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Abstract: Glass bottle-manufacturing companies produce bottles of different colors, shapes and
sizes. One identified problem is that seeds appear in the bottle mainly due to the temperature and
parameters of the oven. This paper presents a new system capable of detecting seeds of 0.1 mm?
in size in glass bottles as they are being manufactured, 24 h per day and 7 days per week. The
bottles move along the conveyor belt at 50 m/min, at a production rate of 250 bottles/min. This
new proposed method includes deep learning-based artificial intelligence techniques and classical
image processing on images acquired with a high-speed line camera. The algorithm comprises three
stages. First, the bottle is identified in the input image. Next, an algorithm based in thresholding
and morphological operations is applied on this bottle region to locate potential candidates for seeds.
Finally, a deep learning-based model can classify whether the proposed candidates are real seeds or
not. This method manages to filter out most of false positives due to stains in the glass surface, while
no real seeds are lost. The F1 achieved is 0.97. This method reveals the advantages of deep learning
techniques for problems where classical image processing algorithms are not sufficient.

Keywords: seeds counting; quality control; deep learning; image processing; object detection; classi-

fication; real-time control

1. Introduction

The introduction of digital tools that allow the automation of tasks in manufacturing
processes is a big challenge and non-trivial issue. The benefits are clear and diverse.
Digitalization is therefore ongoing in many industrial manufacturing processes, but there is
still a long way to go. Some of the processes that are often automatized are those ones that
try to reproduce visual assessments in an objective and repetitive way at high speed. This
allows for the assessment and inspection of certain objects with a high degree of precision
and accuracy over 100% of production, a process that would require a lot of time for a
human being to execute. At the same time, image processing and deep learning techniques
have experienced a good level of acceptance in recent years since they have enabled us to
tackle some of these challenges. Many computer vision-based applications can be found in
the literature for solving different problems in different application fields [1-6].

Manufacturing of glass bottles is already a fairly automatized process that still presents
some challenges ahead. Glass bottle manufacturers often produce bottles of different colors,
shapes and diameters. One of the identified problems is that seeds can appear in the bottle
during the manufacturing process, mainly due to the temperature and parameters of the
oven. The control of the presence of seeds is important for two reasons. The first reason
is the quality of the manufactured element. Drinks manufacturers do not want to sell
their products in packages with defects. The second reason is a matter of energy efficiency.
If some seeds appear in the glass and their presence increases over time, it is necessary
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to modify the parameters of the oven to give the bottles the desired quality. Generally
speaking, the temperature parameter of the oven should be adjusted to the optimum value
so as to manufacture bottles of good quality, on the one hand; and on the other hand, it is
advisable not to exceed in energy consumption since it has a high impact on the energy bill.
If the temperature of the oven decreases too much, the consumption will be lower, but a
higher number of seeds may appear. If the temperature of the oven is very high, the quality
of the bottles will be excellent, but there may not have been an efficient use of energy. A
compromise must be achieved between these two situations.

The seeds can be categorized into two different types according to their size: seeds
mainly refer to small-sized elements, and big-sized seeds are named blisters. Therefore,
the availability of tools that may detect the presence of seeds and blisters in the glass are
more than welcome. If these tools can differentiate among seeds and blisters and count
their number in terms of process indicators, it can contribute to a great improvement in
control over the process.

In this work, a new system is proposed whose purpose is to automatically detect
the presence of seeds and blisters during the manufacturing process of the bottles. The
system can categorize the defects in seeds and blisters according to their size. The system is
integrated into the manufacturing line and automatically inspects 100% of the production to
locate seeds of up to 0.1 x 0.1 mm? that appear during the manufacture of glass bottles. The
system has been validated in three production lines of different sites of Vidrala group, one of
the biggest glass bottle manufacturers in the world, and over bottles with a wide variety of
size, color and diameter. This production line has a maximum cadence of 250 bottles/min,
with a line speed of around 50 m/min.

A first version of the system was deployed in 2017. After three years, in 2020, al-
though the system was performing reasonably well in two production sites (Aiala and
Castellar manufacturing sites), Vidrala asked to improve software robustness, mainly in
distinguishing seeds from grease stains, which sometimes causes false positives. At that
time, deep learning techniques had already demonstrated the capability to correctly execute
advanced analysis where traditional image processing techniques would fail. Therefore, a
new version of the system was developed with an additional deep learning-based module.
This model would finally evaluate whether a detected blob was a seed, a blister or nothing
at all. The rejected blobs could be greasy regions, joints or any other object that might
appear in the bottle. This deep learning-based model has managed to drastically reduce up
to 95% of the false positives detected as seeds by the initial version of the system.

In this work, we propose a new system that can automatically detect and count seeds
and blisters in real time in a glass bottle manufacturing line by means of image processing
and deep learning-based techniques.

The organization of the paper is as follows: Section 1 provides an introduction to the
problem; Section 2 presents a review of the related work; Section 3 details the materials
and methods used in this work and describes the proposed solution; results are shown
in Section 4; discussion can be found in Section 5; finally, conclusions and future research
lines are presented in Section 6.

2. Related Work

In the sector of glass containers, the physical appearance is the main indicator of the
product quality, for both aesthetic and physical reasons. Specifically, in the case of glass
bottles, there is plenty of literature, as well as multi-inspection machines, available in the
market that aim to detect imperfections in several regions of the geometry to meet the
quality standards.

The work proposed in this paper is focused on detecting seeds on the walls of the
bottles. However, typical defects also include cracks, seams, inclusions or tears in areas like
the bottom, mouth and shoulder.

