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Abstract: With the rapid development of the subway rail transit, tunnels are buried at an increasing
depth, raising the requirements of bearing capacity and waterproofness for linings. Functionally
graded materials are introduced into the design of linings to save costs, and concrete with different
elastic moduli is equipped at different positions to reduce the waste of materials, compared to the
homogeneous lining. The significance of this study includes that the functionally graded lining for
the buried subway tunnel is under the non-uniform confining pressure and the calculation model of
internal force and deformation for the functionally graded lining is established. The elastic modulus
of the lining is set to vary with the angle in the form of a power function, and the function parameters
are analyzed on the basis of this model. The results show that the radial displacement of the lining
axis decreases with the increase in a and b, but the deformation mode remains the same, and the
reduction in deformation is smaller and smaller. With the increase in a and b, the distribution trend of
the moment remains the same. The lateral pressure coefficient λ has a great impact on the safety of
the structure, which exceeds the influence of the function parameters on the safety of the structure.
The displacement of the lining axis and the section moment change linearly with the increase in
λ. With the increase in λ, the shape of the lining changes significantly, which shows that the side
with larger pressure deforms to the inside and the side with smaller pressure expands to the outside.
When the maximum deformation occurs at 0◦, the parameter a should be larger than b. When the
maximum deformation occurs at 90◦, the parameter b should be larger than a, so as to minimize
the cost of materials and reduce the structural deformation. Finally, the numerical simulation is
conducted to verify the theoretical results, showing that the calculation model of internal force and
deformation is suitable for the cylinder with t/R ≤ 0.2, and there is a certain gap between the
theoretical calculation and numerical simulation, but the largest gap of the displacement is within 8%.
Compared with Function I, Function II has some advantages in reducing the maximum deformation
of the structure, but the advantages are relatively low. The analysis results have significant reference
value for designers and relevant scholars.

Keywords: subway tunnel; functionally graded lining; deep buried; elastic modulus; mechanical
properties

1. Introduction

Underground spaces in Shanghai are congested with subways and vital urban facilities [1].
The utilization of deep underground spaces solves the problem regarding the shortage of
shallow underground space [2–4]. Nevertheless, challenges facing deep buried tunnels
are still considerable. For example, soil and water pressure in the stratum deeper than
50 m exceeds 1 MPa [5], which challenges the bearing capacity and waterproofness of deep
buried tunnels [6]. In order to improve the supporting performance and waterproofness
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of subway lining, two methods are usually applied: either to increase the thickness of
the lining or to enhance the concrete strength [7]. However, both are extravagant in that
concrete strength and thickness are the same in each position, which leads to a waste of
concrete in corresponding positions.

In this paper, the functionally graded materials (FGMs) were introduced to the design
of the lining of the subway tunnel, and concrete with different elastic moduli was arranged
at different positions to reduce its cost on the premise of ensuring structural safety. The
concept of FGMs was proposed in 1984 by materials scientists in the Sendai area as a means
of preparing thermal barrier materials [8]. The composition of the functional graded mate-
rials changed continuously from one direction to another, resulting in a continuous change
in the material properties (such as elastic modulus) [9]. The variations of composition and
properties in conventional composite materials and FGMs are illustrated in Figure 1.
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Extensive applications of FGMs have extended to many fields where the operating
conditions are severe, including aerospace, chemical plants, nuclear energy reactors and so
on [10]. Efforts were also made to study the performance of construction materials, such
as metal and cement-based materials [11]. Liu et al. [12] developed the sustainable struc-
ture constructed with functionally graded concretes using fibers and recycled aggregates.
Ahmadi et al. [13] studied the mechanical properties of the graded concrete specimens
composed of recycled aggregates and steel wires recycled from waste tires. Dias et al. [14]
established the concept of functionally graded fiber cement, and the use of statistical mix-
ture designs was discussed to choose formulations and present ideas for the production
of functionally graded fiber cement components. Shen et al. [15] employed a functionally
graded material system to make fiber more efficient in a fiber reinforced cement composite
with four layers, each with a different fiber volume ratio. Differently, the study introduced
in this paper aims to develop a functionally graded cement-based lining for the subway
tunnel. To achieve this, the elastic modulus function is adopted, which is a power law
function with respect to angle α.

