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Abstract: Multimodal biometric recognition involves two critical issues: feature representation and
multimodal fusion. Traditional feature representation requires complex image preprocessing and
different feature-extraction methods for different modalities. Moreover, the multimodal fusion
methods used in previous work simply splice the features of different modalities, resulting in an
unsatisfactory feature representation. To address these two problems, we propose a Dual-Branch-Net
based recognition method with finger vein (FV) and inner knuckle print (IKP). The method combines
convolutional neural network (CNN), transfer learning, and triplet loss function to complete feature
representation, thereby simplifying and unifying the feature-extraction process of the two modalities.
Dual-Branch-Net also achieves deep multilevel fusion of the two modalities’ features. We assess our
method on a public FV and IKP homologous multimodal dataset named PolyU-DB. Experimental
results show that the proposed method performs best and achieves an equal error rate (EER) of the
recognition result of 0.422%.

Keywords: finger vein features; inner knuckle print features; multimodal recognition; convolutional
neural network; feature fusion

1. Introduction

Biometric recognition aims to distinguish individuals based on human physiological
and behavioral characteristics and is widely applied in Internet-of-Things security [1],
financial payment [2], and security systems [3], etc. A biometric system usually includes
image acquisition [4], preprocessing [5], feature extraction [6], and matching [7], as shown in
Figure 1. Due to the convenience of acquisition, finger-based biometric recognition methods
have developed rapidly. With the increasing demand for accurate identity recognition in
recent years, multimodal recognition methods have attracted wide attention [8–10]. Finger
vein (FV) and inner knuckle print (IKP) are two modalities of the finger. FV is the tiny
blood vessels inside the finger close to the cortex [11], and IKP is the pattern of the inner
surface of the knuckle [12]. We use these two modalities to achieve identity recognition in
this study.

Figure 1. The architecture of the biometric recognition system.
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There are two main problems to be solved in designing an method based on mul-
timodal biometric recognition: how to extract each modality’s features and how to fuse
multiple modalities’ information.

The traditional feature extraction of IKP and FV mainly relies on hand-designed
schemes [13–17]. Although traditional feature-extraction methods can achieve good results
from specific designs, they are complicated. To solve this problem, we use deep learning
models for feature extraction. CNN is suitable for image feature extraction, as the model
has a strong generalization ability after pretraining large-scale data. More importantly,
the input images of the model do not require complicated preprocessing. We use the
Inception-ResNet-v1 [18] model for feature extraction in this study. The experimental
results show that the model can extract IKP and FV image features well. In addition, we
introduce the triplet loss function [19] as the loss function to optimize the model. The
function forces the feature representation distance of different sample images of the same
person to be close and that of sample images of different people to be far away. It improves
the expression ability of the fusion feature.

Feature-level fusion is the mainstream method for multimodal fusion when using
deep neural networks to extract image features [20–23]. The feature dimension is large,
and the operability space of fusion is strong. Some previous works only performed a
simple concatenation operation on multimodal features [24,25]. Such fusion method does
not consider the features of different stages in the feature-extraction process, which will
affect the final recognition performance. Multilevel feature fusion can better represent
features. Therefore, we propose to fuse IKP and FV features at different scales and perform
multilevel feature fusion. Given the difference between the two modalities, the method
takes FV as the main task modality and IKP as the auxiliary task modality. In summary,
our contributions are as follows:

• We propose a Dual-Branch-Net network to extract the features of FV and IKP. The fea-
tures of the FV branch at multiple levels of the network are fused with the correspond-
ing features of the IKP branch, achieving deep fusion between the features of the FV
and the IKP.

• We use transfer learning and triplet loss function to optimize the multimodal fea-
ture representation and perform identity recognition by measuring the similarity of
feature vectors.

• We perform a series of experiments to verify that the recognition performance of our
method is superior to both unimodal and other multimodal recognition methods.

2. Related Works

The research related to our work can be mainly divided into two categories: one is
feature extraction of biometrics; the other is feature fusion of multiple modalities.

