
ro

ba
bi

li
ty

 o
f

co
rr

ec
t

re
co

gn
it

io
n

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
BER

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

CNN1(64)-CNN2(32)
CNN1(64)-CNN2(16)
CNN1(64)-CNN2(64)
CNN1(64)-CNN2(128)
CNN1(32)-CNN2(16)
CNN1(32)-CNN2(32)
CNN1(32)-CNN2(64)

Figure 9. Effect of the number of CNN layers on the performance of the algorithm.

Appl. Sci. 2022, 12, 11305 12 of 18

Figure 8. The effect of the number of cells of LSTM on the performance of the algorithm.

In Figures 7 and 8, we can see that the recognition rate is the highest when the number

of LSTM layers is 1, and the recognition results are better when the number of cells is 32

or 68. However, the training time of the network increases a lot when the number of cells

is 68, so for the number of cells, 32 was chosen, as it has a shorter training time.

5.2.2. Effect of CNN Layers and Parameters on Recognition Rate

We analyzed the effects of the number of CNN layers and cells on the recognition

rate of the algorithm, as shown in Figures 9 and 10, respectively.

Figure 9. Effect of the number of CNN layers on the performance of the algorithm.

Figure 10. The effect of the number of cells of LSTM on the performance of the algorithm.

P
ro

ba
bi

li
ty

 o
f

co
rr

ec
t

re
co

gn
it

io
n

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
BER

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

CNN1(64)-CNN2(32)
CNN1(64)-CNN2(16)
CNN1(64)-CNN2(64)
CNN1(64)-CNN2(128)
CNN1(32)-CNN2(16)
CNN1(32)-CNN2(32)
CNN1(32)-CNN2(64)

Figure 10. The effect of the number of cells of CNN on the performance of the algorithm.

5.3. Experimental Results
5.3.1. Recognition Rate of The Proposed Algorithm under Bit Error Condition

To verify the validity of the model proposed in this paper, we analyzed the influ-
ence of the linear block code parameters, the number of intercepted samples, and the
order and terms of the generator polynomial on the network performance under different
error conditions.

The relationship between the parameters of the different linear block codes and the
recognition rate of the algorithm when the generator polynomial is f (x) = 1 + x18 + x23

and the number of samples is 400 is shown in Figure 11.
It can be seen in the figure that, under the same simulation conditions, the (15,5) linear

block code has the highest recognition rate. At that time, the recognition rate under the
four coding parameters can reach more than 85%, indicating good anti-error performance.

The (15,5) linear block code scrambling recognition rate under different sample num-
bers when the generator polynomial is f (x) = 1 + x18 + x23 is shown in Figure 12.

It can be seen in the figure that, under the same error conditions, more samples mean a
higher recognition rate of the algorithm. When the number of samples is 100 and the error
rate is 0.2, the recognition rate is greater than 80%. When the error rate is 0.1, the recognition
rate can reach 98%, which shows that the proposed algorithm has better performance under
the conditions of a small number of samples and a high BER.

The (15,5) linear block code scrambling recognition rate under different generator
polynomials for 400 samples is shown in Figure 13.

Appl. Sci. 2022, 12, 11305 13 of 17

Appl. Sci. 2022, 12, 11305 13 of 18

As can be seen in Figures 9 and 10, the highest recognition rate is achieved when the

number of CNN layers is 2; the recognition effect is better when the number of convolu-

tional layer cells in the first layer is 32, and the number of convolutional layer cells in the

second layer is 68.

5.3. Experimental Results

5.3.1. Recognition Rate of The Proposed Algorithm under Bit Error Condition

To verify the validity of the model proposed in this paper, we analyzed the influence

of the linear block code parameters, the number of intercepted samples, and the order and

terms of the generator polynomial on the network performance under different error con-

ditions.

The relationship between the parameters of the different linear block codes and the

recognition rate of the algorithm when the generator polynomial is     18 231f x x x

and the number of samples is 400 is shown in Figure 11.

Figure 11. Influence of linear block code parameters on the recognition rate.