There have been many analytical results about functionally graded hollow cylinders
subjected to mechanical stresses. Shi et al. [16] defined the elastic modulus as a linear
function varying with the radius, and Poisson’s ratio is set as a constant, then, the ex-
act solutions of the hollow cylinder with continuously graded properties are obtained.
Dai et al. [17] assumed the elastic modulus as a simple power law function varying through
the wall thickness, and the exact solution for displacement and stress is determined when
Poisson’s ratio is assumed constant. Similarly, Batra et al. [18,19] analyzed the deformation
of functionally graded cylinders composed of incompressible isotropic linear elastic ma-
terials, with the variations of the shear modulus in the radial direction given by a power
law relation and constant Poisson’s ratio. In the other case, the exact elasticity solution of
a radially nonhomogeneous hollow cylinder was derived, whose elastic modulus varied
in an exponential and power law function [20]. Beyond those above, the radial elastic
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modulus was assumed as an arbitrary function [21]. In these works, material parameters
such as elastic modulus or shear modulus were assumed in advance to be a function of
the radius, and Poisson’s ratio was a constant. The stresses and displacement distributions
were calculated under the given elastic modulus E(r) or the shear modulus G(r). Differing
from the mentioned works above, Zhang et al. [22] pre-assumed the desired stress distri-
bution with the elastic modulus E(r) being undermined, then the E(r) was confirmed by
back-calculations according to the stress distribution and loadings. Li et al. [23] studied
the mechanical properties of the functionally graded concrete shaft lining with uniform
confining pressure. However, all the above-mentioned works are based on axisymmetric
loads, and the situation under non-axisymmetric loads has not been researched yet, such
as linings of the subway tunnel. In this paper, the functionally graded lining of the subway
tunnel was modelled as a functionally graded hollow cylinder under non-axisymmetric
loads, and its mechanical properties are studied. The analytical results presented here
should serve as benchmarks for verifying the numerical solutions of problems. The ob-
jective of this study is the mechanical properties of functionally graded lining for a deep
buried subway tunnel with non-uniform confining pressure, which can offer a reference for
the design of functionally graded lining.

2. Analytical Solutions for the Mechanical Properties of the Functionally Graded Lining
2.1. Basic Assumptions

The general agreement of these analytical models lies on the following basic assump-
tions: (1) the cross section for the lining is assumed to be circular, and the lining satisfies
the plain strain condition [24]; (2) the material behavior of the lining is generally assumed
to be elastic, because of the small deformation; (3) loads on the top, bottom and sides are
distributed uniformly.

2.2. Governing Equations

For a homogeneous straight beam, the moment is defined to be positive when the
structure tensile part is at the bottom, and the upward deformation is defined to be positive.
Ignoring the axial deformation, the differential equation between the moment and the
deformation is given by

d2ω

dx2 =
M(x)

EI
(1)

For a homogeneous circular lining structure, as shown in Figure 2, the microelement
can be analyzed as a straight beam, and Equation (1) should be satisfied between the
moment and the radial deformation in the rectangular coordinate system.
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The polar coordinate system is established, whose origin is the center of the lining.
The top of the structure is defined as 0◦, and the anticlockwise direction is defined to be
positive. Therefore, the differential equation of the functionally graded lining in the polar
coordinate system is given by

d2ω

dα2 = RH
2 M(α)

E(α)I
(2)

where ω is the radial deformation of the lining and RH is the calculated radius of the section.

2.3. Building Model

According to the symmetry of the lining and external loads, the quarter circle is
considered. Therefore, the calculation model is as shown in Figure 3.
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At the interval [0, π/2], the elastic modulus function versus α is given by

E(α) = E0[Aαn + B] (3)

where E0 is the basic elastic modulus of lining.
At the interval [π/2, π], the elastic modulus is symmetrical to that at the interval [0, π/2].
For the sake of simplicity, let E = aE0 at α = 0 and E = bE0 at α = π/2, and the elastic

modulus function transformed with parameters a and b is given by Equation (4), which is
defined as Function I.

E(α) = E0

[
b − a
(π/2)n αn + a

]
(4)

where a and b are the parameters of the elastic modulus.
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2.4. Solutions of the Internal Force Coefficient of the Functionally Graded Lining

As shown in Figure 3d, the angular displacement is equal to zero at the position of
α= 0◦, and the force method equation is given by

δ11X1 + ∆1p = 0 (5)

where δ11 is the displacement at X1 of X1= 1; ∆1p is the displacement at X1 of external forces;

δ11 =
∫ M1

2

E(α)I
ds =

∫ π/2

0

M1
2

E(α)I
RHdα =

∫ π/2

0

RH

E(α)I
dα =

RH

E0 I
m1 (6)

where

m1 =
∫ π/2

0

1
E(α)/E0

dα

Moreover,

∆1p =
∫ M1Mp

E(α)I
ds =

∫ π/2

0

Mp

E(α)I
RHdα

where
Mp =

1
2
(λ − 1)p0R2

H sin2 α

Therefore,

∆1p =
∫ M1Mp

E(α)I
ds =

∫ π/2

0

Mp

E(α)I
RHdα =

1
2
(λ − 1)p0R3

H

∫ π/2

0

sin2 α

E(α)I
dα =

1
2
(λ − 1)p0R3

H
E0 I

m2 (7)

where m2 =
∫ π/2

0
sin2 α

E(α)/E0
dα; λ is the coefficient of lateral pressure.