2.1. Feature Extraction

Existing feature-extraction methods are classified into two groups: non-training-
based [13,26–28] and training-based [22,24,29,30] methods. Most traditional feature-extraction
methods do not require training. For example, Kumar and Zhou [13] used the Gabor filter
to extract the feature maps of FV images on the preprocessed images and then used the
morphological operation to enhance the definition of the feature maps. They also used
the local Radon transformation to extract the features of IKP images. Evangelin and
Fred [26] used the gray-level co-occurrence matrix (GLCM) to extract the second-order
texture features of finger knuckle print (FKP) images. Li et al. [27] proposed a new feature
expression method based on local encoding using the generalized symmetric local graph
structure (GSLG) to express the position and orientation relationship of domain pixels.
Veluchamy and Karlmarx [28] extracted the features of FKP and FV using a repeated line
tracking method. Although these traditional feature-extraction methods do not require
training of feature extractors, the quality of images affects their extraction methods. Thus,
it is necessary to perform complicated preprocessing processes such as region of interest
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extraction, orientation correction, and image enhancement. In addition, the characteristics
of each modality are different, requiring special feature-extraction methods.

Although feature extraction through CNN requires pretraining of the network model,
it has become a popular feature-extraction method in biometrics because of its less complex
image preprocessing procedure and effective feature extraction. For example, Daas et al. [22]
extracted the features of FV and FKP through CNN. Wang et al. [29] first used a five-layer
CNN to extract each modal feature and then used principal component analysis (PCA) to
standardize the features. Ren et al. [30] proposed a multimodal finger recognition network—
namely, FPV-Net—to extract the features of FVs and fingerprints. Kim et al. [24] fine-tuned
VGGNet [31] and ResNet [32] and used these pretrained models for the feature extraction
of FV and finger shape. Regarding these works, this study utilizes a large-scale pretrained
model and triplet loss function to obtain feature representations of multimodal images.

2.2. Multimodal Fusion Method

Multimodal fusion usually includes three levels: pixel level [33], score level [13,20,34,35],
and feature level [22,23,30,36]. For example, Kumar and Zhou [13] proposed a score-
level fusion function called Holistic Fusion, which considers that the matching score of
one modality may be more stable than another. The function results in a similar trend
between the total matching score and the matching score of the more stable modality.
Noh et al. [20] generated composite images of FV texture and composite images of FV
shape to be used as input for the DenseNet [37]. Then, matching was performed using the
obtained output matching score. Finally, they performed score fusion under different rules
such as weighted product, weighted sum, perceptron, and Bayesian. Alay and Heyam [34]
used five convolution layers and two fully connected layers to extract the features of
each modality and then inputted them into their softmax classifier to obtain the similarity
score. They used two score methods, namely, the arithmetic mean rule and the product
rule. Walia et al. [35] achieved optimal score-level fusion by boosting and suppressing
concurrent classifiers and resolving conflict among discordant classifiers.

Feature-level fusion can achieve better recognition results than pixel-level and score-level
fusion because feature-level fusion preserves more original information [38]. Daas et al. [22]
first used the network to extract the features of the FV and FKP images, obtained two 1D
feature vectors, and then concatenated the two feature vectors into a full feature vector.
Wang et al. [36] proposed a two-channel CNN feature fusion framework. The face image
feature and the FV image feature were taken as the input to the self-attention mechanism
to obtain their respective attention weights. The vein and face features were combined
with their respective attention weights and concatenated to form splicing features. Then
the splicing features were convolved to obtain the fused features. Ren et al. [30] used a
weighted average to fuse the features of the two modalities through the attention module.
They also further fused the shallow feature and deep feature of the network. Wen et al. [23]
used a convolutional network to extract the 3D feature tensors of each modality. Next,
feature tensors were concatenated in series according to the dimensions of the channels
into a total 3D feature tensor, which was then sent to the subsequent network layers for
further processing. Compared with these works, we adopt a feature-level fusion strategy
fusing features at a deeper level.

3. Proposed Method

This section first introduces the overall framework of fusion recognition based on FV
and IKP; then, it introduces the designed Dual-Branch-Net and the loss function used in
detail. Finally, it introduces using transfer learning to initialize the network parameters.