It can be seen in the figure that, under the same simulation conditions, the (15,5) lin-

ear block code has the highest recognition rate. At that time, the recognition rate under

the four coding parameters can reach more than 85%, indicating good anti-error perfor-

mance.

The (15,5) linear block code scrambling recognition rate under different sample num-

bers when the generator polynomial is     18 231f x x x is shown in Figure 12.

Figure 12. Influence of number of samples on the recognition rate.

Figure 11. Influence of linear block code parameters on the recognition rate.

Appl. Sci. 2022, 12, 11305 13 of 18

As can be seen in Figures 9 and 10, the highest recognition rate is achieved when the

number of CNN layers is 2; the recognition effect is better when the number of convolu-

tional layer cells in the first layer is 32, and the number of convolutional layer cells in the

second layer is 68.

5.3. Experimental Results

5.3.1. Recognition Rate of The Proposed Algorithm under Bit Error Condition

To verify the validity of the model proposed in this paper, we analyzed the influence

of the linear block code parameters, the number of intercepted samples, and the order and

terms of the generator polynomial on the network performance under different error con-

ditions.

The relationship between the parameters of the different linear block codes and the

recognition rate of the algorithm when the generator polynomial is     18 231f x x x

and the number of samples is 400 is shown in Figure 11.

Figure 11. Influence of linear block code parameters on the recognition rate.

It can be seen in the figure that, under the same simulation conditions, the (15,5) lin-

ear block code has the highest recognition rate. At that time, the recognition rate under

the four coding parameters can reach more than 85%, indicating good anti-error perfor-

mance.

The (15,5) linear block code scrambling recognition rate under different sample num-

bers when the generator polynomial is     18 231f x x x is shown in Figure 12.

Figure 12. Influence of number of samples on the recognition rate. Figure 12. Influence of number of samples on the recognition rate.

Appl. Sci. 2022, 12, 11305 14 of 18

It can be seen in the figure that, under the same error conditions, more samples mean

a higher recognition rate of the algorithm. When the number of samples is 100 and the

error rate is 0.2, the recognition rate is greater than 80%. When the error rate is 0.1, the

recognition rate can reach 98%, which shows that the proposed algorithm has better per-

formance under the conditions of a small number of samples and a high BER.

The (15,5) linear block code scrambling recognition rate under different generator

polynomials for 400 samples is shown in Figure 13.

Figure 13. Influence of scrambling code generator polynomial on the recognition rate.

It can be seen in Figure 13 that, with an increase in the bit error rate, the recognition

rate gradually decreases. The difference in the recognition rate under a generator polyno-

mial of different orders and terms is not more than 1%. Therefore, the algorithm proposed

in this paper is free from the scrambling code generator polynomial order.

The performance of the algorithm proposed in this paper under different linear block

code parameters is compared with that of the method proposed in References [26] and

[27]. When the generator polynomial is     18 231f x x x , the number of samples is 400,

and the sequence length is 240,000 bits as shown in Figure 10.

It can be seen in Figure 14 that the recognition rate of the algorithm proposed in this

paper when the number of verification samples is only 400 is better than the recognition

rate of the algorithm in Reference [26] when the number of samples is 240,000 bits. The

recognition rate of the algorithm in Reference [27] decreases rapidly and tends to be 0

when the BER is greater than 0.01. The reason for this is that the rank feature of the matrix

is not obvious when the BER is greater than 0.01, which leads to a sharp decrease in the

recognition rate. At the same time, the proposed algorithm does not require manual fea-

ture extraction and has the characteristics of less data required, simple manual feature

extraction, and a high recognition rate.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
BER

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

f(x)=x10+x7+1

f(x)=x10+x9+x7+x3+1

f(x)=x15+x14+1

f(x)=x15+x14+x13+x11+1

f(x)=x23+x18+1

f(x)=x23+x15+x8+x4+1

Figure 13. Influence of scrambling code generator polynomial on the recognition rate.