So,

X1 =
−∆1p

δ11
=

1
2
(1 − λ)p0R2

H
m2

m1
,

Mα = M1X1 + Mp =
1
2

p0R2
H(1 − λ)(

m2

m1
− sin2 α).

Further, the moment nondimensionalized is given by

Mα

p0R2
H

=
1
2
(1 − λ)(

m2

m1
− sin2 α). (8)

The axial force can be obtained by calculating moment at the center, and the axial force
nondimensionalized is given by

N
p0RH

= sin2 α + λ cos2 α. (9)

Boundary conditions at α = 0 and α = π/2 can be obtained by the principle of
virtual work.

ω0 = −(
∫ π/2

0
M2Mp

E(α)I
RHdα +

∫ π/2
0

M2M1

E(α)I
RHdα)

=
(λ − 1)p0R4

H
2E0 I

(
∫ π/2

0
sin3 α

E(α)/E0
dα − m2

m1

∫ π/2
0

sin α

E(α)/E0
dα)

=
(λ − 1)p0R4

H
2E0 I

m3

. (10)
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where M2 = 1 is exerted at α = 0◦ vertically;

m3 =
∫ π/2

0

sin3 α

E(α)/E0
dα − m2

m1

∫ π/2

0

sin α

E(α)/E0
dα.

ωπ/2 = −(
∫ π/2

0
M3Mp

E(α)I
RHdα +

∫ π/2
0

M2M1

E(α)I
RHdα)

=
(λ − 1)p0R4

H
2E0 I

(
m2

m1

∫ π/2
0

1 − cos α

E(α)/E0
dα −

∫ π/2
0

sin2 α(1 − cos α)

E(α)/E0
dα)

=
(λ − 1)p0R4

H
2E0 I

m4

. (11)

where M3 = 1 is exerted at α = 90◦ horizontally to the right;

m4 =
m2

m1

∫ π/2

0

1 − cos α

E(α)/E0
dα −

∫ π/2

0

sin2 α(1 − cos α)

E(α)/E0
dα.

From derivation, when external forces are determined, the internal force can be ob-
tained, and the radial displacement can be obtained according to the governing equation
and boundary conditions. The boundary conditions are concluded as follows.

α = 0, ω0 =
(λ − 1)p0R4

H
2E0 I

m3

α = π/2, ω0 =
(λ − 1)p0R4

H
2E0 I

m4

. (12)

2.5. Single Factor Test on the Lining Model of the Functionally Graded Lining

The dimensionless parameter K is employed to reflect the displacement at the lining
axis, and the dimensionless parameter P is employed to reflect the section moment. The
definitions of K and P are given by

K = ω/
p0RH

4

E0 I
. (13)

P =
Mα

p0R2
H

(14)

The single factor tests are carried out to study the influence of the lateral pressure
coefficient λ, the elastic modulus parameters a and b on K, and the typical parameters are
given by a = 1, b = 1 and λ = 0.5.

In the single factor test, one of the factors is changed in turn, and the other factors are
fixed according to the typical parameters. The variation range of each factor is summarized
in Table 1.

Table 1. Factor levels of the single factor test.

Factors Variation Range Step

a 0.7~1.3 0.1
b 0.7~1.3 0.1
λ 0.5~1.5 0.2

Under the condition that the other parameters remain unchanged, the influence of
a on the radial displacement and section moment in the range of 0 ∼ 90◦ at the axis of
functionally graded lining is studied. In addition, the influence of a on the typical points of
0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ at the axis of functionally graded lining is studied, and
the results are shown in Figures 4 and 5.
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As can be observed from Figure 4a, with the increase in a, the radial displacement
at the lining axis decreases, but the deformation trend of the lining is consistent with the
maximum displacement at 0◦ and 90◦ and the minimum displacement near 45◦. In addition,
from Figure 4b, with the increase in a, the slope of the radial displacement curve of each
typical point decreases gradually. It shows that the increase in a can enhance the stiffness
of the lining, but the reduction in deformation becomes smaller and smaller.
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From Figure 5a, with the increase in a, the distribution trend of section moment is
consistent with the maximum moment at 0◦ and 90◦ and the minimum moment near 45◦.
In addition, from Figure 5b, with the increase in a, the negative section moment at typical
points decreases linearly, and the positive section moment increases linearly. The maximum
section moment transfers from the section of 90◦ to the section of 0◦, and the maximum
section moment decreases.

