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Abstract: Aiming to solve the problem of the distinction of scrambled linear block codes, a method
for identifying the scrambling types of linear block codes by combining correlation features and
convolution long short-term memory neural networks is proposed in this paper. First, the cross-
correlation characteristics of the scrambling sequence symbols are deduced, the partial autocorrelation
function is constructed, the superiority of the partial autocorrelation function is determined by
derivation, and the two are combined as the input correlation characteristics. A shallow network
combining a convolutional neural network and LSTM is constructed; finally, the linear block code
scrambled dataset is input into the network model, and the training and recognition test of the
network is completed. The simulation results show that, compared with the traditional algorithm
based on a multi-fractal spectrum, the proposed method can identify a synchronous scrambler, and
the recognition accuracy is higher under a high bit error rate. Moreover, the method is suitable
for classification under noise. The proposed method lays a foundation for future improvements in
scrambler parameter identification.

Keywords: scrambled linear block codes; cross-correlation of symbols; partial autocorrelation
function; convolutional long short-term memory neural networks

1. Introduction

In communication systems, a long 0-run or 1-run often appears in transmitted binary
sequences [1], and this affects the extraction of timing information in signals. To improve
the balance of 0 and 1 symbols in transmitted signals, transmitted signals are scrambled to
make it nearly completely random digital sequences [2]. Scrambling processing enhances
the reliability and security of signal transmission, so it is widely used in satellite communi-
cations, spread spectrum communications, and cryptography [3–5]. In non-cooperative
communication, the extraction of scrambled information must be descrambled first, so the
blind identification technology of scrambling code parameters is of great significance to the
extraction of non-cooperative information and the deciphering of ciphers [6,7].

A scrambling code is divided into a synchronous scrambling code and a self-
synchronous scrambling code [6,7]. Among these, the parameter identification of the
synchronous scrambling code is the identification of a generator polynomial and the initial
state, and the identification of the self-synchronous scrambling code is the identification
of a generator polynomial. In recent years, scrambling code parameter identification tech-
nology has been widely studied [6,7]. The methods of scrambling parameter identification
mainly focus on three types of situations: source unbalance [8–16], source balance (coding
scrambling) [17–21], and the estimation of scrambled sequences in a direct-sequence spread
spectrum [22–25].

In an actual communication system, signal transmission is often channel-coded, so
intercepted scrambled data are usually a source-unbalanced sequence that has been channel-
coded and then scrambled. A method for reconstructing the synchronous scrambling code
generator polynomial based on a dual code and double search was proposed by Liu [17],
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in which one must know the scrambling type; in addition, the detection performance index
always meeting the requirements cannot be maintained. In [18], a more robust sparse
double-search algorithm, which improved the recognition performance of the algorithm
under a low signal-to-noise ratio, was put forward. However, knowledge of the constraint
length of the encoding is required. In [19], a polynomial identification based on run-length
statistics was proposed to solve the self-synchronous scrambling of linear block codes. This
method does not require prior information, and the influence of bit errors and channel
noise is also not considered. The cost function of a generator polynomial based on the
known check vector of the dual code was constructed in [20], and the reconstruction of the
generator polynomial under the noisy condition of the convolutional code was completed.
The third-order correlation of a synchronously scrambled m-sequence was used in [21] to
complete the reconstruction of a generator polynomial under error conditions. This method
does not require the information of an a priori vector, nor does it consider the influence of
channel noise, but it requires the known coding of the constraint length.

From the above analyses, all the known scrambling code parameter identification
methods are based on the known channel coding and scrambling types, but the scrambling
code data intercepted by non-cooperative communication parties are unknown, so it is
necessary to analyze whether the outgoing signal is scrambled and what scrambling
method is adopted that can further identify the parameters. Based on this, a multitype
spectrum classification method, which solved the binary classification of linear block
codes and linear block code self-synchronous scrambling under error conditions, was
proposed in [26]. However, since the biased difference between linear self-synchronous
scrambling and linear synchronous scrambling is very small, the distinction between the
two leads to poor classification performance. At the same time, the influence of channel
noise and recognition performance under high error conditions must be further improved.
Reference [21] constructed a rank difference matrix, and when different scrambling methods
were used, there was a periodic loss of rank at the integer multiples of the code length,
which was used as a basis to judge the scrambling method. Reference [27] proposed to
apply neural networks in order to extract rank features for the purpose of classification.
However, the structure and parameters of the neural network were not given. Meanwhile,
when the BER is greater than 0.01, the matrix tends to be a random matrix, the rank feature
is not obvious, and the recognition rate tends to be 0. To summarize, due to the need
for accurate scrambling-type information, the existing algorithms cannot achieve the full
blind identification of linear block code scrambling. In recent years, deep learning methods
have achieved good results in signal recognition [28,29], modulation recognition [30,31],
malicious file detection [32,33], and other fields [34,35]. At the same time, deep-learning-
based methods avoid manual feature extraction and have high practical value.