It can be seen in Figure 13 that, with an increase in the bit error rate, the recognition rate
gradually decreases. The difference in the recognition rate under a generator polynomial of
different orders and terms is not more than 1%. Therefore, the algorithm proposed in this
paper is free from the scrambling code generator polynomial order.

The performance of the algorithm proposed in this paper under different linear block
code parameters is compared with that of the method proposed in Refs [26,27]. When

Appl. Sci. 2022, 12, 11305 14 of 17

the generator polynomial is f (x) = 1 + x18 + x23, the number of samples is 400, and the
sequence length is 240,000 bits as shown in Figure 10.

It can be seen in Figure 14 that the recognition rate of the algorithm proposed in this
paper when the number of verification samples is only 400 is better than the recognition
rate of the algorithm in Reference [26] when the number of samples is 240,000 bits. The
recognition rate of the algorithm in Reference [27] decreases rapidly and tends to be 0
when the BER is greater than 0.01. The reason for this is that the rank feature of the matrix
is not obvious when the BER is greater than 0.01, which leads to a sharp decrease in the
recognition rate. At the same time, the proposed algorithm does not require manual feature
extraction and has the characteristics of less data required, simple manual feature extraction,
and a high recognition rate.

Appl. Sci. 2022, 12, 11305 15 of 18

Figure 14. Comparison of algorithms under error conditions.

5.3.2. Recognition Rate of the Proposed Algorithm under the Condition of Gaussian

White Noise

We verified the influence of the linear block code parameters, the number of inter-

cepted samples, and the order and number of terms of the generator polynomial on net-

work performance under different types and levels of noise.

The relationship between the parameters of the different linear block codes and the

recognition rate of the algorithm when the generator polynomial is     18 231f x x x

and the number of samples is 800 is shown in Figure 15.

Figure 15. Influence of linear block code parameters on the recognition rate.

With an increase in the SNR, the recognition rate continues to improve. Under the

same SNR, the (15,5) linear block code has the highest recognition rate. When SNR = 0 dB,

the recognition rate can reach 80%.

The recognition rate of the (15,5) linear block code scrambling under different sample

numbers when the generator polynomial is     18 231f x x x is shown in Figure 16.

Figure 14. Comparison of algorithms under error conditions. (7,4), (15,5), (15,11), (31,16) Linear block
code (in blue color) Li et al. [26].

5.3.2. Recognition Rate of the Proposed Algorithm under the Condition of Gaussian
White Noise

We verified the influence of the linear block code parameters, the number of intercepted
samples, and the order and number of terms of the generator polynomial on network
performance under different types and levels of noise.

The relationship between the parameters of the different linear block codes and the
recognition rate of the algorithm when the generator polynomial is f (x) = 1 + x18 + x23

and the number of samples is 800 is shown in Figure 15.

Appl. Sci. 2022, 12, 11305 15 of 18

Figure 14. Comparison of algorithms under error conditions.

5.3.2. Recognition Rate of the Proposed Algorithm under the Condition of Gaussian

White Noise

We verified the influence of the linear block code parameters, the number of inter-

cepted samples, and the order and number of terms of the generator polynomial on net-

work performance under different types and levels of noise.

The relationship between the parameters of the different linear block codes and the

recognition rate of the algorithm when the generator polynomial is     18 231f x x x

and the number of samples is 800 is shown in Figure 15.

Figure 15. Influence of linear block code parameters on the recognition rate.

With an increase in the SNR, the recognition rate continues to improve. Under the

same SNR, the (15,5) linear block code has the highest recognition rate. When SNR = 0 dB,

the recognition rate can reach 80%.

The recognition rate of the (15,5) linear block code scrambling under different sample

numbers when the generator polynomial is     18 231f x x x is shown in Figure 16.

Figure 15. Influence of linear block code parameters on the recognition rate under the Condition of
Gaussian White Noise.

Appl. Sci. 2022, 12, 11305 15 of 17

With an increase in the SNR, the recognition rate continues to improve. Under the
same SNR, the (15,5) linear block code has the highest recognition rate. When SNR = 0 dB,
the recognition rate can reach 80%.

