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Fiber laser sources operating in the 2 µm wavelength region have gained extensive
attention due to their wide range of applications, including in medicine, remote sensing,
spectroscopy, plastic material processing, and mid-infrared generation [1–5]. Silica thulium-
doped fibers (TDFs) are probably the most technologically mature active fibers and offer a
broad output spectral range of about 1.7–2.1 µm [6,7]. Their wide gain bandwidth makes
them an excellent choice for the generation of ultrashort laser pulses in the mid-infrared
spectral region. Numerous demonstrations of mode-locked thulium-doped fiber lasers
(TDFLs) have been reported in the literature [8,9], but there is still a relatively small number
of reports on self-starting and environmentally stable ultrafast lasers developed using
all-PM-fiber technology that emit linearly polarized pulses.

Another type of TDFL that has experienced intense, tremendous progress over the
last decade is high-power TDFLs. High-power 2 µm fiber laser systems are attractive
for applications in long-range atmospheric transmission, remote sensing, medicine, and
directed energy. Additionally, the wavelength of 2 µm belongs to the so called “eye-safe”
spectral region, which promotes the application of TDFLs in many fields of industry to
replace the currently commonly used ytterbium-doped fiber lasers and amplifiers. The most
desired are narrow-linewidth, high-power fiber laser systems, which enable coherent beam
combining to further scale up the output power of laser radiation [10]. Efficient generation
at 2 µm can be obtained via the in-band pumping of Tm3+-doped fibers by a TDFL emitting
at a shorter wavelength or by pumping at 790 nm using commercially available high
brightness, fiber-coupled laser diodes [11]. Pumping at 790 nm could yield high efficiency
due to the cross-relaxation process, in which two excited-state ions are created from one
pump photon [12]. The cross-relaxation efficiency in TDF is closely correlated with the
dopant concentration of the active fiber and must be carefully optimized. However, the
generation of over 20 W of laser radiation at 2 µm with a high slope efficiency exceeding 70%
has been presented in TDFL diode pumped at 790 nm [13]. This appears very promising
for further improvements in high-power TDFLs and amplifiers.

The papers contained in this Special Issue aim to present the most recent advancements
in TDFLs and their applications, including new concepts for active fibers, detailed studies
of phenomena responsible for different generation regimes, and novel fiber laser system
designs. Studies on nonlinear effects, which usually limit the enhancement of the output
parameters, are also highly welcome. Finally, I would like to encourage discussions not
only on the advantages of TDFLs but also on their limitations and weaknesses.
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