To solve the above-mentioned problems and the difficulty of manual feature extraction,
under the conditions of a high bit error rate (BER) and a low signal-to-noise ratio (SNR),
in this paper, we propose a linear block code scrambling-type identification based on
correlation feature extraction. The contributions of this paper are summarized as follows:

(1) We deduce the symbol cross-correlation of the scrambling sequence and construct
the partial autocorrelation function, both of which can reflect the correlation characteristics
of different scrambling methods.

(2) We construct a shallow network consisting of convolutional neural network (CNN)
and long short-term memory (LSTM) neural network models, which can accomplish the
identification of scrambled linear block codes under a high BER and a low SNR.

The remainder of this paper is organized as follows: In Section 2, we summarize the
principle and mathematical model of the scrambler. In Section 3, we analyze the cross-
correlation characteristics of the symbols and construct a partial autocorrelation function.
A correlation feature extraction network model is built in Section 4, and we analyze the
training process of the network. In Section 5, the proposed method is evaluated using
Monte Carlo simulations, and we compare its performance with that of the multi-fractal
spectrum method. Finally, a discussion is provided in Section 6.
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2. Scrambled Linear Block Code Model

The basis of the scrambling code is the linear-feedback shift register (LFSR), in which
the self-synchronous scrambling code introduces an exclusive OR logic between the feed-
back logic output and the first-stage register, and the obtained result is used as the input
of the register. The independent m-sequence generated by the LFSR is added to the in-
formation sequence, thereby generating the scrambling sequence. The self-synchronous
scrambler and synchronous scrambler are shown in Figure 1a,b, respectively.
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An L-stage LFSR’s feedback network is made up of L registers, such as the first-stage
register and the second-stage register, and an L-th stage register from left to right. Each
register can have two states, 0 and 1, and the operation ⊕ means the addition of modulo-2.
When a shift pulse is added, the output content of the previous moment is fed back to
the first-level register, the content of each level register is shifted to the next level, and
the current output st is generated by operation. Therefore, after giving the initial values,
s0, s1, . . . , sL−1, under the action of the shift pulse, the L-stage LFSR outputs a sequence
{st}, which satisfies the feedback logic

st = c1st−1 ⊕ c2st−2 ⊕ · · · ⊕ cLst−L, (1)

where ci ∈ GF(2), 1 ≤ i ≤ L. This sequence is called the LFSR sequence, and its linearity is
mainly reflected in its feedback logic being linear. Any consecutive L term in a sequence
of the L-stage LFSR is called the state of the sequence. (s0, s1, . . . , sL) is called the initial
state [16].

The self-synchronous scrambling process can be expressed as

yk = xk ⊕
L

∑
i=1
⊕ciyk−i. (2)

Additionally, the synchronous scrambling process can be expressed as

yk = xk ⊕
L

∑
i=1

cisk−i, (3)

where ∑⊕ means modulo-2 accumulation. ci ∈ GF(2), i = 1, 2, . . . , L is the feedback
coefficient of the LFSR, GF(2) represents the 2-element domain, and the value of ci is 0 or 1,
c0 = cL = 1. The generator polynomial of the scrambling code can be expressed as

f (x) = 1 + c1x + c2x2 + · · ·+ cLxL. (4)
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In actual communication system information transmission, most of the sources become
unbiased sources through channel coding [17], so the signal model studied in this paper is
shown in Figure 2 [17,18].
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The noise is Gaussian white noise with mean 0, variance σ2, and signal amplitude A.
The signal-to-noise ratio (SNR) is defined as

SNR = 10 · log
(

A2/2σ2
)

. (5)

For the receiver, first, we intercept a sequence of code elements of a linear block code,
and we only need to determine whether the sequence of the code elements is scrambled us-
ing LFSR. When scrambling is performed, it is further determined whether the code element
sequence employs a self-synchronous scrambler as shown in Figure 1a or a synchronous
scrambler as shown in Figure 1b. Further identification of the scrambling parameters is only
possible when the above three types of code element sequences are distinguished. In the
next section, we focus on how to effectively identify whether the intercepted information
sequence is scrambled and what kind of scrambling method is used.

