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Abstract: The complex network nature of human brains has led an increasing number of researchers to
adopt a complex network to assess the cognitive load. The method of constructing complex networks
has a direct impact on assessment results. During the process of using the cross-permutation entropy
(CPE) method to construct complex networks for cognitive load assessment, it is found that the
CPE method has the shortcomings of ignoring the transition relationship between symbols and the
analysis results are vulnerable to parameter settings. In order to address this issue, a new method
based on the CPE principle is proposed by combining the advantages of the transition networks
and the bubble entropy. From an interaction perspective, this method suggested that the node-wise
out-link transition entropy of the cross-transition network between two time series is used as the
edge weight to build a complex network. The proposed method was tested on the unidirectional
coupled Henon model and the results demonstrated its suitability for the analysis of short time series
by decreasing the influence of the embedding dimension and improving the reliability under the
weak coupling conditions. The proposed method was further tested on the publicly available EEG
dataset and showed significant superiority compared with the conventional CPE method.

Keywords: cognitive load; coupling; bubble entropy; transition network

1. Introduction

Different levels of cognitive demand can accommodate the complexity and variability
of the everyday tasks and the environments, and can result in different cognitive loads [1–3].
Continuous high cognitive load will not only lead to inefficient work but also accidents
that might lead to life-threatening consequences. In addition, it also has negative effects
on physical and mental health, such as insomnia, decreased immunity, susceptibility to
infection, and migraines [4–8]. As a practical necessity, the evaluation of cognitive load or
mental load has become a hot topic of research. Therefore, it is of practical significance to
design and build a system capable of detecting cognitive load. The use of such a system will
not only make it possible to assess the impact of different tasks on the cognitive load, but
more importantly, a timely and accurate estimate of cognitive load will help to determine
the optimum level of mental load, in order to prevent accidents and make workers more
compatible with the work environment. Conventionally, the measurement of cognitive
load can be divided into subjective and objective measures [9]. Subjective measures are
collected via interviews or questionnaires. They are usually unreliable due to the subjective
opinions of the participants [10–12]. In contrast, objective measures that are mainly based
on task performances or derived from physiological recordings are less intrusive to the
task and independent of the participants’ opinion. With the development of technology,
neurophysiological activities from brain, heart, and eye movement can be recorded and
analyzed to reflect the mental state objectively in a noninvasive way [13]. Previous studies
have confirmed that signals such as near-infrared spectroscopy (NIRS), functional magnetic
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resonance imaging (fMRI), electrocorticography (ECoG), or electroencephalography (EEG)
are closely correlated with brain status and can provide a useful way to assess cognitive
load [14–18]. Among these physiological signals, EEG has been widely concerned by
researchers because of its high time resolution, noninvasiveness, convenience, security,
cheapness, and portability [19,20].