Nowadays, machine manufacturers offer different solutions for the inspection of the
glass bottles, both in the hot and cold end areas, replacing manual processes which are
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very time consuming and dependent on subjective perception among the quality experts.
Some of these inspection machines are already a standard in the market, as in the case of
MCALA4 [7], OMNIVISION 3 [8], FlexInspect [9], EVOLUTION 12 NEO [10] and others
such as Imago Omnia [11], FT system [12] and Linatronics Al [13], allowing multiple
configurations and high complexity. Even though they are also capable of detecting
seeds in the sidewalls, manufacturers don’t provide detailed information about either the
size of the detected seeds or the accuracy to compare metrics and performance with the
method presented in this paper. For instance, some claims regarding the number of bottles
processed per hour [8,12] report that over 60,000 bottles/h can be managed by a certain
system, without specifying the constrains of that specific scenario (number and size of the
defects, number of zones inspected, etc.). In general, these systems can be configurated
for a broad range of measurements, including not only defects, but bottle dimensions,
deformations, cap presence, liquid fill and others.

Meanwhile, the works described in publications reinforces the idea that machine vision
is a key technology to tackle the problem of automatizing the inspection task. Ref. [14]
lists several use cases where machine vision algorithms are applied to quality control in
the glass industry, as well as different techniques widely used to process the images in
search of suspicious blobs. In computer vision applications, the first suggested step is
related with the definition of the region of interest (ROI) in the image, in order to optimize
subsequent analysis. In [15] the authors compare the time reduction in the inspection
of glass tubes when the defect detection algorithm is applied to both the original image
and the extracted ROI, achieving a performance gain of up to 66%. In terms of processing
algorithms, the most common techniques consist in detection of blobs and contours, making
it possible to differentiate those pixel clusters that present some quantifiable contrast
with the background. Some approaches describe Canny [15-18], black top-hat [19,20],
Watershed [21] and Otsu [22] methods, which successfully extract most of the particles
present in the sidewalls. Characterization of the resulting blobs can be achieved analyzing
the features [17,20,23] of the connected pixels in those regions. Recently, some works
applied artificial intelligence [22,24] for the classification of the blobs, as they provide
versatility in the identification of multiple defect classes. To this end, some extracted
features from the image were used, which constitute the input of the classifiers.

A critical parameter in the quality control of glass bottles is the range of defect sizes
that the system can detect. For instance, ref. [25] sets a lower limit of 36 pixels for the blobs
in the sidewalls and bottom, although seeds are not included in the study, whereas [16]
managed to classify defects as small as 25 pixels, being able to differentiate seeds from other
types of inclusions. A better approach is considered to be the specification of the minimum
defect size in physical magnitude, as it is closer to the needs of glass manufacturers. In that
regard, the method tested by [21] set the minimum detectable size to 1.5 mm? for defects in
the sidewalls of a bottle. A few years later, ref. [17] claimed that knots with a size of 1 mm?
can be recognized in syringes and vials, considering that smaller defects do not have a big
impact in that market. Finally, ref. [18] presented an algorithm capable of detecting defects
with an area as small as 0.15 mm? in the production of glass tubes.

Most of the defects detected in the related works are quite big. Moreover, those
systems do not indicate performance in terms of precision or accuracy. They do not indicate
how they act when there are other defects that look alike, such as in the case of small seeds
and grass stains or the joints of the bottle. This may cause false positives in the detection. It
is very difficult to distinguish among these defects using only classical image processing
techniques, since the features that describe both the defects and the false positives are
similar.
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3. Materials and Methods

This section gathers the design of the system, the description of the dataset used for
the development of the SW and the proposed SW solution.
The bottles that the system has to inspect have the following characteristics:

Revolution bottles whose diameters range from 52 to 120 mm.
Glass thickness between 0.8 and 2.5 mm, approximately, depending on the color.
Color range: Flint, Green, Dark Green, and Oak. Other hues can be produced.

Different types of bottles can be seen in Figure 1.

Figure 1. Examples of bottles of different shapes and colors.

Bottles often present grease stains (objects in the bottle that are greasy points but are
considered as seeds), which can lead to false positives. The union joint of the bottle can
also produce the same effect due to its visual similarity.

The dataset of the system must contain examples with all this variability in shapes,
dimensions, hues and greasy vs. clean surfaces.

The design of the system has to guarantee the proper working of this wide variety of
bottles that move at a speed of up to 50 m/min in a production line. The number of bottles
to be inspected can be up to 250 bottles/min. The minimum size of the detected seed is
0.1 x 0.1 mm?. Real-time inspection is necessary.

3.1. System Design

This system has to analyze 100% of the bottles automatically and in real time. Ac-
cording to quality requirements and expert knowledge, it is not necessary to inspect the
whole bottle in order to have the total number of seeds. It is enough to have the seed
density information in a specified region and analyze its trend over time. An increase in
the number of seeds per kilogram may indicate a problem in the furnace (oven) that has to
be solved. A low or decreasing trend in the number of seeds per kilogram indicates a good,
optimized manufacturing process. To this end, only a specified and fixed region of interest
is inspected in every bottle, and the number of seeds per kilogram (or blisters per ton) are
the indicators calculated. Bubbles are named in two different ways depending on the size.
Seeds refer to bubbles with bounding box with both sides smaller than 1 mm. Blister refers
to a big bubble having at least one dimension of the circumscribing bounding box higher
than 1 mm.

To this end, a region for inspection approximately 60 mm in height by the diameter
of the bottle is established. The seeds/blisters that are displayed in said region will be
detected, their shape and size will be evaluated and the results of said analysis will be
reported, so that the operator can take the appropriate actions based on the information
received. The number of seeds detected in said inspection region will be related to a value
of the number of seeds per kilo and per ton, which is the variable usually used in the plant
to control the quality of the bottle manufacturing process.
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The proposed system includes mechanical, electrical, vision and software development.
The vision subsystem and the software subsystem are described in detail in the following
sections. The general description of each module is as follows:

e  Vision subsystem:

This module includes the set of elements that capture images of the bottles. It is further
described below.

e  Mechanical subsystem:
This module includes the set of mechanical devices that support the vision subsystem.
e  Electrical subsystem:

This module includes the electrical cabinet as well as the additional elements and
electrical signals needed for the synchronization of the different modules and the commu-
nication with the control computer. The electrical and mechanical elements are housed in
a cabinet, as shown in Figure 2. The only element outside the cabinet is the illumination
system that is placed opposite the camera for a backlight layout. Moreover, the system
receives the encoder signals to synchronize the line scan acquisition with the speed of
the manufacturing line in order to properly reconstruct the image of every bottle. An
additional photo sensor placed in the line indicates whether a bottle has passed and acti-
vates the acquisition process. The PC communicates with the camera through the Ethernet
connection.

e  Software subsystem:

The SW module was specifically designed for this application and it performs the
control and configuration of the camera; the reception, processing and analysis of the
images; the launching of the detection process whenever an image is available; and the
display and storage of the results and other auxiliary tasks of configuration and verification
of the status of the different elements of the system.