3.1. General Framework

Figure 2 shows the framework of the proposed FV and IKP fusion network. The input
of the network is a batch of image pairs (image of the FV and its corresponding IKP).
After the batch goes through architecture and L2 regularization, the feature representation
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of N image pairs is obtained. The triplet loss function is adapted in this study to calculate
the loss and then optimize the network parameters through backpropagation. Finally,
the mapping space corresponding to the network satisfies the following characteristics.
In this space, the feature representation distance of different image pairs belonging to the
same finger is relatively close. By contrast, the feature representation distance of different
image pairs belonging to different fingers is far apart.

Figure 2. FV and IKP fusion network framework.

We use the feature representation outputted by the network for authentication. Specifi-
cally, given image pair A of the subject and image pair B of the target object, if the similarity
(expressed by Euclidean distance) between the feature representation of A and that of B
is greater than the threshold, the subject and the target object are considered to belong to
the same person; otherwise, they belong to different people. In addition, if the similarity
between the test subject and multiple target objects is greater than the threshold, the target
object category corresponding to the maximum similarity is selected as the final category
of the test subject.

3.2. Model

The network architecture in Figure 2 is our proposed fusion model Dual-Branch-Net,
and its specific architecture is shown in Figure 3. Dual-Branch-Net uses two branches
to extract features from IKP images and FV images, respectively. The network adopts a
multilevel deep fusion method to make full use of the two types of modal information. We
detail the structure of the branch network and the feature fusion method below.

Dual-Branch-Net uses the Inception-ResNet-v1 [18] network as the base network for
the two branches. The Inception-ResNet-v1 network includes three types of basic net-
work modules as follows: (a) Stem—preliminary feature extraction for the original image;
(b) Inception-Resnet-A/B/C—for further feature extraction, in which the input features
of this module have the same number and size of dimensions as the output features; and
(c) Reduction-A/B/C—further feature extraction. With this module, the height and width
of the output feature will become smaller than the input feature. Meanwhile, the number of
output channels will increase. Considering the recognition performance and computational
efficiency, we do not directly use the original Inception-ResNet-v1 network structure but
make some adjustments. The details are as follows: the number of Inception-Resnet-A was
reduced from 5 to 3, the number of Inception-Resnet-B was reduced from 10 to 6, and the
number of Inception-Resnet-C was reduced to 3.
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Figure 3. Dual-Branch-Net network structure.

Unlike some works [22,23] mentioned in the introduction, which directly concatenate
the features of the two modalities only once, we fuse the features of the two modalities
at a deeper level. The network layers at different depths have different receptive fields,
and the output features of different network layers represent the features of the original
image at different levels. Thus, we perform feature fusion operations at multiple levels
of the network. Specifically, we splice the output features of both branch after the Stem
modules, the last Inception-Resnet-A module, the last Inception-Resnet-B module, and the
last Inception-Resnet-C module, respectively. The spliced features are used as the input
of the subsequent network layer of the corresponding branch of the FV image, as shown
in Figure 3. We have marked the number of channels, height, and width of the output
of each module in the figure. Suppose we use the number of channels (C), height (H),
and width (W) to represent the shape of a 3D feature; for two features of shape (C, H, W),
we concatenate them into a full feature of shape (C, 2H, W) tensor. Considering that when
only single-modality is used for recognition, the recognition effect of the method based
on the FV is better than that based on the IKP; so, we fuse the feature of the IKP into the
branch corresponding to the FV.

3.3. Loss Function

In the authentication phase, the Euclidean distance between two feature vectors
determines whether the test subject matches the target object. Therefore, the selected loss
function should make the samples of the same category close in the feature space and the
samples of different categories far away in the feature space. The triplet loss function [19]
is a function that can make the optimization direction of the network parameters meet this
characteristic. Therefore, this paper will introduce the main idea of the triplet loss function.