3. Analysis of Correlation Characteristics of Scrambled Linear Block Code
3.1. Cross-Correlation Characteristics of Symbols

It can be seen from Equation (2) that the k-th symbol (yk) of the self-synchronous
scrambling sequence correlates with the previous L symbol (yk−i, i = 1, 2, . . . , L) regardless
of the state of the LFSR.

It can be seen from Equation (3) that the k-th symbol (yk) of the synchronous scrambling
sequence correlates with the first L states (sk−i, i = 1, 2, . . . , L) of the LFSR. The relationship
between the kth symbol and the state of the LFSR is

yk−1 = xk−1 ⊕
L

∑
i=1
⊕cisk−i−1. (6)

Furthermore,

sk−1 =
L

∑
i=1
⊕cisk−i−1 = yk−1 ⊕ xk−1. (7)

The state of the LFSR at each moment satisfies the following relationship [14]:

sk =
L

∑
i=1

cisk−i. (8)

Combining Equations (2) and (6)–(8), it can be deduced that the following correlation
exists between the k-th symbol and the first L symbol:

yk = xk ⊕ sk = xk ⊕ c1sk−1 ⊕ c2sk−2 ⊕ · · · ⊕ cLsk−L
= xk ⊕ c1 · (xk−1 ⊕ yk−1)⊕ c2(xk−2 ⊕ yk−2)⊕ · · · ⊕ cL(xk−L ⊕ yk−L)

(9)

However, when the linear block code is not scrambled, the preceding and following
symbols have no correlation with the LFSR, and they are only related to the generator
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matrix of the linear block code. In summary, the linear block code scrambling correlation
distribution is shown in Figure 3.
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It can be seen in Figure 3 that there is no correlation between the symbols of the linear
block code and the LSFR; there is a correlation between the two symbols of the linear block
code self-synchronous scrambling, and the symbols have nothing to do with the state of
the LFSR; there is a correlation between the symbol and states of the first L LFSRs at the
moment of the synchronous scrambling of the symbols of the linear block code, and, at
the same time, this leads to a correlation between the symbols. It can be seen from the
above analysis that scrambling causes a correlation between the preceding and following
symbols. This correlation is related to the state of the LFSR (synchronous scrambling) or
is independent (self-synchronous scrambling), so the intercepted symbol sequence can be
used as a correlation feature that is used for linear block code scrambling classification.

3.2. Biased Autocorrelation Characteristics of Symbols

From the analysis in Section 3.1, there are correlation characteristics between the
symbols scrambled by the linear block code, and they have relatively good correlation
characteristics. Next, the biased autocorrelation function [36] of the symbol sequence is
constructed as follows:

r′yy(τ) =
1
N

N−τ−1

∑
k=0

YkYk+τ , τ ∈ [0, N − 1]. (10)

where Yk = 1− 2yk.
The unbiased autocorrelation function is defined as

ryy(τ) =
1

N − τ

N−τ−1

∑
k=0

YkYk+τ . (11)

The relationship between the unbiased and biased autocorrelation functions is ex-
pressed as follows:

r′yy(τ) =
N − τ

N
ryy(τ), (12)

where ryy(τ) is an unbiased estimate, and the following formula can be obtained:

E
[
r′yy(τ)

]
=

N − τ

N
ryy(τ). (13)
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It can be seen from Equation (13) that r′yy(τ) is a biased estimate but is asymptotically
unbiased, and its offset is

B =
τ

N
ryy(τ). (14)

The variance of the estimator is

var
[
r′yy(τ)

]
=

(
N − τ

N

)2
· var

[
ryy(τ)

]
(15)

It can be deduced that

var
[
r′yy(τ)

]
≤ 1

N

N−τ−1

∑
m=1+τ−N

[
r2

yy(m)+ ryy(m + τ)ryy(m− τ)
]

(16)

When N → ∞ , var
[
r′yy(τ)

]
→ 0 , and we have

var
[
r′yy(τ)

]
≤ var

[
ryy(τ)

]
. (17)

It can be seen from the above analysis that, although the biased autocorrelation
function is biased, it is asymptotically consistent, and the variance in the estimator is
smaller than that in the unbiased estimate.