In general, the EEG signal is nonstationary and nonlinear. Linear analysis techniques
in the time–frequency domain can be used to detect rhythmic oscillations, but the contained
nonlinear information cannot be effectively extracted [21]. Therefore, many scholars have
attempted to extract various nonlinear parameters from EEG signals and combine them with
the machine learning technique in order to effectively capture the subtle information related
to the physiological states. Nilima Salankar et al. used the empirical mode decomposition
(EMD) and the variational mode decomposition (VMD) to decompose the EEG signals,
respectively, and then used the second-order difference plots for feature mining of the
decomposed intrinsic modes. The results showed that alcoholic (A) and nonalcoholic (NA)
subjects could be accurately classified when using short-duration EEG recordings [22].
Mohammad Shahbakhti et al. proposed extracting Katz and Higuchi’s fractal dimensions,
dispersion entropy, and bubble entropy from the sub-band of a single-channel frontal
EEG recording to construct the nonlinear feature set and then differentiate between the
arousal and the sleep stage I [23]. Jose Kunnel Paul et al. used seven nonlinear parameters,
including the sample entropy (SampEn), fractal dimension (FD), higher-order spectrum
(HOS), maximum Lyapunov index (LLE), Kolmogorov complexity (KC), Hurst index (HE),
and the band power of the EEG signal in sleep stage 2 and 3 as the features to classify
between patients with fibromyalgia and healthy controls. The accuracy, sensitivity, and
specificity of the classification results were 96.15%, 96.88%, and 95.65%, respectively [24].
The nonlinear parameters in the above-mentioned methods were taken from individual
EEG channels and involve no information on the interaction between different channels.
However, previous research has shown that the brain should be treated as a complex
network system based on the many features it shares with networks of other biological
and physical systems [25]. Complex network analysis is a powerful technique based on
the graph theory that typically uses a small number of valid and reliable measures to
capture the features of the brain network [26]. There is a growing interest in the cognitive
load assessment through the construction of complex networks, and various methods
have been proposed to convert time series into networks [27–30]. Complex networks
constructed using different network construction algorithms may have distinct, significantly
different properties [31]. A variety of methods have been proposed so far to define the
concept of connectivity between nonlinearly coupling components and investigate the
characteristics of the topological properties of networks. Among different methods, for
example, the mutual information (MI) (including its time-delayed version) [32,33], transfer
entropy (TE) [34], inner composition alignment (IOTA) [35] and cross-sample entropy
(CSE) [36], the TE is widely used in particular as a nonparametric measure that does
not rely on any assumption of some model and can capture the directional and dynamic
interaction between the different components of a time series [37,38]. However, in practice,
an unavoidable pitfall of TE is that robust estimation of the interactions requires long-term
data recordings. In order to meet the need for interaction estimation using finite data
samples, Shi et al. proposed the CPE by fusing inner composition alignment (IOTA) and
permutation entropy, and validated it in financial time series analysis [39], noting that CPE
was simple, stable, and efficient.

In the original CPE method, only the probability distribution of the symbols after
coarse graining of the affected time series is considered during the calculation of entropy,
ignoring the transition relationship between the symbols in the temporal domain. For
example, given the symbolized set A = [2 2 4 3 5 1 2] and B = [1 2 2 5 3 2 4 ], the probability
distributions of the elements in set A and set B are the same and, therefore, the original CPE
method would obtain the same entropy value. In addition, like other nonlinear measures,
the CPE method involves the manual selection of parameters to ensure the effectiveness of
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the results. In order to address these issues, a new method to construct the complex network
based on the cross-transition network was proposed in this study to assess cognitive load.
The novelty of the method lies in incorporating the advantages of transition network and
bubble entropy [40] into the CPE to estimate the coupling strength of two time series
from a cross-network perspective. The node-wise out-link transition entropy of two time
series cross-transition networks was proposed as the edge weights between two time
series to construct the complex network, and the network parameters were extracted as a
quantitative measurement of the cognitive load. Referring to the symbolization process of
the bubble entropy, the number of swaps required to sort the phase space reconstruction
vectors of the affected time series in the ascending order was used instead of the number
of intersections calculated by the OITA method in the original CPE. In order to verify
the effectiveness of the proposed method, the unidirectional coupled Honen model with
different coupling strengths was used, and the results were compared with those obtained
using the original CPE. The proposed method and the original CPE method were further
compared by constructing the complex network on the realistic EEG recordings from the
mental arithmetic task. The significance of the selected network indicator and the capability
of the proposed method to differentiate different levels of brain cognitive load were verified
using the nonparametric permutation test.

The contributions of this paper are as follows.
1. Based on the cross-transition network, a novel method is proposed that reflects the

information interaction between two time series in more detail.
2. The symbolization process with reference to the bubble entropy minimizes the effect

of parameter setting on the analysis results.
3. The topological characteristics of complex networks constructed using the node-

wise out-link transition entropy of cross-transition networks as the edge weights have the
potential to provide useful indicators for physiological complex networks.