When using the triplet loss function to optimize the network, some triples need to be
constructed for each batch of FV and IKP image pairs (referred to as “samples” hereafter)
and corresponding labels from them first. A triplet consists of an anchor sample, a positive
sample, and a negative sample. Among them, anchor samples can be selected arbitrarily,
samples of the same category as the anchor samples can be regarded as positive samples,
and samples of different categories from the anchor samples can be regarded as negative
samples. For a batch of image pairs, multiple triples can be constructed.
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For each triplet, we first use Dual-Branch-Net to extract features to obtain the corre-
sponding three feature vectors, as shown in Figure 4, and then calculate the loss of the
network on the triplet according to formula (1):

L(A, P, N) = max(‖ f (A)− f (P)‖2 − ‖ f (A)− f (N)‖2 + α, 0) (1)

where A is the anchor sample, P is the positive sample, and N is the negative sample.
f () represents the Dual-Branch-Net network, and f (x) represents the feature vector corre-
sponding to the sample x. α is a fixed distance threshold. Only if the distance between the
negative sample and the anchor sample and the distance between the positive sample and
the anchor sample is not less than α will the loss of the network on the corresponding triplet
be 0; otherwise, the loss will be greater than 0. Then, the model will then optimize the
network parameters to adjust the feature representation of the sample (the arrow roughly
shows the adjustment direction in the Euclidean space in Figure 4).

Figure 4. Training a network using triplet loss function.

3.4. Initialize Network Weights

Since the network contains many trainable parameters, the dataset containing FV
and IKP images is relatively tiny. If the network parameters are randomly initialized, it
is difficult for them to converge to the optimal value. Therefore, we use transfer learning
to load the parameter values of the pretrained model. We initialize the Dual-Branch-Net
with the weights of the Inception-ResNet-v1 network pretrained on the large-scale dataset
CASIA-WebFace [39].

4. Experiments

This section first introduces the experimental environment, dataset, and evaluation
metrics. Next, we introduce the content and results of multiple experiments in detail in
several subsections: (a) In the comparative experiment in Section 4.2, the proposed method
is compared with other multimodal recognition algorithms to verify the effectiveness of the
proposed method. (b) In the ablation experiment in Section 4.3, we compare the proposed
fusion method with other fusion methods and compare the recognition performance of
the multimodal and unimodal methods. Through these experiments, we explore whether
the proposed fusion method is appropriate and whether it is necessary to use multimodal



Appl. Sci. 2022, 12, 11182 7 of 13

information for recognition. (c) In Section 4.4, by comparing different initialization methods
of parameters, we explore whether it is necessary to use the parameter values of the
pretrained model to initialize the proposed model.

4.1. Experimental Setting

The memory of the experiment environment in this study is 32 GB, the CPU is an Intel
Core i9-9940X, the GPU is an Nvidia GeForce RTX 2080 Ti, the programming language is
Python, and the deep learning framework is TensorFlow.

During training, network parameters are optimized with stochastic gradient descent
(SGD) using an adaptive gradient algorithm (AdaGrad). We set the learning rate to 0.01
and the training number to 500 epochs. We set the batch size to 30 due to GPU memory
constraints and the margin value α in the triplet loss value to 0.2.

4.1.1. Dataset

Our experiments use the Hong Kong Polytechnic University public finger image
dataset (version 1) [13], referred to as PolyU-DB. Kumar and Zhou [13] divided the collec-
tion process of this dataset into two sessions: the data collected in the first stage consist
of 6 images of the index finger and middle finger of one hand of 156 people, a total of
1872 images; in the second session, for 105 of the 156 people in the stage, 6 images each of
the index and middle fingers of the same hand were collected again, for a total of 1260 im-
ages. The final dataset contains 3132 FV and IKP each, belonging to 312 categories. Figure 5
shows some of the images in the PolyU-DB dataset.

(a)

(b)

Figure 5. Sample images of PolyU-DB. (a) FV images and their corresponding (b) IKP images.

During the experiment, we divide 312 categories of the PolyU-DB dataset into training
and test sets. Among them, the training set contained 210 categories (2520 FV and IKP
image pairs), while the test set contained the remaining 102 categories (612 image pairs),
as shown in Table 1. To alleviate the problem that the model may not converge due to the
small training set, we adopt image augmentation techniques such as translation clipping
and conversion on the training set images. Thus, the data volume of the final training set is
five times that of the original training set (12,600 image pairs).

Table 1. Dataset division and description.