To facilitate comparison and analyses, the biased autocorrelation function is normal-
ized. Under the conditions that the BER is 0.1 and SNR = 6 dB, the normalized partial
autocorrelation functions are shown in Figures 4 and 5, respectively.
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It can be seen in Figures 4 and 5 that the normalized partial autocorrelation functions
of the different scrambling types have different peaks and periodic changes at each moment
under the conditions of bit error and noise, so they can be used as another classification feature.

Since it is difficult to manually extract the above features, a method based on a convo-
lutional LSTM neural network is established for feature extraction and training learning.
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4. Scrambled Linear Block Code Identification Based on Correlation Features
Extraction Network
4.1. Correlation Feature Extraction Network Model

In this paper, the received scrambling sequence features are divided into two lines:
one line contains the original symbol sequence of the cross-correlation feature, and the
other is the normalized partial autocorrelation function of the sequence; and the two form
the 2× β-dimensional matrix feature as the input of the network.

It can be seen from the analysis in Section 2 that the scrambling sequence has timing-
related characteristics. As a special recurrent neural network, LSTM has achieved good
results in processing timing-related information [37,38]. In the present study, CNN and
LSTM are combined. The structure of the network, which is mainly composed of two
convolutional layers, i.e., one LSTM layer and one fully connected layer, is shown in
Figure 6. The activation function of the convolutional layer adopts RELU, the activation
function of the LSTM layer adopts tanh, the final fully connected layer uses the normalized
exponential function (SoftMax) for classification, and the output is a dimensional one-hot
encoding form, corresponding to linear block codes, linear block code self-synchronous
scrambling, and linear block code synchronous scrambling.
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Figure 6. Correlation feature extraction network model diagram.

To prevent overfitting, we first introduce a Dropout layer after each layer of the
network to randomly drop some neurons in order to reduce the overfitting phenomenon of
the network. Moreover, the EarlyStopping function is used to detect the loss value and to
stop training when it is not decreasing.



Appl. Sci. 2022, 12, 11305 8 of 17

4.2. Network Training Process

The convolution kernel of convolutional layer 1 is 2 × 1. Since the input sample is a
sequence of the code elements of the receiver signal and autocorrelation features, which
form the real and imaginary parts of the input sample, respectively, the input sample is
not the received sequence z = [z(0), z(1), . . . , z(k− 1)]. Therefore, it is necessary to first
combine the real and imaginary parts of the scrambled sequence and to then extract the
features based on the correlation.

As can be seen in Figure 3, when the 1 × 2-dimensional convolution kernel is used
to extract the signal features of the scrambled sequences, the deep features obtained from
their convolution must show different patterns due to the different correlations of the
linear block code, the self-synchronization of the linear block code, and the synchronization
of the linear block code. In fact, the process of the convolution of the received sequence
using a 1 × 2-dimensional convolution kernel is similar to the calculation of its correlation
features under time delay. However, for the self-synchronization of linear block code
and the synchronization of linear block code, the correlation features of code elements
separated by more than two code elements are not as obvious as those of two adjacent code
elements, so convolutional kernels with lengths longer than 1 × 2 dimensions do not have
this differentiation advantage, and they increase the parameters of network training and
increase network complexity. Therefore, the 1 × 2-dimensional convolution kernel is used
to convolve the layer 1 output features in order to obtain correlation features that are more
consistent with the nature of scrambled signals.

The weight and bias training update of the correlation feature extraction network is
mainly divided into two processes: forward propagation and back propagation. Among
them, the forward propagation process is to use the input training samples in order to
calculate the neuron activation value of the network, and the back propagation process is
to perform a reverse calculation in order to obtain the gradient corresponding to the weight
and bias of each error; finally, the gradient-descent algorithm is used to calculate the weight
and to offset update adjustment.

Consider the training data
{(

y(1), q(1)
)

,
(

y(2), q(2)
)

, · · · ,
(

y(m), q(m)
)}

with a sample

size of m, where y(i)(i = 1, 2, . . . , m) is the input scrambled data, and q(i)(i = 1, 2, · · · , m)
is the type label corresponding to the scramble code. The W and b update formulas are,
respectively, expressed as follows:

Wt+1 = Wt − α
∂J(W, b; y, q)

∂Wt , (18)

bt+1 = bt − α
∂J(W, b; y, q)

∂bt . (19)

where α is the learning rate, and J(·) is the loss function. The loss function used is categori-
cal_crossentropy, which is a loss function for mul-ticlass classification tasks and is suitable
for the multiclass problem.