It can be observed from the distribution of the displacement and internal force that the
optimal mode of the elastic modulus is to configure the larger elastic modulus at 0◦ and 90◦

to improve the rigidity, and the smaller elastic modulus at 45◦ to achieve the full utilization
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of the material. The optimized elastic modulus function is given by Equation (15), which is
defined as Function II.

E(α) = E0

[
a − b

(π/4)n

∣∣∣α − π

4

∣∣∣n + b
]

(15)

Under the condition that the other parameters remain unchanged, the influence of b on
the radial displacement and section moment in the range of 0~90◦ at the axis of functionally
graded lining is studied. In addition, the influence of the typical points of 0◦, 15◦, 30◦, 45◦,
60◦, 75◦ and 90◦ on the axis of functionally graded lining is studied, and the results are
shown in Figures 6 and 7.
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As can be observed from Figure 6a, with the increase in b, the radial displacement
at the lining axis decreases, but the deformation trend of the lining is consistent with
the maximum displacement at 0◦ and 90◦ and the minimum displacement near 45◦. In
addition, from Figure 6b, with the increase in b, the slope of the radial displacement curve
of each typical point decreases gradually. It shows that the increase in a can enhance
the stiffness of the lining, but the reduction in deformation becomes smaller and smaller.
Comparing Figure 6 with Figure 4, it can be found that the effect of changing a or b alone
on the deformation characteristics of functionally gradient lining is the same when other
parameters remain unchanged.
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From Figure 7a, with the increase in b, the distribution trend of section moment is
consistent with the maximum moment at 0◦ and 90◦ and the minimum moment near 45◦.
In addition, from Figure 7b, with the increase in b, the negative section moment at typical
points increases linearly, and the positive section moment decreases linearly. The maximum
section moment transfers from the section of 0◦ to the section of 90◦, and the maximum
section moment decreases. Comparing Figure 7b with Figure 5b, it can be found that with
the increase in the section stiffness, the section moment also increases.

Under the condition that the other parameters remain unchanged, the influence of
λ on the radial displacement and section moment in the range of 0~90◦ on the axis of
functionally graded lining is studied. In addition, the influence of the typical points of 0◦,
15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ at the axis of functionally graded lining is studied, and the
results are shown in Figures 8 and 9.
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From Figures 8a and 9a, the radial displacement of the lining axis and the section
moment are 0 when λ = 1, which means that when the upper load is equal to the lateral
load, the lining is in the safest state. When λ = 0.5~1.5 , the curves of the radial displacement
and the section moment are symmetric with the curve of λ = 1.
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From Figures 8b and 9b, it can be observed that the displacement of the lining axis
and section moment changes linearly, and the deformation mode of the lining changes
significantly with the increase in λ. It turns into the deformation with large lateral pressure
to the inside, and the side with small pressure to the outside, which conforms to the actual
deformation characteristics.

2.6. Orthogonal Test of Lining Model of Functionally Graded Lining

According to the above single factor test, factors a, b and λ are selected for the orthog-
onal test to compare the significance. Because the axial radial displacement and section
moment curve of the functional gradient lining are symmetrical about the curve of λ = 1,
the part of λ < 1 is taken. Three levels are taken for the three factors. The values of levels
and the orthogonal test scheme are summarized in Tables 2 and 3.

Table 2. Level values of every factor in orthogonal test.

Factors a b λ

Levels
0.9 0.9 0.5
1.0 1.0 0.6
1.1 1.1 0.7

Table 3. Orthogonal test scheme.

Number
Parameters

a b λ Empty Column

A1 0.9 0.9 0.5 1
A2 0.9 1 0.6 2
A3 0.9 1.1 0.7 3
A4 1 0.9 0.6 3
A5 1 1 0.7 1
A6 1 1.1 0.5 2
A7 1.1 0.9 0.7 2
A8 1.1 1 0.5 3
A9 1.1 1.1 0.6 1

2.6.1. Deformation Mode Analysis

1. Calculation results of radial displacement

In the orthogonal test, the radial displacement at the lining axis is used to represent
the lining deformation mode, and the calculation results are summarized in Table 4.

Table 4. Radial displacement of functionally graded lining.