Dataset Subject
Numbers

Finger
Numbers

Image Numbers
of each Finger

Total Image
Number

Training Set 105 2 12 2520
Test Set 51 2 6 612

4.1.2. Evaluation Metrics

The experiments use the receiver operating characteristic (ROC) [40] curve and the
equal error rate (EER) to evaluate the performance of the fusion recognition system of FV
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and IKP. We draw the ROC curve according to the value of the false positive rate (FPR) and
the value of the true positive rate (TPR) based on different thresholds, which can reflect
the balance between the false reject rate (FRR) and the false accept rate (FAR). When the
value of FRR is equal to that of FAR in the ROC curve graph, the value of EER is that of
FAR. The smaller the value of EER, the fewer instances of matching and recognition errors,
and the higher the recognition accuracy.

4.2. Comparative Experiments

To verify the effectiveness of the proposed method, we compare multiple methods, as
shown in Table 2. We divide the methods in the table into the following four categories:

(a) Non-training-based unimodal methods: Including the wide line detector method [15],
mean curvature method [16], and repeated line tracking method [17]. These three
algorithms were common methods in FV recognition before deep neural networks
became the mainstream method for feature extraction.

(b) Non-training-based multimodal methods: Holistic [13] and nonlinear [13] are two
methods using score-level fusion.

(c) Training-based unimodal methods: Light CNN [41], ResNet-50 [32], and SqueezeNet [42]
are all general networks based on CNN. Wimmer et al. [43] used them to realize FV
recognition by combining triplet loss.

(d) Training-based multimodal methods: VGGNet-16 [31], Resnet-50, Resnet-101 [32],
ResNet50-Softmax-Add [22], and AsymmetricNet [23]. The former three are also
general convolutional networks. Kim et al. [24] combined them with score fusion
methods to complete identity recognition. The latter two, like our method, are based
on feature-level fusion. We reproduced them for multimodal recognition based on
IKP and FV.

Table 2. Results of comparative experiments. Non-training-based represents traditional methods
without training, and training-based represents methods based on CNNs. The unimodal methods use
only FV, while the multimodal methods use FV and IKP (methods with * use FV and hand shape).

Non-Training-Based Method EER/% Training-Based Method EER/%

Unimodal
Wide line detector [44] 9.46 SqueezeNet [43] 3.7

Mean curvature [44] 6.49 Light CNN [43] 10
Repeated line tracking [44] 4.45 ResNet-50 [43] 5.6

Multimodal

Holistic [13] 2.72 VGGNet-16 * [24] 2.4433
Nonlinear [13] 2.45 ResNet-50 * [24] 1.0235

ResNet-101 * [24] 0.7859
AsymmetricNet [23] 3.393

ResNet50-Softmax-Add [22] 1.109
Dual-Branch-Net (ours) 0.422

We found several phenomena from Table 2. First, the EERs of all multimodal methods
are lower than those of the unimodal methods. The main reason behind this phenomenon
is that multimodal recognition methods can use more biological information to distinguish
individuals from more perspectives. Second, among multimodal recognition methods,
most training-based methods can achieve better recognition results than non-training-based
methods. This verifies the effectiveness of CNN in this field. Third, our proposed method
achieves the lowest EER. Although AsymmetricNet and ResNet50-Softmax-Add both use
feature-level fusion methods, their effects are not as good as our proposed Dual-Branch-
Net. This is probably because the fusion methods they designed only fuse deep features of
multiple modalities. In contrast, Dual-Branch-Net fuses multilevel multimodal features,
making the fusion more thorough.
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4.3. Ablation Experiments

To verify that the proposed network model can effectively extract the fusion features of
FV and IKP, we perform ablation experiments based on different modalities and different
fusion methods.