The recognition rate of the (15,5) linear block code scrambling under different sample
numbers when the generator polynomial is f (x) = 1 + x18 + x23 is shown in Figure 16.

Appl. Sci. 2022, 12, 11305 16 of 18

Figure 16. Influence of number of samples on the recognition rate.

It can be seen in the figure that, under the same conditions, the larger the number of

samples, the higher the recognition rate. When the SNR = 3 dB and the number of samples

is 400, the recognition rate can reach more than 90%.

The (15,5) linear block code scrambling recognition rates under different generator

polynomials when the number of samples is 800 are shown in Figure 17.

Figure 17. Influence of generator polynomial of scrambling code on the recognition rate.

Under the condition of the same SNR, the parameters of the generator polynomial

have very little influence on the recognition rate of the proposed algorithm. Combined

with Figure 13, under the conditions of bit error and noise, the algorithm proposed in this

paper does not need to consider the influence of different generator polynomials.

6. Discussion

In this study, deep learning is applied to the field of linear block code scrambling-

type identification. A linear block code scrambling-type identification method based on

correlation feature extraction and a correlation feature extraction network model is pro-

posed. First, the cross-correlation of the scrambled sequence symbols is deduced accord-

ing to the scrambling principle, and then a biased autocorrelation function that reflects

the correlation is further constructed. To effectively extract the relevant features of the

sequence, a correlation feature extraction network model is constructed, and the correla-

tion and autocorrelation features are used as model input for training, which finally

achieves the purpose of identifying the type of linear block code scrambling. The simula-

tion results show that, compared with the traditional feature extraction method, the

Figure 16. Influence of number of samples on the recognition rate under the Condition of Gaussian
White Noise.

It can be seen in the figure that, under the same conditions, the larger the number of
samples, the higher the recognition rate. When the SNR = 3 dB and the number of samples
is 400, the recognition rate can reach more than 90%.

The (15,5) linear block code scrambling recognition rates under different generator
polynomials when the number of samples is 800 are shown in Figure 17.

Appl. Sci. 2022, 12, 11305 16 of 18

Figure 16. Influence of number of samples on the recognition rate.

It can be seen in the figure that, under the same conditions, the larger the number of

samples, the higher the recognition rate. When the SNR = 3 dB and the number of samples

is 400, the recognition rate can reach more than 90%.

The (15,5) linear block code scrambling recognition rates under different generator

polynomials when the number of samples is 800 are shown in Figure 17.

Figure 17. Influence of generator polynomial of scrambling code on the recognition rate.

Under the condition of the same SNR, the parameters of the generator polynomial

have very little influence on the recognition rate of the proposed algorithm. Combined

with Figure 13, under the conditions of bit error and noise, the algorithm proposed in this

paper does not need to consider the influence of different generator polynomials.

6. Discussion

In this study, deep learning is applied to the field of linear block code scrambling-

type identification. A linear block code scrambling-type identification method based on

correlation feature extraction and a correlation feature extraction network model is pro-

posed. First, the cross-correlation of the scrambled sequence symbols is deduced accord-

ing to the scrambling principle, and then a biased autocorrelation function that reflects

the correlation is further constructed. To effectively extract the relevant features of the

sequence, a correlation feature extraction network model is constructed, and the correla-

tion and autocorrelation features are used as model input for training, which finally

achieves the purpose of identifying the type of linear block code scrambling. The simula-

tion results show that, compared with the traditional feature extraction method, the

Figure 17. Influence of generator polynomial of scrambling code on the recognition rate.

Under the condition of the same SNR, the parameters of the generator polynomial
have very little influence on the recognition rate of the proposed algorithm. Combined
with Figure 13, under the conditions of bit error and noise, the algorithm proposed in this
paper does not need to consider the influence of different generator polynomials.

6. Discussion

In this study, deep learning is applied to the field of linear block code scrambling-type
identification. A linear block code scrambling-type identification method based on corre-
lation feature extraction and a correlation feature extraction network model is proposed.