Number a b λ
Dimensionless Parameter of the Displacement K (×10−2)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

A1 0.9 0.9 0.5 −4.653 −2.752 −0.505 1.569 3.122 4.082 4.658
A2 0.9 1 0.6 −3.528 −2.085 −0.374 1.120 2.364 3.070 3.494
A3 0.9 1.1 0.7 −2.529 −1.493 −0.262 0.867 1.694 2.187 2.482
A4 1 0.9 0.6 −3.494 −2.038 −0.300 1.300 2.477 3.166 3.528
A5 1 1 0.7 −2.501 −1.458 −0.208 0.938 1.772 2.251 2.501
A6 1 1.1 0.5 −3.988 −2.323 −0.322 1.508 2.824 3.567 3.953
A7 1.1 0.9 0.7 −2.482 −1.429 −0.159 1.008 1.852 2.321 2.529
A8 1.1 1 0.5 −3.927 −2.254 −0.229 1.624 2.947 3.661 3.966
A9 1.1 1.1 0.6 −3.032 −1.742 −0.177 1.250 2.261 2.799 3.032
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2. Intuitive analysis of influence factors

From Figure 10, the increase in the elastic modulus parameter a or b reduces the
deformation, but the influence of a and b on different positions is different. When α < 45◦,
the displacement range caused by the change in parameter a is slightly larger than that
caused by the change in parameter b, so changing a has a great influence on the deformation.
When α > 45◦, the displacement range caused by the change in parameter b is slightly larger
than that caused by the change in parameter a, so changing b has a great influence on the
deformation. Therefore, when the maximum deformation is at α = 0◦, a can be increased
to reduce the maximum deformation. When the maximum deformation is at 90◦, b can
be increased to reduce the maximum deformation. In addition, the radial displacement is
most affected by the lateral pressure coefficient λ, and decreases linearly with the increase
in λ, which shows that the lateral pressure coefficient has a great influence on the safety of
structures, which exceeds the influence of the structural parameters. At 30◦, the influence
of a on the radial displacement exceeds the other two parameters. At 45◦, the increase in a
increases the radial displacement, but within 30~45◦, the radial displacement is also small,
which belongs to the junction of positive and negative deformation, so the abnormality
brought by this range is not considered.
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3. Variance analysis of influence factors

The variance analysis of influence factors of radial displacement is summarized in Table 5.

Table 5. Variance analysis of influence factors of radial displacement.

Position Parameters Dof Square of Deviance F
Confidence

Significance
99% 95% 90%

0

a 2 0.270 26.061 99 19 9 **
b 2 0.198 19.123 99 19 9 **
λ 2 4.261 410.793 99 19 9 ***

Error 2 0.010

15

a 2 0.137 28.193 99 19 9 **
b 2 0.075 15.339 99 19 9 *
λ 2 1.449 297.711 99 19 9 ***

Error 2 0.005
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Table 5. Cont.

Position Parameters Dof Square of Deviance F
Confidence

Significance
99% 95% 90%

30

a 2 0.055 32.980 99 19 9 ***
b 2 0.007 4.438 99 19 9 *
λ 2 0.030 18.095 99 19 9 ***

Error 2 0.002

45

a 2 0.018 4.040 99 19 9 -
b 2 0.012 2.631 99 19 9 -
λ 2 0.596 134.648 99 19 9 ***

Error 2 0.004

60

a 2 0.003 1.258 99 19 9 -
b 2 0.075 32.857 99 19 9 **
λ 2 2.130 927.119 99 19 9 ***

Error 2 0.002

75

a 2 0.053 10.111 99 19 9 *
b 2 0.173 32.974 99 19 9 **
λ 2 3.452 656.317 99 19 9 ***

Error 2 0.005

90

a 2 0.206 20.093 99 19 9 **
b 2 0.263 25.636 99 19 9 **
λ 2 4.276 416.241 99 19 9 ***

Error 2 0.010

“***” means very significant, “**” means significant, “*” means there is some influence but not significant,
“-” means no influence.

According to Table 5, when α < 45◦, parameters a and λ have a very significant
influence on the radial displacement of the functional gradient lining, and the significance
of λ is greater than that of parameter a. With the increase in α, the significance of parameter
a on the displacement increases gradually, and that of parameter b on the displacement
decreases gradually, but the significance of parameter a is always greater than that of
parameter b. When α > 45◦, parameters b and λ have a very significant influence on the
radial displacement of the functional gradient lining, and the significance of λ is greater
than that of parameter b. With the increase in α, the significance of parameter a on the
displacement increases gradually, and that of parameter b on the displacement decreases
gradually, but the significance of parameter b is always greater than that of parameter
a. At α= 45◦, parameters a and b have no effect on the radial displacement, but λ has a
significant effect on the radial displacement.

In conclusion, for the functionally graded lining with linear elastic modulus distribu-
tion, in the part of α < 45◦, the change in parameter a has a greater impact on the lining
deformation. In the part of α > 45◦, the change in parameter b has a greater impact on the
lining deformation. Therefore, when the maximum deformation occurs at 0◦, the parameter
a > b. When the maximum deformation occurs at the position of 90◦, the parameter a < b
can save material costs and reduce the structural deformation.