The expression of J(·) is

J(W, b; y, q) = − 1
m

m

∑
i=1

q(i) · log
(

f
(

W, b; y(i)
))

+ λ∑ ‖W‖2. (20)

where λ is the regularization coefficient used to prevent the network from overfitting.
The input x(l)m (j) and output y(l)m (j) of each layer of neurons in the network have the

following relationship:
y(l)m (j) = f

(
x(l)m (j) + b(l)m (j)

)
. (21)

where l is the layer number of the network, j is the j-th neuron of the feature map, m is the
m-th feature map in the network layer number, f (·) is the activation function used by this
layer, and b is the bias.
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4.3. Input–Output Relationship of Each Network Layer

The input 2 × β training data are represented as IN,T , where N represents the di-
mension of the two features, and T is the number of sampling points. The input–output
relationship of each network layer is detailed as follows:

(1) Input layer:
Input = IN,T . (22)

(2) Convolutional layer:

y(2)m (j, k) = f (
3

∑
i=1

Ij,(k−1)×1+i × ker(2)m + b(2)m (j, k)). (23)

(3) LSTM layer:
ht = f (Whxy(3)m,t(j) + Whhht−1 + bh), (24)

hn
t = f (Whn−1hn hn−1

t + Whnhn hn
t−1 + bn

h ), (25)

y(4)m (j) = WhN yhN
t + by, (26)

where Whx represents the weight matrix between the input layer and the hidden layer, Whh
represents the weight matrix between the hidden layers, ht represents the hidden activation
at time t, n(n = 1, 2, . . . , N) represents the current network layer, and hn

t represents the n
layer and output at time t.

(4) SoftMax layer:

y5(j) = f (
n4

∑
i=1

y(4)(i)× w(5)(i) + b(5)(j)). (27)

where w(5)
i (l) represents the connection weight between the fifth and sixth layers, and n4 is

the number of neurons in the fifth layer.
The SoftMax layer calculates the probability estimate of the corresponding category in

the sample, and the learned hypothesis function hθ(x) is expressed as follows:

hθ(yi) =


p(q(i) = 1

∣∣∣y(i); θ)

p(q(i) = 2
∣∣∣y(i); θ)

· · ·
p(q(i) = k

∣∣∣y(i); θ)

 =
1

k
∑

j=1
eθT

j y(i)
. (28)

where θ1, θ2, . . . , θk ∈ Rn+1 is the model parameter. To simplify the model, we define
the function

l{α} =
{

1, α = true
0, α = f alse

. (29)

The cost function of the SoftMax layer can be further expressed as

J(θ) = − 1
m
[

m

∑
i

k

∑
j=1

l{q(i) = j} log
eθT

j y(i)

k

∑
l=1

eθT
j y(i)

. (30)

By superimposing the k values, the probability that the network classifies the scram-
bled data into the j-th category is

p(q(i) = j|y(i); θ) =
eT

j y(i)

k

∑
l=1

eT
j y(i)

. (31)
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where the maximum probability corresponds to the classification category of the
scrambling code.

We first extract the autocorrelation and the intercorrelation features of the code element
data used as input data; compared with the method in [27], the training and learning
of the neural network are carried out, and the biggest advantage of a neural network
over manually extracting features is that it can learn the training autonomously, so the
recognition effect is better than simply manually extracting features. Compared with
the method in Reference [26], a detailed neural network model is constructed, but the
autocorrelation features and the intercorrelation features extracted in this paper have better
anti-BER and noise performance than the matrix rank features in Reference [26]. When the
BER is greater than 0.1, the matrix rank features become extremely insignificant because of
erroneous code elements, and this leads to weaker features extracted by the neural network.
Therefore, the current method in this paper achieves better results.

5. Results
5.1. Experimental Dataset

Two datasets were constructed, i.e., a scrambled dataset of 2000 frames under the
condition of bit error (a bit error rate of 2000), and a scrambled dataset of 2000 frames under
the condition of white Gaussian noise (with an SNR in the range of 10–15 dB).