Appl. Sci. 2022, 12, 11305 16 of 17

First, the cross-correlation of the scrambled sequence symbols is deduced according to
the scrambling principle, and then a biased autocorrelation function that reflects the corre-
lation is further constructed. To effectively extract the relevant features of the sequence,
a correlation feature extraction network model is constructed, and the correlation and
autocorrelation features are used as model input for training, which finally achieves the
purpose of identifying the type of linear block code scrambling. The simulation results show
that, compared with the traditional feature extraction method, the algorithm proposed
in this study has a better recognition rate under the BER, and it can recognize the linear
block code scrambling-type under the conditions of BER and noise. The identification of
scrambling code parameters lays a foundation for future scrambler parameter identification
and has significant practical engineering value. Future research will focus on classification
recognition with convolutional code scrambling.

Author Contributions: Conceptualization, J.T. and L.Z.; methodology, J.T.; software, Z.Z.; validation,
Z.Z., J.T. and L.Z.; formal analysis, Z.Z.; investigation, L.Z.; resources, L.Z.; data curation, Z.Z.;
writing—original draft preparation, J.T.; writing—review and editing, Z.Z.; visualization, J.T.; super-
vision, L.Z.; project administration, L.Z.; funding acquisition, L.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China
(91538201), the Taishan Scholar Special Foundation (ts201511020), and the Chinese National Key
Laboratory of Science and Technology on Information System Security (6142111190404).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is contained within this article.

Acknowledgments: We thank LetPub (www.letpub.com, accessed on 27 June 2022) for its linguistic
assistance during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Z.L.; Peng, H. Scrambler blind recognition method based on soft information. J. Commun. 2017, 38, 174–182.
2. Liang, C.; Wang, F.P.; Wang, Z.J. Low complexity method for spread sequence estimation of DSSS signal. Syst. Eng. Electron. 2009,

20, 41–49.
3. Wu, L.P.; Li, Z.; Chen, L.C. A PN sequence estimation algorithm for DS signal based on average cross-correlation and eigen

analysis in lower SNR conditions. Sci. China Inf. Sci. 2010, 53, 1666–1675. [CrossRef]
4. Scholtz, R. The spread spectrum concept. IEEE Trans. Commun. 1997, 28, 748–755. [CrossRef]
5. Ahlswede, R.; Csiszar, I. Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans. Inf. Theory

1993, 39, 1121–1132. [CrossRef]
6. Jonsson, F.; Johansson, T. Theoretical analysis of a correlation attack based on convolutional codes. In Proceedings of the 2000

IEEE International Symposium on Information Theory, Sorrento, Italy, 6 August 2002. [CrossRef]
7. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. [CrossRef]
8. Liu, X.B.; Koh, S.N.; Wu, X.W. Reconstructing a linear scrambler with improved detection capability and in the presence of noise.

IEEE Trans. Inf. Forensics Secur. 2012, 7, 208–218. [CrossRef]
9. Ma, Y.; Zhang, L.M. Reconstruction of Scrambler with Real-time Test. J. Electron. Inf. Technol. 2016, 38, 1794–1799.
10. Xie, H.; Wang, F.H.; Huang, Z.T. Blind reconstruction of linear scrambler. J. Syst. Eng. Electron. 2014, 25, 560–565. [CrossRef]
11. Cluzeau, M. Reconstruction of a Linear Scrambler. IEEE Trans. Comput. 2007, 56, 1283–1291. [CrossRef]
12. Vijayakumaran, S. LFSR identification using Groebner bases. In Proceedings of the Twenty Second National Conference on

Communication, Guwahati, India, 4–6 March 2016. [CrossRef]
13. Xie, H.; Han, Z.Z.; Ding, S. Scrambling Sequence Estimation Method Based on Propagation Operator Algorithm. J. Syst. Eng.