The layout of the system and the vision module is shown in Figure 2.

(b)

Figure 2. Images of the system: (a) cabinet of the system; (b) layout of the vision module.

By means of an easy-to-use graphical interface, the user can start the process. The
inspection process, once started, will automatically continue until stopped by the user.
The software subsystem is responsible for collecting the camera lines to reconstruct the
image, estimating the extremes of the diameter of each bottle from the captured images,
and analyzing the presence of seeds in each identified bottle. If seeds are detected, their di-
mensions will be calculated. Likewise, the number of seeds per kilogram will be calculated
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for bubbles of all sizes, and the number of blisters per ton will be estimated for any seed
of more than 1 mm in its largest dimension, calculated based on the known thickness for
each model together with the rest of the output data identified as relevant, which will be
detailed later. Those relevant values will be displayed in the user interface and delivered to
the control system. This information will also be stored in a different file for each reference
produced. The user is responsible for providing the reference data of the model of the
bottles that are being analyzed. The correct indication of the model of the bottle that is
being manufactured affects the final calculation. Every model has a different reference
thickness value, indicating the same number of detected seeds may rely on a different
number of seeds per kilo and blisters per ton. These are the final expected indicators to
manage the process.

The vision subsystem and the software subsystem are described in detail in the
following sections.

3.2. Vision Subsystem

The vision module includes the set of elements that capture images of the bottles.
These elements are: (1) high resolution monochrome linear camera; (2) optics for the linear
camera with high depth of field; (3) high-intensity white backlight illumination.

This vision module is in charge of carrying out the functions related to capturing
the images. It manages the communication with the camera, sending it the appropriate
configuration parameters and controlling the acquisition of the images. It is also in charge
of interpreting the messages coming from the camera (which can provide error information)
and of sending the captured images to the processing module. The HW of the capture entity
is a high-speed monochrome linear camera with a telecentric lens, where the acquisition
of each line is synchronized with a rising edge of the encoder pulse of the manufacturing
line where the system is located. The camera will understand that an image is constituted
when an established number of lines is grabbed. In this situation, an image is created with
3600 lines. The encoder must be capable of providing around 28,000 lines/s in order to be
able to achieve the resolution of 0.03 mm/pulse (resolution = 0.03 mm/pixel) necessary for
detection of seeds with a minimum size of 0.1 x 0.1 mm?.

The seed detection system in bottles consists mainly of the vision system. The mechan-
ical and electrical HW modules do nothing but provide support and allow the capture and
processing of images to be possible. The mechanical system consists of the set of supports
that hold the camera and the lighting, which is placed behind the bottle to illuminate it by
contrast.

The HW elements chosen for the constitution of the optical system are the following:

e  Teledyne Dalsa Monochrome Line Camera (Teledyne Dalsa, Waterloo, ON, Canada)
2048 pixels and 52 kHz, Gigabit Ethernet
Telecentric optics TC4K120
Backlight lighting MB-BLL206-W-24

The calculations and reasoning that led to this choice are detailed below.

Operating requirements are that the system must work at a line speed of 50 m/min,
detect bubbles of 0.1 x 0.1 mm? in a strip approximately 60 mm high in practically the
entire surface of the bottle for diameters between 52 and 120 mm.

The required minimum detectable size determines the resolution of the camera, the
capture speed and the resolution of the necessary encoder. Considering three pixels as
a minimum default both in the x and y axis, it implies having a resolution in x and y of
0.03 mm/pixel. If the field of view is 60 mm, this resolution is achieved on the x-axis with a
2048-pixel camera. In the direction of movement, which would constitute the y-axis of the
image, it is also necessary to have the same resolution of 0.03 mm/pixel, which is equal
to 0.03 mm/pulse. At a speed of 50 m/min (0.833 m/s), to have 0.03 mm/pulse, it means
providing 27,777 pulses/s to capture at 27,777 lines/s. The camera must capture a minimum
of 28 kHz, and the line encoder that will synchronize the capture must provide around
28,000 pulses/s. Taking into account all these calculations, the chosen camera is a linear
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monochrome camera with 2048 pixels and 52 kHz with Gigabit Ethernet communication
protocol.

On the other hand, the fact that the bottle is curved suggests the use of an optic that
allows for a good depth of field in order to ensure that the largest surface of the bottle is
well focused and, in this way, to be able to conveniently detect seeds in the entire diameter
of the circular bottle.

The TC4K120 telecentric lens was chosen for this linear camera, which provides a
depth of field of 29.2 mm. The maximum working distance of this optic is 174 mm, and it
has a length of 337.3 mm, which must be considered for the correct design of the mechanical
support and the selection of the location of the system. The operating range was established
and verified for distances in the range 130-160 mm between the end of the lens and the
bottle surface.

The vision system module and the related SW is of vital importance and will therefore
be executed autonomously in an independent processing thread, so that the capture of new
information is not delayed and lines are not lost due to problems in other processing stages.

Taking into account the depth of field of this lens and the range of bottle diameters
between 52 and 120 mm, an inspected bottle surface is estimated for a width between
50 mm and 97.46 mm, respectively, by 60 mm height in both cases. That is, practically the
whole surface of the middle of the bottle will be inspected. In addition, in this calculation a
clearance of 2-3 mm was considered in the positioning of the bottles on the belt, so that
they do not get stuck, which penalizes the depth of field. That is, the inspection areas will
be 50 mm (width) x 60 mm (height) for bottles with a minimum diameter of 52 mm, and
97.46 mm (width) x 60 mm (height) for bottles with a maximum diameter of 120 mm,
approximately.