During the training process, 80% of the total samples were randomly selected as training
data, with the rest used as test data. The datasets and labels are shown in Tables 1 and 2.

Table 1. Linear block code scrambling dataset under bit error.

Dataset Label Number of Signals Number of Samples (2×400)

linear block code 0 2000× 400 2000
self-synchronous

scrambler 1 2000× 400 2000

synchronous
scrambler 2 2000× 400 2000

Table 2. Linear block code scrambling dataset with noise.

Dataset Label Number of Signals Number of Samples (2×800)

linear block code 0 2000× 800 2000
self-synchronous

scrambler 1 2000× 800 2000

synchronous
scrambler 2 2000× 800 2000

The simulation experiment was conducted on an Inteli7-9700K CPU with 16 Gb of
memory and an RTX3080 graphics card running Windows 10; the model was built and
trained based on TensorFlow.

5.2. Network Model Parameters

Because the Adam optimizer was chosen in this manuscript, the optimizer adaptively
adjusts the learning rate, and the automatic learning rate is not a function of epoch. So,
there was no need to consider learning rate schedule as a function of epochs. The network
model parameters are shown in Table 3.

5.2.1. Effect of LSTM Layers and Parameters on Recognition Rate

We analyzed the effects of the number of LSTM layers and cells on the recognition rate
of the algorithm, as shown in Figures 7 and 8, respectively.
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Table 3. Network model parameters.

Network Parameters Numerical Value

batch size 20
learning rate initial value 1× 10−4

final number of epochs 100
validation part of training set 25% of the training set

initial value of the weight constraint coefficient 0.01
number of LSTM units with shared weights 6
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Figure 8. The effect of the number of cells of LSTM on the performance of the algorithm.

In Figures 7 and 8, we can see that the recognition rate is the highest when the number
of LSTM layers is 1, and the recognition results are better when the number of cells is 32 or
68. However, the training time of the network increases a lot when the number of cells is
68, so for the number of cells, 32 was chosen, as it has a shorter training time.

5.2.2. Effect of CNN Layers and Parameters on Recognition Rate

We analyzed the effects of the number of CNN layers and cells on the recognition rate
of the algorithm, as shown in Figures 9 and 10, respectively.

As can be seen in Figures 9 and 10, the highest recognition rate is achieved when the
number of CNN layers is 2; the recognition effect is better when the number of convolutional
layer cells in the first layer is 32, and the number of convolutional layer cells in the second
layer is 68.
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5.3. Experimental Results
5.3.1. Recognition Rate of The Proposed Algorithm under Bit Error Condition

To verify the validity of the model proposed in this paper, we analyzed the influ-
ence of the linear block code parameters, the number of intercepted samples, and the
order and terms of the generator polynomial on the network performance under different
error conditions.

The relationship between the parameters of the different linear block codes and the
recognition rate of the algorithm when the generator polynomial is f (x) = 1 + x18 + x23

and the number of samples is 400 is shown in Figure 11.
It can be seen in the figure that, under the same simulation conditions, the (15,5) linear

block code has the highest recognition rate. At that time, the recognition rate under the
four coding parameters can reach more than 85%, indicating good anti-error performance.

The (15,5) linear block code scrambling recognition rate under different sample num-
bers when the generator polynomial is f (x) = 1 + x18 + x23 is shown in Figure 12.

It can be seen in the figure that, under the same error conditions, more samples mean a
higher recognition rate of the algorithm. When the number of samples is 100 and the error
rate is 0.2, the recognition rate is greater than 80%. When the error rate is 0.1, the recognition
rate can reach 98%, which shows that the proposed algorithm has better performance under
the conditions of a small number of samples and a high BER.

The (15,5) linear block code scrambling recognition rate under different generator
polynomials for 400 samples is shown in Figure 13.
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Figure 13. Influence of scrambling code generator polynomial on the recognition rate.

It can be seen in Figure 13 that, with an increase in the bit error rate, the recognition rate
gradually decreases. The difference in the recognition rate under a generator polynomial of
different orders and terms is not more than 1%. Therefore, the algorithm proposed in this
paper is free from the scrambling code generator polynomial order.

The performance of the algorithm proposed in this paper under different linear block
code parameters is compared with that of the method proposed in Refs [26,27]. When
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the generator polynomial is f (x) = 1 + x18 + x23, the number of samples is 400, and the
sequence length is 240,000 bits as shown in Figure 10.