This paper is organized as follows. In Section 2, the implementation process of
the proposed method in this study is described in detail. In Section 3, the CPE and the
proposed method are used to analyze the unidirectional coupled Honen model with its
parameters varied, respectively, and their performance is compared. Next, a realistic
EEG dataset recorded during the mental arithmetic task is analyzed by constructing the
complex networks using the two methods, respectively, in order to further demonstrate
the effectiveness of the proposed method. The discussion and conclusions are given in
Sections 4 and 5.

2. Materials and Methods

In this section, the CPE method is briefly introduced, and then the detailed implemen-
tation process of the proposed method is described.

2.1. CPE

Based on the permutation entropy and IOTA, Shi et al. proposed the CPE to analyze
the information interactions between financial time series [39]. The implementation process
is as follows:

1. For two time series with the same length {x(t)} and {y(t)}, t = [1, 2, . . . , N], their state
vectors Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],
t ∈ [1, 2, . . . N − (d − 1)τ], are obtained through the phase space reconstruction
procedure using the delay parameter τ and the embedding dimension d.

2. Performing nondecreasing sort on state vector Xt, and obtaining its position index
πX . Rearranging the state vector Yt with the position index πX as the standard, and
the result is recorded as Gt = Yt(πx).

3. Based on the principle of IOTA, the monotonicity is quantified by counting the number
of intersection points of the horizontal lines which are drawn from each data point of
Gt and Gt itself. The intersections number of the kth state vector is calculated using
the following equation:
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kt =
d−2

∑
i=1

d−1

∑
j=i+1

Θ[(Gt(j + 1)− Gt(i))(Gt(i)− Gt(j))] (1)

where Θ[x] is the Heaviside function:

Θ[x] =
{

1, x > 0
0, x ≤ 0

(2)

4. According to this method, all state vectors of the time series are traversed, and the
number of the intersections of each state vector can be expressed as a unique integer
z, z ∈ [0, R], R = (d− 1)(d− 2)/2 is the maximum possible number of intersections.
For all the R + 1 possible values for the integer zi, i = 0, 1, . . . , R of intersection points
kt in each state vectors, its probability can be obtained by

p(zi) =
#{kt|kt = zi}
N − (d− 1)τ

(3)

where 1 ≤ t ≤ N − (d− 1)τ, 0 ≤ i ≤ R, # is the number of elements in the set. Then, after
obtaining the probability distribution set P = {p(zi), i = 1, . . . , R}, CPE is defined as:

Hx→y(d, τ) = −
R

∑
i=0

p(zi) log2 p(zi) (4)

According to the above definition, the greater the coupling strength between the two
time series, the smaller the CPE. For two random time series, the entropy value reaches the
theoretical maximum log2(R + 1).

2.2. Cross-Bubble Transition Network (CBTN)

In the original CPE, the process of counting the intersection number of each state
vector is essentially a symbolization of it. In the calculation of entropy, only the probability
distribution of symbols is considered and the transition behavior between adjacent symbols
is ignored. Therefore, the transition network is introduced, in which each symbol is
taken as a node and a directional weighted complex network is constructed based on
the temporal adjacency of the symbols, with the network weights being the number of
transitions between nodes. In addition, to limit the impact of parameter selection on
the analysis results, the symbolization process of the bubble entropy was referenced by
replacing the intersection number corresponding to each state vector with the number of
swaps necessary to sort the state vector in ascending order. The specific implementation
process of the cross-bubble transition entropy (Algorithm 1) is as follows:

1. For two equal length time series {x(t)} and {y(t)}, t = [1, 2, . . . , N], their state
vectors Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],
t ∈ [1, 2, . . . , N − (d − 1)τ], are obtained through the phase space reconstruction
procedure using the delay parameter τ and the embedding dimension d. Here,
following the parameter choice of bubble entropy, τ = 1;

2. Performing ascending sort on the state vector Xt, and obtaining its position index πXt .
The state vector Yt was rearranged using the position index πXt as a criterion and the
result was recorded as Gt = Yt(πXt), t ∈ [1, 2, . . . , N − d + 1];