Electron. 2017, 39, 2327–2332.
14. Guo, X.; Su, S.; Qian, H. Scrambling Code Blind Identification in SDH Signal Intelligent Reception. In Proceedings of the 2021 2nd

Information Communication Technologies Conference (ICTC), Nanjing, China, 7–9 May 2021. [CrossRef]
15. Zhang, L.M.; Tan, J.Y.; Zhong, Z.G. Blind identification of self-synchronous scrambling codes based on cosine coincidence.

J. Electron. Inf. Technol. 2022, 44, 1412–1420.
16. Tan, J.Y.; Zhang, L.M.; Zhong, Z.G. Reconstruction of a Synchronous Scrambler Based on Average Check Conformity. Math. Probl.

Eng. 2022, 2022, 6318317. [CrossRef]

www.letpub.com
http://doi.org/10.1007/s11432-010-4023-8
http://doi.org/10.1109/TCOM.1977.1093907
http://doi.org/10.1109/18.243431
http://doi.org/10.1109/ISIT.2000.866510
http://doi.org/10.1109/TIT.1969.1054260
http://doi.org/10.1109/TIFS.2011.2169790
http://doi.org/10.1109/JSEE.2014.00065
http://doi.org/10.1109/TC.2007.1055
http://doi.org/10.1109/NCC.2016.7561164
http://doi.org/10.1109/ICTC51749.2021.9441567
http://doi.org/10.1155/2022/6318317

Appl. Sci. 2022, 12, 11305 17 of 17

17. Liu, X.B.; Koh, S.N.; Chui, C.C. A Study on Reconstruction of Linear Scrambler Using Dual Words of Channel Encoder. IEEE
Trans. Inf. Forensics Secur. 2013, 8, 542–552. [CrossRef]

18. Ma, Y.; Zhang, L.M.; Wang, H.T. Reconstructing Synchronous Scrambler With Robust Detection Capability in the Presence of
Noise. J. Commun. 2015, 10, 397–408.

19. Zhang, M.; Lv, Q.T.; Zhu, Y.X. Blind identification of self-synchronous scrambling codes based on linear block codes. J. Appl. Sci.
2015, 33, 178–186.

20. Shu, N.H.; Min, Z.; Xin, H.L. Reconstruction of Feedback Polynomial of Synchronous Scrambler Based on Triple Correlation
Characteristics of M-sequences. Ieice Trans. Commun. 2018, E101.B, 1723–1732.

21. Han, S.; Zhang, M. A Method for Blind Identification of a Scrambler Based on Matrix Analysis. IEEE Commun. Lett. 2018, 22,
2198–2201. [CrossRef]

22. Gu, X.; Zhao, Z.; Shen, L. Blind estimation of pseudo-random codes in periodic long code direct sequence spread spectrum
signals. IET Commun. 2016, 10, 1273–1281. [CrossRef]

23. Kim, D.; Song, J.; Yoon, D. On the Estimation of Synchronous Scramblers in Direct Sequence Spread Spectrum Systems. IEEE
Access 2020, 8, 166450–166459. [CrossRef]

24. Kim, D.; Yoon, D. Blind Estimation of Self-Synchronous Scrambler in DSSS Systems. IEEE Access 2021, 9, 76976–76982. [CrossRef]
25. Kim, Y.; Kim, J.; Song, J. Blind Estimation of Self-Synchronous Scrambler Using Orthogonal Complement Space in DSSS Systems.

IEEE Access 2022, 10, 66522–66528. [CrossRef]
26. Li, X.H.; Zhang, M.; Han, S.N. Distinction of self-synchronous scrambled linear block codes based on multi-fractal spectrum.