2.6.2. Section Moment Analysis

1. Calculation results of section moment

The calculation results of the section moment of functional gradient lining in the
orthogonal test are summarized in Table 6.
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Table 6. Section moment of functionally graded lining.

Number a b λ
Dimensionless Parameters of Section Moment P (×10−2)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

A1 0.9 0.9 0.5 12.503 10.828 6.253 0.0028 −6.247 −10.823 −12.497
A2 0.9 1 0.6 9.787 8.447 4.787 −0.213 −5.213 −8.874 −10.213
A3 0.9 1.1 0.7 7.195 6.191 3.445 −0.305 −4.055 −6.800 −7.805
A4 1 0.9 0.6 10.213 8.874 5.213 0.213 −4.787 −8.447 −9.787
A5 1 1 0.7 7.502 6.497 3.752 0.0015 −3.748 −6.494 −7.498
A6 1 1.1 0.5 12.259 10.584 6.009 −0.241 −6.491 −11.067 −12.741
A7 1.1 0.9 0.7 7.805 6.800 4.055 0.305 −3.445 −6.191 −7.195
A8 1.1 1 0.5 12.741 11.067 6.491 0.241 −6.009 −10.584 −12.259
A9 1.1 1.1 0.6 10.000 8.660 5.000 0 −5.000 −8.660 −10.000

2. Intuitive analysis of influence factors

It can be observed from Figure 11 that λ has the greatest influence on the section
moment. When α < 45◦, with the increase in parameter a, the section moment increases.
With the increase in parameter b, the section moment decreases, and the increase in the
section moment caused by the increase in a is almost the same as the decrease in the section
moment caused by the increase in b. When α > 45◦, with the increase in parameter a,
the section moment decreases, and with the increase in parameter b, the section moment
increases. The decrease in the section moment caused by the increase in a is almost the same
as the increase in the section moment caused by the increase in b. When α = 45◦, the section
moment is small, and the influence of parameters a and b on the section moment is greater
than that of λ. Because this is the junction of positive and negative bending moment, and
the section moment is small, the abnormality generated here is not considered. Therefore,
it can be found that when the elastic modulus of the lining increases, the section moment
also increases, which conforms to the idea of “flexible yielding” in structural design.
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3. Variance analysis of influence factors

The variance analysis of influence factors of the section moment is summarized in
Table 7.

Table 7. Variance analysis of influence factors of section moment.

Position Parameters Dof Square of Deviance F
Confidence

Significance
99% 95% 90%

0

a 2 0.188 12.698 99 19 9 *
b 2 0.190 12.843 99 19 9 *
λ 2 37.505 2533.057 99 19 9 ***

Error 2 0.015

15

a 2 0.188 12.448 99 19 9 *
b 2 0.190 12.590 99 19 9 *
λ 2 28.128 1862.404 99 19 9 ***

Error 2 0.015

30

a 2 0.188 12.698 99 19 9 *
b 2 0.190 12.843 99 19 9 *
λ 2 9.378 633.349 99 19 9 ***

Error 2 0.015

45

a 2 0.188 12.704 99 19 9 *
b 2 0.190 12.838 99 19 9 *
λ 2 0.000 0.000 99 19 9 -

Error 2 0.015

60

a 2 0.188 12.698 99 19 9 *
b 2 0.190 12.843 99 19 9 *
λ 2 9.373 633.011 99 19 9 ***

Error 2 0.015

75

a 2 0.188 12.471 99 19 9 *
b 2 0.190 12.565 99 19 9 *
λ 2 28.119 1861.611 99 19 9 ***

Error 2 0.015

90

a 2 0.188 12.698 99 19 9 *
b 2 0.190 12.843 99 19 9 **
λ 2 37.495 2532.381 99 19 9 ***

Error 2 0.015

“***” means very significant, “**” means significant, “*” means there is some influence but not significant,
“-” means no influence.

According to the variance analysis in Table 7, the influence of λ on the section moment
is very significant, and the influence on the positions of α = 0◦ and α = 90◦ is the most
significant. The influence of elastic modulus parameters a and b on the section moment
is significant, and the significant degree is similar. The section of 45◦ is abnormal in the
variance analysis, where λ has no effect on the section moment, and the influence of the
elastic modulus parameters on the section moment is similar to that of other parts. Because
of the small section moment, this abnormality is not considered.

In conclusion, for the functionally graded lining with linear elastic modulus distri-
bution, the influence of the non-uniformity of external load on the section moment is the
largest, far more than the influence of elastic modulus parameters.