First, to verify the effectiveness of the proposed fusion method, we compare the pro-
posed fusion method with another simple splicing fusion method. Specifically, the features
of the two modalities are only fused once at the output end of the last fully connected
Inception-Resnet-v1 by concatenation operation. We concatenate the 512-dimensional out-
put features of FV and the 512-dimensional output features of IKP to form 1024-dimensional
features. We denote a Dual-Branch-Net with only stage 4 connections as Dual-Branch-Net
(only stage 4 fusion). We present the ROC curve of the experiment in Figure 6 and the
precise EER value in Table 3. The ROC curve of the Dual-Branch-Net (only stage 4 fusion)
method shifts to the lower right compared with that of the Dual-Branch-Net. This indicates
that the recognition performance of the simple-fusion method is worse than that of the
proposed fusion method. The EER value based on the Dual-Branch-Net (only stage 4
fusion) in Table 3 indicates that the corresponding EER values vary by 0.377%. There is one
possible cause for the deterioration of the performance of Dual-Branch-Net (only stage 4
fusion). The feature fusion depth of the multimodal collaborative network output is not
enough, as it does not consider the multilevel information fusion of the network. However,
Dual-Branch-Net fuses features at different levels. Thus, there is less information loss and
more thorough fusion.

Figure 6. ROC curves of ablation experiment results.

Table 3. Results of ablation experiments.

Method EER/%

Inception-ResNet-v1 (IKP) 2.373
Inception-ResNet-v1 (FV) 2.222

Dual-Branch-Net (only stage 4 fusion) 0.799
Dual-Branch-Net 0.422

Second, we compare our multimodal recognition method with a unimodal recognition
method based on IKP or FV to study the necessity of recognition based on multimodal
features. In the unimodal experiment, we first use Inception-ResNet-v1 to extract the
features of the unimodal image and perform L2 regularization on output features. We
then combine the triplet loss function to optimize the network. After that, the trained
network model is used to extract the feature of the image pairs. Finally, according to
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the similarity between the feature vector of the test image and the target image, we can
determine whether the experimenter corresponding to the test image is a real matcher
or an impostor. From the experimental results in Figure 6 and Table 3, we find that the
performance of multimodal recognition of FV and IKP is significantly better than that of
the unimodal recognition of FV or IKP. Therefore, the result confirms the feasibility of the
proposed multimodal recognition system.

In addition, from the experimental results in Figure 6, the performance of FV recog-
nition is better than that of IKP recognition. Therefore, we use FV as the primary task
modality of Dual-Branch-Net, and IKP as the auxiliary task modality.

4.4. Discussion of Pretraining

We conduct experiments with and without pretraining parameters loaded to explore
the necessity to initialize the Dual-Branch-Net model. We present the ROC curves of
the experiments in Figure 7 and the EER values in Table 4. The methods with the “with
pretraining” suffix in Figure 7 represent using the pretrained network weights to initialize
the weights. The pretrained network weights are generated by Inception-Resnet training
on the large-scale dataset CASIA-WebFace. Meanwhile, the methods with the “without
pretraining” suffix randomly initialize the network weights.

Figure 7. ROC curves of different recognition schemes with and without pretraining.

Table 4. Results of experiments with and without pretraining.

Method
EER/%

Without Pretraining With Pretraining

Inception-ResNet-v1 (IKP) 6.634 2.373
Inception-ResNet-v1 (FV) 5.764 2.222

Dual-Branch-Net 3.750 0.422

Compared with the method of loading pretrained weights, the recognition perfor-
mance of randomly initializing the network parameters dropped significantly. Numerically,
the variation of the EER value is more than 3%. The recognition performance of randomly
initializing the network parameters is not even as good as some traditional methods men-
tioned in Table 2. The main reason for this phenomenon is the large number of model
parameters. Specifically, the combined space of model parameter values is large, and the
training data used are less, being insufficient to make the model weights converge to the
optimal value. Therefore, when using a large-scale network model in the multimodal
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recognition of FV and IKP, it is necessary to use transfer learning to load the weights of the
pretrained model.

5. Conclusions

We proposed a network named Dual-Branch-Net, which can perform identity recogni-
tion based on dual modalities of IKP and FV. Unlike previous work that fuses multimodal
features using simple splicing, our method combined two features at multiple levels. More-
over, we used both transfer learning and triplet loss to optimize the feature representation
of the model. The experimental results on the public dataset PolyU-DB showed that the
proposed method can reduce the EER of the recognition result to 0.422%. In the future, we
will try to use some model distillation methods to reduce the computational complexity of
the proposed method so that low-cost embedded devices can also run the method.
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