These elements were chosen to be able to provide the desired resolution in both the x
and y axes. Therefore, they must have a fixed relative physical layout. In case of movement,
the performance of the system in terms of seeds detection will be different and may even
not be detected. The support where the camera will be located on the gantry will allow a
certain vertical displacement to adjust the inspection window to the possible different cut
and shape of the bottle.

3.3. Proposed SW Solution: The Image Algorithm
The proposed SW solution comprises several stages. These stages are:

e  Bottle detection: the bottle is identified in the image; this region constitutes the zone
to be analyzed.

e Candidate selection: the potential bubbles are detected in the inspected region; these
candidates are the blobs that fulfil the features that may correspond to seeds.

e  TFiltering by deep learning model: these candidates go through a deep learning-based
classification model that finally decides whether they are seeds or not.

The processing pipeline is shown below in Figure 3.
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Figure 3. Processing pipeline.
The detailed description of every stage is provided below.

3.3.1. Bottle Detection

The line scan camera is capturing lines continuously. As indicated above, there is a
sensor that is activated whenever a bottle crosses the sensor line, and this signal triggers
the acquisition of the camera until the total number of lines of the image is acquired. These
lines are synchronized with the encoder of the manufacturing line. The reason why a photo
sensor is placed to detect the presence of a bottle is to make the processing algorithm easier
so that the processing stage is launched only whenever a bottle has passed. The idea is to
have a single bottle in every image. However, there are situations where this is not possible,
and more than one bottle appears together. Images are 2048 x 3600 pixels in size. Figure 4
shows an example of the input image acquired by the camera.

Figure 4. Image of a bottle grabbed by the camera.

A key stage in the algorithm is the location of the region of the image to be inspected.
Through a global thresholding operation, the darker parts of the images are located. In an
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image with a single bottle, average ‘y’ coordinate across all the rows in the image represents
the diameter of the bottle. The inner region is located and in case its area corresponds to the
area range for the bottle of the expected dimensions, the area to be inspected is delimited.
In case more than one bottle appears in the image, the algorithm discards the smaller region
in the image, not having enough pixel size so as to represent a complete bottle. Images
with incomplete bottles, whatever the reason for this might be, are rejected.

3.3.2. Candidate Selection Approach

The baseline of the solution aims at detecting the seeds and blisters present on the
surface of the bottle by means of classical image processing techniques. In the case of
detecting the presence of seeds, the algorithm will calculate their corresponding height and
width dimensions. This was the initially deployed solution that arose from the need for a
deep learning-based solution for the filtering of false positives and more accurate output.

This candidate selection approach relies on thresholding, filtering and morphological
operations to detect the seeds. The stages of the algorithm are as follows. First, an adaptive
and local thresholding takes place. For a segmentation from the light foreground for
a pixel at position (r,c), a local threshold T(r,c) is calculated within a window of size
mask_size X mask_size by means of the following expression,

T(r,c) = u(r,c)(1 +k(@ -1))

where y(r,c) is the local mean value within the window and 6(r, c) denotes the corre-
sponding standard deviation. The parameter R is the assumed maximum value of the
standard deviation (R = 128 for byte images) and k is a parameter that controls how much
the threshold value T(r,c) differs from the mean value. If there is high contrast in the
neighborhood of a point (7,c), the standard deviation has a value close to R which yields
a threshold value T(r,c) close to the local mean. Dark structures on a light background
are segmented. Every pixel p(r,c) whose gray value is smaller than the calculated local
threshold T(r, ) is selected. Value for step is 0.1 and mask size of 21 was fixed.

The blobs above the threshold are connected in a 3 x 3 neighborhood and analyzed.
Those blobs not having the features expected for seeds in glass are discarded. The identified
features for seeds are sizes ranging between 3 and 200 pixels in both width and height,
Euler number being —1 or 0 for detection of inner regions, and not having eccentricity.
Relation between width and height is also considered in order to remove the joints or other
linear marks in the bottle that cannot be seeds. The blobs that remain after these filtering
steps are the final identified potential seeds. Figure 5 shows the processing algorithm.

a b c
d e f

Figure 5. The sequence of the processing algorithm for the candidate selection: (a) input image of

the bottle; (b) region of the bottle zoomed in for better understanding; (c) local threshold is applied;
(d) tblobs after filtering by size and shape; (e) connected regions after dilation operation; (f) final
blobs named as “candidates” for next steps.
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3.3.3. Deep Learning-Based Classification Model

Although the candidate selection is quite good in clean glass, it can be improved. It
was identified that a certain percentage of grease stains and other types of irregularities,
such as the seal or joint of the bottle, become the cause of false positives. These types
of elements often have an appearance very similar to that of a seed (see Figure 6), and
after an analysis at the pixel level and considering shape of the clusters of pixels in a blob,
the algorithms are not always able to filter them successfully. As a result, a bottle with
abundant grease stains can erroneously increase the count of seeds and blisters detected,
especially in the large category, which masks the true measurement in these cases.

Figure 6. Examples of grease stains in the bottle.

This last stage of the proposed method is based on supervised deep learning tech-
niques. In this way, the model will be able to learn the precise morphological characteristics
of a bubble, a stain or a joint, and generalize this classification for situations of uncertainty
that take place during the inspection. These artificial intelligence technologies allow a de-
tailed analysis of the scene, so that the processing grows in complexity and the algorithms
are capable of contextualizing the features extracted from the image, similar to how the
brain does. The idea for the classification model is to receive all the candidates detected in
an image in the previous stage and to act as the final element responsible for filtering out
everything that is not a seed in glass.

For the development of the deep learning-based classification model, the following
steps were followed. First, the dataset was carefully reviewed to make sure the annotated
images fit in the assigned category. Images with the “doubtful” label are removed from the
dataset. Next, the model is trained with different parameters, and best performing weights
are chosen. Finally, the metrics for the test subset are obtained. The detailed methodology
is as follows.