2.7. Verification of the Numerical Simulation

In the numerical calculation, the lining of subway tunnels has a certain thickness, but
in the theoretical calculation, the lining is simplified as a curved rod structure. Therefore,
under the condition of the different thickness diameter ratio, the displacement calculation
results of the inner wall, outer wall and axis of the lining in the numerical calculation are
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compared with the theoretical calculation results, so as to determine the corresponding
position of the radius RH in the theoretical calculation. The calculation results are shown in
Figure 12.

From Figure 12, it can be observed that the radial displacement at the inner edge of the
cylinder is the largest, followed by the axis, and the outer edge is the smallest, indicating
that the inner edge of the cylinder structure should be used as the basis for failure under
the action of external force. When t/R ≤ 0.2, the theoretical calculation results are close to
the radial displacement of the inner edge of the cylinder in the numerical simulation results.
With the increase in the thickness diameter ratio, the numerical simulation results of the
radial displacement of the inner edge at 0◦ and 90◦ gradually increase. When t/R = 0.2, the
numerical simulation results of the radial displacement of the inner edge at 0◦ and α= 90◦

are closest to the theoretical calculation results. However, when t/R > 0.2, the numerical
simulation results of the radial displacement of the inner edge at 0◦ and 90◦ exceed the
theoretical calculation results, and the gap between them gradually becomes larger. It
shows that when t/R ≤ 0.2, the theoretical calculation results can be used to calculate
the radial displacement of the inner edge, and the calculation results are conservative.
However, when t/R > 0.2, if the theoretical model continues to be applied to calculate the
radial displacement at the most unfavorable position, the results will be smaller, which is
not conducive to the safety of the structure. In conclusion, the theoretical model of internal
force and deformation is suitable for the t/R ≤ 0.2 cylinder structure.
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Figure 12. Comparison of numerical simulation results and theoretical calculation results of radial
deformation of homogeneous cylinder at different positions under different thickness diameter ratio.

According to the comparison of the radial displacement between the numerical sim-
ulation and the theoretical calculation under the different thickness diameter ratios, the



Appl. Sci. 2022, 12, 11272 19 of 23

function gradient cylinder under the condition of t/R = 0.2 is simulated. The adopted
elastic modulus functions are Function I and Function II. In order to reflect the economic
characteristics of the functionally graded structures (FGS), two groups of elastic modulus
parameters a = 1, b = 0.9 and a = 0.9, b = 1 are used. The vertical load is 1 MPa, λ = 0.5
and the fundamental elastic modulus E0 = 36 GPa.

Because ABAQUS 6.14 cannot realize the continuous change in the elastic modulus
along the circular direction, the cylinder structure is adopted to give the elastic modu-
lus along the circular direction in sections. When there are enough segments, it can be
considered that the cylinder with segments given the elastic modulus is equivalent to
the functional gradient cylinder in mechanical properties. Next, the number of segments
is explored. The change trend of Mises stress and deformation coefficient |K| with the
number of segments at typical points is shown in Figure 13.

From Figure 13, it can be observed that with the increase in the number of segments,
the Mises stress and radial displacement coefficient |K| at the inner edge of the cylinder
gradually converge to a certain value, so when the number of segments is large enough,
the method of elastic modulus given by segments can be used to simulate the functional
gradient lining. It can be also observed that when the number of segments is 16, the stress
and deformation begin to converge. When the number of segments is 32, the change degree
of Mises stress and the radial deformation coefficient of each typical point is less than 0.05%
and 0.02%, respectively. Therefore, in order to ensure the accuracy of calculation and reduce
the calculation, in the next simulation of the mechanical properties of the FGM cylinder,
the 1/4-cylinder structure is divided into 16 sections to simulate the FGM cylinder.
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Based on the above demonstration of the thickness diameter ratio and the number of
segments of the functional gradient cylinder in the numerical simulation, the mechanical
properties of functional gradient linings with t/R = 0.2 and the number of segments
of 16 are analyzed, and the deformation coefficient K of the functional gradient lining
under the condition of the elastic modulus Function I is compared with the theoretical
calculation result, and the comparison result is shown in Figure 14. The radial displacement
of FGM lining with different elastic modulus parameters in the theoretical calculation and
numerical simulation is shown in Figure 15. Compared with the radial displacement of
FGM linings with two elastic modulus functions, the result is shown in Figure 16.
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Figure 14. Comparison between the theoretical and numerical results of radial displacement of
functionally graded lining under the condition of elastic modulus Function I.
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From Figure 14, the radial displacement curves of FGM lining almost coincide under
the conditions of a = 1, b = 0.9 and a = 0.9, b = 1 in the results of both the theoretical
analysis and the numerical simulation. There is a certain gap in the results between
the theoretical analysis and the numerical simulation, but the theoretical analysis and
the numerical simulation results are close at the two places of 0◦ and 90◦ with large
displacement, where the gap between the two calculation results is within 8%, so the
theoretical calculation results can be used as the basis for the deformation of the lining.