J. Syst. Eng. Electron. 2016, 27, 968–978. [CrossRef]
27. Wang, Z.F.; Zhai, L.Q.; Wei, D. Blind Recognition Algorithm for Scrambled Channel Encoder Based on the Features of Signal

Matrix and Layered Neural Network. In Proceedings of the 2021 15th International Symposium on Medical Information and
Communication Technology (ISMICT), Xiamen, China, 14–16 April 2021. [CrossRef]

28. Song, Y.Q.; Liu, F.; Shen, T.S. A novel noise reduction technique for underwater acoustic signals based on dual-path recurrent
neural network. IET Commun. 2022; in press. [CrossRef]

29. Gong, W.; Tian, J.; Liu, J. Underwater Object Classification Method Based on Depth wise Separable Convolution Feature Fusion
in Sonar Images. Appl. Sci. 2022, 12, 3268. [CrossRef]

30. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional Radio Modulation Recognition Networks. In Proceedings of the International
Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2–5 September 2016; pp. 213–226. [CrossRef]

31. Saif, W.S.; Ragheb, A.M. Performance Investigation of Modulation Format Identification in Super-Channel Optical Networks.
IEEE Photonics J. 2022, 14, 8514910. [CrossRef]

32. Acarturk, C.; Sirlanci, M.; Balikcioglu, P.G. Malicious Code Detection: Run Trace Output Analysis by LSTM. IEEE Access 2021, 9,
9625–9635. [CrossRef]

33. Ahn, G.; Kim, K.; Park, W.; Shin, D. Malicious File Detection Method using Machine Learning and Interworking with MITRE
ATT&CK Framework. Appl. Sci. 2022, 12, 10761. [CrossRef]

34. Sagduyu, Y.E. Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks. IEEE Trans. Mob. Comput. 2020, 20,
306–319. [CrossRef]

35. Pan, Y.W.; Yang, S.H.; Peng, H. Specific Emitter Identification Based on Deep Residual Networks. IEEE Access 2019, 7,
54425–54434. [CrossRef]

36. Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction, 4th ed.; John Wiley & Sons: New York, NY, USA, 2009.
37. Xiao, Q.; Chang, X.; Zhang, X. Multi-Information Spatial–Temporal LSTM Fusion Continuous Sign Language Neural Machine

Translation. IEEE Access 2020, 8, 216718–216728. [CrossRef]
38. Bandara, K.; Bergmeir, C.; Hewamalage, H. LSTM-MSNet: Leveraging Forecasts on Sets of Related Time Series With Multiple

Seasonal Patterns. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1586–1599. [CrossRef] [PubMed]

http://doi.org/10.1109/TIFS.2013.2246515
http://doi.org/10.1109/LCOMM.2018.2868681
http://doi.org/10.1049/iet-com.2015.0374
http://doi.org/10.1109/ACCESS.2020.3023425
http://doi.org/10.1109/ACCESS.2021.3083071
http://doi.org/10.1109/ACCESS.2022.3185066
http://doi.org/10.21629/JSEE.2016.05.04
http://doi.org/10.1109/ISMICT51748.2021.9434902
http://doi.org/10.1049/cmu2.12518
http://doi.org/10.3390/app12073268
http://doi.org/10.1007/978-3-319-44188-7_16
http://doi.org/10.1109/JPHOT.2022.3148798
http://doi.org/10.1109/ACCESS.2021.3049200
http://doi.org/10.3390/app122110761
http://doi.org/10.1109/TMC.2019.2950398
http://doi.org/10.1109/ACCESS.2019.2913759
http://doi.org/10.1109/ACCESS.2020.3039539
http://doi.org/10.1109/TNNLS.2020.2985720
http://www.ncbi.nlm.nih.gov/pubmed/32324575

	Introduction
	Scrambled Linear Block Code Model
	Analysis of Correlation Characteristics of Scrambled Linear Block Code
	Cross-Correlation Characteristics of Symbols
	Biased Autocorrelation Characteristics of Symbols

	Scrambled Linear Block Code Identification Based on Correlation Features Extraction Network
	Correlation Feature Extraction Network Model
	Network Training Process
	Input–Output Relationship of Each Network Layer

	Results
	Experimental Dataset
	Network Model Parameters
	Effect of LSTM Layers and Parameters on Recognition Rate
	Effect of CNN Layers and Parameters on Recognition Rate

	Experimental Results
	Recognition Rate of The Proposed Algorithm under Bit Error Condition
	Recognition Rate of the Proposed Algorithm under the Condition of Gaussian White Noise

	Discussion
	References