Dataset for Deep Learning Model

The images collected to train a deep learning model is known as a dataset, and it is, in
fact, one of the most critical tasks, since it contains the information that will be transferred
to the model. It can be said that, regardless of the complexity of the developed software,
the quality of the final classification is strongly dependent on the quality of the examples
shown to the model during training. In this case it is a supervised training process, which
means that all the images used in the training process were previously annotated, and there
was an output associated to an input.

The number of images used in a dataset depends on several factors, such as the
number of classes, the homogeneity or heterogeneity of the classes that are intended to
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be discriminated, or the complexity of the architecture of the network used for training.
In addition, it can be stated that an excess of similar images, or the use of unbalanced
image sets (in terms of the number of images for each type of class) can cause unexpected
behavior in the classification, so that a model with outstanding metrics in training may not
be able to generalize when exposed to previously unseen examples.

The dataset to develop the model proposed in this paper was gathered from manufac-
turing lines of three sites of Vidrala, sites in Castellar and in Aiala—Llodio, both placed in
Spain, and another site in Elton, UK. The dataset contains around 1500 images that were
acquired with the Line Scan camera used in the system. This dataset was used to tackle the
different stages in the processing algorithm. On the one hand, the full image was used for
the bottle detection algorithm and candidate selection, and full validation of the system.
On the other hand, the ad hoc dataset for the generation of the deep learning-based model
was also created.

The dataset for the deep learning-based model contains two classes (or sets) of images,
identified as “seed” and “non-seed”. The “seed” class includes a wide spectrum of seeds
of different sizes, shapes and orientations, and with a well-defined contour in most cases,
while the “non-seed” class has grouped grease stains, marks, joint areas and, in general,
any element that, due to its appearance, could lead to a false positive detection. Figure 7
shows examples of images belonging to both classes.

Class SEED / BLISTER

Class NO SEED

Figure 7. Examples of images of both classes existing in the dataset.

The generation of the dataset was carefully executed. The correct identification of an
image to one class or the other is not always easy, since they can often have very similar
appearance, and can be confusing even to a trained eye with no more information than
that of a small crop with a set of dark pixels. Several revisions were performed to make
sure proper assignment of the images is executed. It must be considered that some of the
images shown in Figure 6 can be very small, not bigger than 10 x 10 pixels size. As stated
above, the good performance of the models lies in the robustness and proper annotation of
the dataset. In this case, the annotation of the dataset has consisted of assigning a category
label to every image.

The final used dataset contains 3771 images, where 1399 images represent seeds or
blisters and 2372 represent other elements not being seeds, such as joints, marks, stains,
etc. The dataset was generated from images of bottles having different colors and hues,
dimensions, and being circular of squared shape bottles. The aim of this is that the dataset
may cover all the possible variability the model might find in the real production stage.

The aim of this approach is that there is a unique model capable of identifying seeds
and blisters in the whole range of bottles that are manufactured in all lines of Vidrala sites.
The development of separate models for all of the colors of the bottles is not desired. This
would add difficulty for the scalability, maintenance and, in the end, adoption of the system
by the users.
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Training of the Model

The training task consists of showing the dataset to a convolutional network, which
will iteratively extract unambiguous characteristics of each of the classes in the dataset. The
training process ends when the weights and parameters of that network provide a small
error in the prediction, that is, a reduced loss value in the validation subset. The different
models trained in the project were generated with the deep learning library of MVTech’s
Halcon software. Specific hardware (GPU) was also used to speed up the process, which
would otherwise take considerably longer.

The original dataset is split up into three groups (training, validation and test), so that
the network is able to assess and correct the quality of learning during the training itself.

Halcon’s deep learning libraries in version 18.11 provide three types of networks, from
least to most complex. Based on the tests carried out, the networks with more processing
layers introduced greater delay when generating the predictions of the classes, which
would cause congestion problems at times with a high number of seed candidates. This
problem does not occur with the network in compact format, so this was the final chosen
architecture. Other design considerations of the model that imply a preprocessing of the
input image are:

e Image rescaling. The networks available in Halcon are configured by default to work
with three channel images with a resolution of 224 x 224 pixels, which far exceeds the
average size of the candidate clippings produced by the system. This fact negatively
affects the system in two ways: on the one hand, the computational cost introduces
an additional time to that of the inference of the model itself, being fatal in real time
applications; and on the other, rescaling to such a large size introduces unnecessary
noise into the image. In fact, it was observed that with smaller image sizes where
resolution is barely reconditioned, the error calculated after model training is lower.
In addition to testing the resolution of 224 x 224 pixels, we have worked with sizes of
96 x 96 and 48 x 48 pixels, the latter being the option ultimately chosen for the input
image.

e  Preprocessing. Along with input image rescaling, another series of transformations are
applied to the image with the aim of feeding the network with the more meaningful
input. These transformations were achieved by means of traditional image processing
techniques and are: (1) Contrast enhancement: this operation scales the image within
the range of maximum and minimum gray levels, improving the contrast between
light and dark areas. The purpose of applying it is so that the model is valid for all the
variability of colours and hues of the bottles, that can vary from white to dark-green
or oak; (2) Gaussian filter: 50% of the dataset was passed through a 3 x 3 Gaussian
filter to cause a certain degree of blurring, both in seeds and in the rest of the elements.
This effect makes the system more flexible in situations where the seeds do not appear
perfectly focused or defined.

In the training process, data augmentation was applied. Data augmentation allows the
dataset to be expanded, generating new cuts with slight variations, based on the original
images, and prevents possible overfitting. These data augmentation techniques consist
of applying transformations to all or part of the images, such as affine transformations
of translation and rotation, flipping the image with respect to some axis or other types of
operations. Specifically for this project, transformations were applied to rotate and reflect
the images, so that the network understands that the characteristics of one class or another
are independent of the position and angle at which seeds and spots appear in the image.
In our case, it is not convenient to apply strong transformation since the images are very
small in size and the features of the seeds and other regions not being seeds is represented
in few pixels.