3. Sorting the elements in each state vector Gt = Yt(πXt), t ∈ [1, 2, . . . , N− d+ 1] in ascend-
ing order, and calculating the necessary number of swaps Si, Si ∈ [0, 1, . . . , d(d− 1)/2];
this is because the number of possible swaps in bubble sort for a d dimensional state
vector is from 0 to d(d− 1)/2;

4. Using Si, Si ∈ [0, 1, . . . , d(d− 1)/2] as network nodes, a directional weighted complex
network W was constructed according to the temporal adjacency relationship of Si
and the weight of the network W was the numbers of transition between nodes;
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5. In order to reflect the connection relationship between nodes as much as possible,
the node-wise out-link transition entropy (NOTE) of the adjacency matrix W was
proposed to be used as an indicator parameter. The NOTE was obtained as follows.

The Shannon entropy of each row of the adjacency matrix W was calculated to obtain
the local node out-link entropy SWi , which was used to measure the probability distribution
of the output strengths of each node.

SWi = −
D

∑
j=0;j 6=i

wij log 2(wij) (5)

where D = d(d− 1)/2, wij was the ratio of the output strength from node i to node j to all

the output strengths of node i,
D
∑

j=0
wij = 1, and the normalized SWi was

HWi = SWi /Si,max (6)

where Si,max = log 2(D + 1) was the normalization factor and kept the same for all nodes.
The node-wise out-link transition entropy of the adjacency matrix W was

HNOTE =
D

∑
i=0

pi HWi (7)

where pi was the probability distribution of each node.
The pseudo-code of the proposed algorithm is illustrated as follows.

Algorithm 1. Cross-bubble transition entropy

CBTN (x(t), y(t), d, τ) // x(t), y(t) are time series. d is embedding dimensions.
τ is delay time.

1 performing phase space reconstruction on x(t), y(t) to get
Xt = [xt, xt+τ , xt+2τ , . . . , xt+(d−1)τ ] and Yt = [yt, yt+τ , yt+2τ , . . . , yt+(d−1)τ ],

t ∈ [1, 2, . . . , N − (d− 1)τ]
2 for t = 1 to N − (d− 1)τ
3 performing ascending sort on Xt to get its position index πXt ,
4 Yt is rearranged according to πXt to get Gt = Yt(πXt ),
5 sorting Gt in ascending order by bubble method and get swaps number Si,
Si ∈ [0, 1, . . . , d(d− 1)/2]. //d(d− 1)/2 is the maximum swaps number
6 Using Si as network nodes, by temporal adjacency relationship of Si to construct a directed

weighted complex network W.
7 for i = 0 to D // D = d(d− 1)/2

8 SWi = −
D
∑

j=0;j 6=i
wij log 2(wij), //

D
∑

j=0
wij = 1

9 normalizing SWi to get HWi = SWi /Si,max, // Si,max = log 2(D + 1)
10 HNOTE = 0.
11 for i = 0 to D // D = d(d− 1)/2
12 HNOTE = HNOTE + pi HWi . // pi is the probability distribution of Si.
13 return HNOTE.

To demonstrate the performance of the NOTE to track the deterministic dynamical
variation in time series, the values with the NOTE and the original CPE were obtained
separately for the symbolized sets A = [2 2 4 3 5 1 2] and B = [1 2 2 5 3 2 4 ]. The probability
distributions of the elements in the sets A and B were the same. The probability of individual
elements sorted in an ascending order were [0.143, 0.428, 0.143, 0.143, 0.143]. The original
CPE method would yield an entropy value of 2.128 for both sets. The directional weighted
adjacency matrices constructed for the elements in sets A and B according to their temporal
adjacency relationship are shown in Figure 1a,b, respectively. The two adjacency matrices



Appl. Sci. 2022, 12, 11165 6 of 15

exhibited distinct differences. The NOTE value of these two adjacency matrices was
0.1846 and 0.2925, respectively, which shows the different dynamical variations contained
in the sets A and B.
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3. Analysis and Results

In this section, in order to verify whether the CBTN can characterize the information
interaction between two time series, it was first tested on the unidirectional coupled Honen
model and its performance was compared with the original CPE method. Next, the complex
network constructed by the CBTN was applied to the realistic EEG recordings during either
the resting state or the mental arithmetic task in order to evaluate the performance of the
proposed method in detecting the changes in the cognitive load.