It can be seen in Figure 14 that the recognition rate of the algorithm proposed in this
paper when the number of verification samples is only 400 is better than the recognition
rate of the algorithm in Reference [26] when the number of samples is 240,000 bits. The
recognition rate of the algorithm in Reference [27] decreases rapidly and tends to be 0
when the BER is greater than 0.01. The reason for this is that the rank feature of the matrix
is not obvious when the BER is greater than 0.01, which leads to a sharp decrease in the
recognition rate. At the same time, the proposed algorithm does not require manual feature
extraction and has the characteristics of less data required, simple manual feature extraction,
and a high recognition rate.

Appl. Sci. 2022, 12, 11305 15 of 18 
 

 

Figure 14. Comparison of algorithms under error conditions. 

5.3.2. Recognition Rate of the Proposed Algorithm under the Condition of Gaussian 

White Noise 

We verified the influence of the linear block code parameters, the number of inter-

cepted samples, and the order and number of terms of the generator polynomial on net-

work performance under different types and levels of noise. 

The relationship between the parameters of the different linear block codes and the 

recognition rate of the algorithm when the generator polynomial is     18 231f x x x  

and the number of samples is 800 is shown in Figure 15. 

 

Figure 15. Influence of linear block code parameters on the recognition rate. 

With an increase in the SNR, the recognition rate continues to improve. Under the 

same SNR, the (15,5) linear block code has the highest recognition rate. When SNR = 0 dB, 

the recognition rate can reach 80%. 

The recognition rate of the (15,5) linear block code scrambling under different sample 

numbers when the generator polynomial is     18 231f x x x  is shown in Figure 16. 

Figure 14. Comparison of algorithms under error conditions. (7,4), (15,5), (15,11), (31,16) Linear block
code (in blue color) Li et al. [26].

5.3.2. Recognition Rate of the Proposed Algorithm under the Condition of Gaussian
White Noise

We verified the influence of the linear block code parameters, the number of intercepted
samples, and the order and number of terms of the generator polynomial on network
performance under different types and levels of noise.

The relationship between the parameters of the different linear block codes and the
recognition rate of the algorithm when the generator polynomial is f (x) = 1 + x18 + x23

and the number of samples is 800 is shown in Figure 15.
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With an increase in the SNR, the recognition rate continues to improve. Under the
same SNR, the (15,5) linear block code has the highest recognition rate. When SNR = 0 dB,
the recognition rate can reach 80%.

The recognition rate of the (15,5) linear block code scrambling under different sample
numbers when the generator polynomial is f (x) = 1 + x18 + x23 is shown in Figure 16.
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Figure 16. Influence of number of samples on the recognition rate under the Condition of Gaussian
White Noise.

It can be seen in the figure that, under the same conditions, the larger the number of
samples, the higher the recognition rate. When the SNR = 3 dB and the number of samples
is 400, the recognition rate can reach more than 90%.

The (15,5) linear block code scrambling recognition rates under different generator
polynomials when the number of samples is 800 are shown in Figure 17.
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Under the condition of the same SNR, the parameters of the generator polynomial
have very little influence on the recognition rate of the proposed algorithm. Combined
with Figure 13, under the conditions of bit error and noise, the algorithm proposed in this
paper does not need to consider the influence of different generator polynomials.

6. Discussion

In this study, deep learning is applied to the field of linear block code scrambling-type
identification. A linear block code scrambling-type identification method based on corre-
lation feature extraction and a correlation feature extraction network model is proposed.



Appl. Sci. 2022, 12, 11305 16 of 17

First, the cross-correlation of the scrambled sequence symbols is deduced according to
the scrambling principle, and then a biased autocorrelation function that reflects the corre-
lation is further constructed. To effectively extract the relevant features of the sequence,
a correlation feature extraction network model is constructed, and the correlation and
autocorrelation features are used as model input for training, which finally achieves the
purpose of identifying the type of linear block code scrambling. The simulation results show
that, compared with the traditional feature extraction method, the algorithm proposed
in this study has a better recognition rate under the BER, and it can recognize the linear
block code scrambling-type under the conditions of BER and noise. The identification of
scrambling code parameters lays a foundation for future scrambler parameter identification
and has significant practical engineering value. Future research will focus on classification
recognition with convolutional code scrambling.
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