The networks used in the different trainings belong to the family of residual networks,
named ResNet. They were proposed by [26] and are well known in the scientific community.
The compact and smaller network was ultimately chosen. Figure 8 shows the ResNet family
network architectures.
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Figure 8. Residual Network architectures used in the development (extracted from [26]). The smaller
ResNet-18 is the one showing better results and can perform in real time.

Finally, the hyper-parameters tuning was tackled in the training process. This set of
variables partly determines the configuration of the network and has a direct impact on the
quality of the trained model. Some of the used parameters were batch size, learning rate,
epochs, momentum, gradient descent and weights initialization. Best results were obtained
with batch size of 16 during 100 epochs, learning rate of 0.01, momentum 0.9, and square
gradient descent as optimizer of the model in the training process. Training was performed
from scratch, and weights of the model were randomly initialized. The curve of the best
training is shown in Figure 9.

Best validation error: 4.6 %

25

Learning rate| "

Error (%]

Press Run (F5) to continue

Figure 9. Training curve of the final classification model.

The model manages to remove all the false positive in the image due to grass stains,
joints and other undesirable factors. Final output image with the detected seeds can be
seen in Figure 10. The example bottle is specially chosen to see how good the performance
is. The bottles do not usually present so many seeds or stains.
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a b

Figure 10. Example of the outcome of the processing pipeline: (a) input image; (b) output image with
the detected seeds (black squared) and blisters (white squared).

3.3.4. Proposed SW Solution: Final Integrated System

Once the model was properly trained and best weights are chosen according to the
results over the validation subset, it is necessary to integrate the model into the complete SW
solution. The development of the integrated SW was executed on a Pentium IV computer
running the 64-bit Windows 7 operating system. The PC needs at least one network card to
communicate with the linear monochrome camera with Gigabit Ethernet communication
protocol. The software tools for the development of the application are:

e  National Instruments LabWindows CVI (version 2012)
e  Sapera library SDK (version 8.41) for camera control and image capture
e Halcon library (version 18.11)

The model is part of the final integrated system that inspects the bottle in the man-
ufacturing line in real time, 24 h per day and 7 days per week. As explained above, the
processing pipeline has several stages. All suspected bubble candidates detected by the first
stage of the process are evaluated by the deep learning-based model for the final decision.

The inclusion of this stage with the classification model hardly penalizes the pipeline
processing time by a few milliseconds, so the system fulfils the real-time requirement and
allows 100% inspection of the bottles at a production rate of up to 250 bottles per minute.
Every image processing action takes around 150-200 ms; this range is due to the number of
located possible candidates. The higher the number, the higher the number of elements to
be classified by the model, thus the processing time is elapsed.

Figure 11 below shows an image of a bottle correctly grabbed by the camera, with
detected seeds framed within the inspected area.



Appl. Sci. 2022,12,11192

15 of 25

Figure 11. Image of bottle with detected seeds and blisters.

When seeds are ultimately confirmed by the classification model, their dimensions are
calculated. Likewise, the number of seeds per kilogram will be calculated for bubbles of all
sizes; and the number of blisters per ton will be estimated for any seed of more than 1 mm
in its largest dimension, calculated based on the known thickness for each. Glass density is
considered constant and equal to 2.52 kg/m?.

Those calculated relevant values are displayed in the user interface. The information
is stored in a different text file for each reference produced. The user is responsible for
providing the reference data of the model of the bottles that are being analyzed. The correct
indication of the model of the bottle that is being manufactured affects the final calculation.
Every model has a different reference thickness value, and this implies the same number of
detected seeds may rely on a different number of seeds per kilo and blisters per ton. These
are the final expected indicators to manage the process.

The information related to every model that has to be provided to the system is:

Reference code: alphanumeric string that identifies the model being manufactured;
Average glass thickness in mm;

Color: it can be white or flint, green, dark-green or moss;

Bottle diameter in mm.

Additionally, in the event that the window presents engravings in the lower or upper
part of the inspection zone, an exclusion zone can be created that will indicate that said
area should not be processed. If no value is entered (0.00 mm), the system will inspect the
60 mm field of view in the bottle height direction.

The operation of the whole developed application is as follows. As soon as the
interface is launched, the program checks that the camera is properly connected. The
acquisition parameters of the camera are loaded, the camera is automatically initialized,
and it is verified that it is working correctly. If this is the case, the visual indicator of
“System Information” located at the bottom of the interface, named as “Ready,” turns green.
If the camera was not connected or presented any problem, the visual indicator “Ready”
would turn red.

By pressing the Start Inspection button, the visual indicator “Grabbing” changes to
green when the camera is operational, and it receives the encoder pulses necessary to record
the lines that allow the reconstruction of an image of the established dimensions. This only
occurs if the line is in motion and generates such encoder pulses. It is also necessary for
the image acquisition to take place that the photocell is on and is correctly detecting the
passing of the bottle. In case the line is stopped, there are no bottles passing or the photocell
is not detecting them correctly, the camera does not record and this “Grabbing” indicator
light is off. In this scenario, there will be no image available that can be processed, and
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therefore the “Processing” indicator light will be in red. If the camera is grabbing and there
is an image, the automatic and uninterrupted processing of all the bottles will be carried
out. The “Processing” indicator light will then appear in green. The process continues
uninterrupted until Stop Inspection is pressed.

Figure 12 shows the interface of the program in the processing stage, with all the
associated information.
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Figure 12. Main panel of the user interface of the application.

Regarding the registration of the information, it is both stored and transferred by
TCP/IP protocol to the system that manages the production parameters in the manufac-
turing site. The information that is transferred is the date and time on which each value is
recorded, the average number of seeds/kg and blisters/ton of the last 100 bottles and the
average value of the number of seeds/kg and blisters/ton in the last hour.