From Figure 15, under the condition of the linear distribution of the elastic modulus,
the radial deformation of lining is slightly different with different elastic modulus parame-
ters in both the theoretical calculation and the numerical simulation. From Figure 15a, the
maximum radial displacement is at 0◦. The maximum radial displacement of homogeneous
lining is the smallest and the functional gradient lining with elastic modulus parameter
a = 1, b = 0.9 is the second, and the functional gradient lining with elastic modulus
parameter a = 0.9, b = 1 is the largest. In addition, the difference between the maximum
deformation of functionally graded lining with a = 1, b = 0.9 and that of homogeneous
lining is no more than 5%. From Figure 15b, similarly, the maximum radial displacement
is at 0◦ in the numerical simulation. The maximum radial displacement of homogeneous
lining is the smallest and the functional gradient lining with elastic modulus parameter
a = 1, b = 0.9 is the second, and the functional gradient lining with elastic modulus
parameter a = 0.9, b = 1 is the largest. In addition, the difference between the maximum
deformation of functionally graded lining with a = 1, b = 0.9 and that of homogeneous
lining is no more than 5%. In conclusion, although there are some differences in the results
between the theoretical analysis and the numerical simulation, the laws shown by them are
consistent. When λ = 0.5, the maximum deformation is at 0◦, and a > b is conducive to
reduce the maximum deformation.

From Figure 16, the deformation of the functionally graded lining corresponding to the
two elastic modulus functions is similar, but the circumferential stress is quite different. From
Figure 16a, the circumferential stress of functional gradient lining corresponding to elastic
modulus Function II is larger near 90◦ and is about 30% larger than that corresponding to
Function I. From Figure 16b, the radial displacement of the four functional gradient linings
reaches the maximum value at 0◦, and the deformation difference is about 2%. The radial
displacement of the functional gradient lining corresponding to Function II with a = 1,
b = 0.9 is the minimum, and that of the functional gradient lining corresponding to Function
I with a = 1, b = 0.9 is the second. It can be observed that Function II has some advantages
over Function I in reducing the maximum deformation of the structure, but the advantages
are relatively low and the overall stiffness of the functional gradient structure represented by
Function II is also larger. Therefore, when Function I can meet the deformation requirements,
it is unnecessary to use Function II to reduce the deformation further.

3. Conclusions

This study aims to develop a new approach to design the functionally graded lining
of subway tunnels. With two parameters of the elastic modulus function and lateral
pressure coefficient, the mechanical properties of the functionally graded lining were
studied, proving that the new lining shows great characteristics of economy and security.

In the study, the mechanical properties of the functionally graded lining were researched
and by analyzing theoretically and numerically, some conclusions are drawn as follows:

(1) The single factor test shows that the radial displacement of the lining axis decreases
with the increase in a and b, but the deformation mode remains the same, and the
reduction in deformation is smaller and smaller. In addition, with the increase in a
and b, the distribution trend of moment remains the same. With the increase in a,
the positive section moment increases linearly and the negative bending moment
decreases linearly. With the increase in b, the negative moment increases linearly and
the positive moment decreases linearly, which embodies the idea of “flexible yielding”.
The displacement of the lining axis and the section moment change linearly with the
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increase in λ. With the increase in λ, the shape of the lining changes significantly,
which shows that the side with large lateral pressure deforms to the inside, and the
side with small lateral pressure expands to the outside.

(2) The orthogonal test shows that when the maximum deformation occurs at 0◦, the
parameter a should be larger than b. When the maximum deformation occurs at 90◦,
the parameter b should be larger than a, so as to save material costs on the premise of
ensuring safety. In addition, the lateral pressure coefficient has a great impact on the
safety of the structure, which exceeds the influence of structural parameters on the
safety of the structure.

(3) The numerical simulation shows that the calculation model of internal force and
deformation is suitable for the cylinder with t/R ≤ 0.2. There is a certain gap
between the theoretical analysis and numerical simulation, but the gap between the
theoretical analysis and numerical simulation results is within 8% at 0◦ and 90◦ with
large displacement. In addition, the conclusion of the theoretical analysis is verified.
There is little difference in deformation between the two kinds of functional graded
linings, but there is a big difference in circumferential stress. It can be observed that
compared with Function I, Function II has some advantages in reducing the maximum
deformation of the structure, but the advantages are relatively low.

In further study, the solution model of internal force and the displacement of function-
ally graded lining under specific elastic function should be conducted based on the theory
of elasticity.
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