4. Results

The system has been validated through a set of tests. The objective of the tests is
twofold. On the one hand, it is needed to ensure that the system works correctly, without
errors occurring in 24/7 operation and in real time processing. The proposed algorithm
presents several stages and each of them adds additional time, being especially higher when
the glass is dirty, and the number of potential candidates increases. The deep learning-
based model for final classification of the candidates takes longer as it has to make a higher
number of predictions. On the other hand, it is necessary to validate the performance of
the proposed method and to verify the correct detection of seeds and correct rejection of
the other elements.

Objective comparison with the current laboratory seeds counting procedure available
in the Vidrala site is not possible, strictly speaking, as both methods count seeds differently.
The automatic seed detection system inspects a fixed region in the bottle as it passes in
front of the capture line of the camera, as explained before. The results are displayed on
the user screen through graphs. Likewise, three values are estimated and recorded: seed
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density value for each bottle, mean value per 100 bottles and hourly mean value. In the
laboratory, it is not possible to analyze 100% of the production, so the usual practice consists
of inspecting a discrete and random set of bottles (less than 10) every day, normally in the
morning. These bottles are inspected with a linear system available in the laboratory (in
the Aiala site) or through destructive techniques (in the Castellar site) which allows the
inspection of part or all of the surface of the bottle. Through this procedure the values
of seeds per kilo (for small ones) and blisters per ton (for large ones, side > 1 mm) are
obtained. Both values, the one obtained by the automatic system and the laboratory one,
are not strictly comparable because neither the same bottle nor (even if it were the same
bottle) the same inspection zone are inspected.

Therefore, to assess whether the system is doing it right or wrong, it is necessary to
review one by one the images captured by the system and the real bottles grabbed in those
images.

In order to carry out this verification of operation in an objective manner, a procedure
was established that allows the reality of each bottle to be compared with that estimated by
the system. This procedure has included the following steps:

e A set of dark colored bottles and model 1117/242 has been selected (specifically,
10 bottles have been selected from a larger initial set);

e  The bottles have been inspected by the system, in which the original and processed
images have been stored;

e  An expert of Vidrala has reviewed the processed images and has indicated how many
seeds are correctly annotated, how many of them are false, and how many seeds the
system has not detected. In case of doubt, the expert has the possibility of checking
the original images, as well as the real bottles, to establish whether a seed is large or
small (1 mm on a side);

e  These values have been compared with the results obtained by the system;

This procedure has been repeated for two situations:

System with baseline approach, that is, classical image-based solution;
System with new approach with the deep learning-based classification model.

In this way, it will be possible to conclude whether the deep learning-based model has
added value over the baseline and also to quantify the real provided improvement.

For each of the 10 bottles, 10 passes were made, 5 for each face, in order to also verify
the repeatability of the system. The difficulty in placing the bottles on the tape in the same
position for each iteration means that the exact same area is not seen in the 5 images that
correspond to the same side, although it is very similar. Said dispersion has not been
quantified, although it has been considered that the system presents high repeatability.

To obtain the validation metrics, a manual review of 20 images has been carried out.
The bottles show a really excessive number of seeds, which does not correspond to the
usual production situation. This can only occur at the moment of starting the oven, which
is when the test bottles have been taken. This selection of bottles with an excessive number
of seeds has been made specifically for the execution of the tests and validation of the
robustness and performance of the system in real time.

These bottles have been processed by both stages in the algorithm and the number of
total seeds and blisters has been obtained for each image. The two stages are the image
processing-based process that detects the potential candidates (named as baseline); and the
final identified seeds after inclusion of the deep learning-based classification model. The
aim is to identify whether the deep learning model contributes to the proper detection of
the seeds. On the other hand, the images have been reviewed by a Vidrala expert who, after
analyzing the images together with the corresponding bottle, has indicated those seeds
that are real, the false positives (grease stains or marks detected as seeds) and the false
negatives (seeds not detected).
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The performance of the system can be quantified with the following metrics commonly
used:

TP
True Positive Rate (TPR = tivity = ) = ———%=5
rue Positive Rate ( sensitivity = recall) TP+ EP
FN
Fal ive R FNR) = —/———F+=
alse Negative Rate (FNR) FN L TP
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Fl— 2 X precision X sensitivity
~ (precision + sensitivity)

TPR, precision and F1 with values ranging between 0 and 1, with 1 being optimal; and
FNR with values between 0 and 1, with 0 being optimal.
The metrics obtained for both approaches are gathered in Table 1.

Table 1. Metrics of the deep learning-based system compared with baseline approach.

Method TPR FNR Precision F1
Baseline (classical image processing) 0.96 0.05 0.49 0.55
With deep learning-based model 1.00 0.02 0.97 0.97

Some images of these bottles with the detected seeds and blisters (obtained with both
the classical image processing approach and with the deep learning-based approach) are
shown below. The large seeds named as blisters are marked with white. Figures 13 and 14
gathers some of the images. Additional examples of detections can be found in Appendix A.

Other tests have been carried out with other models of bottle to verify the correct
detection. This verification has been made visually by an expert. Unfortunately, due to
unavailability of experts, the same exhaustive procedure of manual annotation of real
and false seeds has not been followed. Nevertheless, this visual inspection has also been
considered very important for Vidrala, since it may assure that the model can generalize
well in other models of bottles of different color and thickness. As explained before, it is
not intended to develop a model for seed classification for every color, but a unique model
for all the possible colors. This has been addressed in the design of the deep learning-based
classification model through the pre-processing stage.

(a) (b)

Figure 13. Example of improvement in detection of seeds. (a) the image has been processed with the

classical image processing approach; (b) the image has also been processed with the deep learning-
based model.
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@) (b)

Figure 14. Example of improvement in detection of seeds: (a) the image has been processed with the

classical image processing approach; (b) the image has also been processed with the deep learning-
based model.

5. Discussion

The results shown in Section 4 above reveal a good performance of the proposed
method for seed detection and of the whole system itself. The proposed methodology
makes feasible the detection of seeds with a degree of precision close to 1.0 and a False
Negative Rate close to 0.0. This means that almost all the seeds are detected correctly,
that is, no false positives are detected, and besides, the number of real seeds that are not
detected is very small, which is of utmost importance in this process.

The inclusion of the deep learning-based classification model as an additional stage
in the processing pipeline outperforms the results obtained by the baseline (the classical
image processing-based approach without the deep learning model). This is evident in:

e  The number of false positives, understood as the detection and counting of grease
stains, marks or other elements that appeared in the image and are attributed to seeds
in the past, has been drastically reduced;

e  The number of false negatives (undetected seeds) is null in most of the images.

From the observation of the images, it can be appreciated that the seeds that are
occasionally lost are those that are very faint, in which there is very little contrast between
the circular crown that characterizes them and the hue of the bottle. The observation of the
faint seeds mainly happens in light-color bottles with low thickness.

Another aspect that has been verified is that the sizing of the seeds is correct. As
explained in introduction, small defects are named as seeds and defects with one dimension
larger than 1 mm size are considered as blisters. The image is acquired by a line scan camera
that is perfectly synchronized with the electrical signal of the encoder of the manufacturing
line and with a verified resolution of up to 0.03 mm/line pulse. Moreover, the processing
pipeline calculates dynamically, for every frame, the real resolution in the movement axis,
to absorb the possible variation in the speed of the conveyor belt that transports the bottles.
This makes feasible the precise estimation of the size in pixels of the seeds detected, and
direct conversion to millimeters is achieved through multiplication by real frame resolution.
Occasionally, some seeds are not framed perfectly and show a smaller dimension than
the real one. This happens in the case of faint bubbles, where part of them, in the faintest
area and with less contrast, can be diluted with the background and not be detected. The
estimation in size of the seeds is considered to be appropriate. This fact is relevant for the
proper calculation of both key indicators in the process, that is, (1) seeds per kilo, where all
the detected seeds are considered, and (2) blisters per ton, where only big sized seeds with
any dimension larger than 1 mm size are considered.

Regarding the implementation of the algorithm, it has been managed to make different
tools and environments work together. The camera is controlled by drivers and API through
a C environment. This development environment centralizes the control of the camera and
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reception of images, the processing pipeline, the communication with the system in the
plant to deliver the obtained results and also the user interface to gather the instructions
given by the user. The camera also receives the electric signal from the photocell and
encoder of the manufacturing line. All this happens at a processing rate of up to 250 bottles
per minute in a manufacturing line that can move up to 50 m per minute, which is really
fast so as to detect seeds as small as 0.1 mm?. This is a real-time system that is working in
three sites of Vidrala group 24 h per day and 7 days per week.

It has been possible to integrate a deep learning-based model designed and trained
with the Halcon libraries in the existing software written in C without penalizing the
baseline approach processing time and without prejudice to the actions feedback and
communication with the PLC. The chosen network, as well as its configuration and the size
of the input image, have allowed the model inference to add only a few milliseconds to the
processing sequence. With this, it is still possible to inspect 100% of the production in real
time.

Moreover, the system has been proven capable of detecting seeds in bottles of different
colors and thicknesses. This validates the generalization capability of the model, and the
fact that it is not necessary to have a model ad hoc for every type of bottle in terms of size,
thickness and color, where the visual appearance of the seeds may vary. This fact makes
easier the applicability and maintenance of the model in the future, and it does not require
specific training for further models of bottles that might be designed and manufactured in
the future.

Future work may focus on the further inclusion of additional elements that might
appear in the glass of the bottle, such as the infuses. The infuses are the pieces of materials
that have not been melted in the furnace (for whatever reason) and that are inside the glass
along the manufacturing process. The detection of these elements is not frequent at all but
can be problematic since it may cause future cracks in the glass containers.

6. Conclusions

This paper presents a new system capable of detecting bubbles (named seeds) of
0.1 mm? size in glass bottles in their manufacturing process 24 h per day and 7 days per
week. These seeds are considered blisters if their dimensions in width or height exceeds
1 mm. The identification of seeds and their dimensions is relevant to control the quality of
the process in relation to the quality of the bottle for further filling with liquid, for both
aesthetic and quality-related reasons. There are two KPI in the process; the number of seeds
per kilo, and the number of blisters per ton, which are relevant to regulate the temperature
of the furnace and the process itself.

The bottles are of different sizes, shapes and colors, and they move over the conveyor
belt at 50 m/min at a production rate of 250 bottles/min. The detection of the seeds
requires a system that processes in real time and that must be fully synchronized with the
manufacturing line and its control system.

The system we propose in this paper has met all these criteria. The acquisition of
the images is made by means of a high-speed linear camera that has been synchronized
with the manufacturing line through a line encoder that indicates the conveyor speed, and
a photo sensor that activates whenever a bottle passes in front of the camera, and thus
the acquisition starts. The images are processes by means of the new proposed method
that includes deep learning-based artificial intelligence techniques and the classical image
processing approach. The algorithm comprises three stages.

First, the bottle is identified in the input image to only work in the relevant Region Of
Interest (ROI) and to discard the other possible areas of adjacent bottles that might appear
in the image. Next, an algorithm based in thresholding and morphological operations is
applied over this ROI to locate potential candidates for seeds. This stage usually detects
more candidates than real seeds. This is due to the fact that there may appear stains,
joints and marks in the surface of the bottles that look very similar to seeds, regarding
size, shape and pixel values. Therefore, it is very difficult to distinguish real seeds from
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these stains and marks, which would be identified as false positives if a third stage is not
executed. Finally, a deep learning-based model has been developed that can classify with
high accuracy whether the proposed candidates are real seeds or not. The method manages
to filter out most of false positives due to stains and others in the glass surface, and at the
same time, no real seeds are lost. The F1 achieved is 0.97, which is considered to be more
than acceptable by the Vidrala quality team.

The proposed method reveals the advantages of the application of deep learning
techniques to problems where the classical image processing algorithms are not enough
because of the difficulty in finding meaningful features that help distinguish two classes
that are really similar, as it is the case with seeds vs. greasy stains.

The processing method has been embedded in a C environment and it can perform
24/7 in real time at a speed of 50 m/min, with a production rate of 250 bottles/min. It
inspects 100% of the production.
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