3.1. Analysis of Coupled Dynamic Model

The validity of the proposed method was first tested on signals generated using two
Henon map unidirectional coupled subsystems with one as the driver subsystem 1 and the
other as the responder subsystem 2. The equations of the system are expressed as follows:

x1t+1 = 1.4− x12
t + 0.3× y1t

y1t+1 = x1t
x2t+1 = 1.4− (C× x1t + (1− C)× x2t)× x2t + 0.3× y2t
y2t+1 = x2t

(8)

The parameter C is a coupling parameter varying from 0 to 1. When C is 0, the two
subsystems are entirely independent and there is no definite dynamical behavior between
them. When C is 1, the two subsystems are completely synchronized and there is a definite
dynamical relationship between them. The values of x11, y11, x21 and y21 are initialized
randomly in the range from 0 to 1. Then, 50,000 points are calculated according to (8) and
the first 20,000 are discarded as the transients.

From the definition of CBTN, we can see that the unique parameter relevant to the
CBTN is the embedding dimension d. The parameter d defines the embedding spatial
dimension of a given time series. Another noteworthy issue is the appropriate signal length
in order to obtain reliable results. One fact is that the signal length is limited, and the other
is that the calculation process can only be performed in one window. The values of these
two parameters determine whether the results of the analysis can be described or not and
whether it is possible to extract the deep relationships hidden between the two time series.
Here, the determination process of these two parameters is explained by analyzing the
unidirectional coupled Honen model with the deterministic coupling relationship. It was
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selected because the theoretical value of each expected return can be calculated. Based
on this theoretical value, it can be evaluated whether the result obtained with a specific
parameter setting can converge reliably and stably to the expected value or not. In addition,
in order to highlight the impact of the CBTN on the analysis result, the CPE results for
the same objects were used as a comparison. When the CPE was used, the embedded
dimension was 5 and the delay time was 2.

The appropriate signal length was determined by investigating the effect of the width
of the analysis window on the results. For the time series x1 and x2 obtained using the
unidirectional coupled Henon model under a certain coupling strength, the surrogate
data x2Surrogate were first calculated by surrogating x2 using iAAFT (iterative amplitude-
adjusted Fourier transform with five iterations) to mimic the random coupling state. Next,
the sliding time window with a fixed moving step of 500 samples was chosen to segment
the paired time series x1 and x2 and x1 and x2Surrogate. The purpose of using the sliding
time window is to enhance the effect of data analysis. The width of the sliding window
width was increased from 200 to 5000 samples with a step of 200 samples. With each
window width, the coupling strength between x1 and x2Surrogate and between x1 and x2
was calculated using the CBTN for individual sliding windows, obtaining the Hx1−x2Surrogate

NOTE

and Hx1−x2
NOTE , respectively. The differences Hx1−x2Surrogate

NOTE − Hx1−x2
NOTE were first calculated for

individual windows and then averaged across windows as the measured difference. The
same procedure was repeated for 30 times with each window width and then averaged
across repetitions to obtain the average and standard deviation of the measured difference.
The coupling strength between x1 and x2 was set to 0.1, 0.3, and 0.5, respectively, and
the results are shown in Figure 2. Figure 2a shows the results of the CBTN method and
Figure 2b shows the results of the CPE method. It can be found that the two methods can
make a good distinction between different coupling strengths. The CPE method can reach
a stable state when the window width is less than 1000 samples, and the CBTN method can
reach a stable state when the window width is more than 2000 samples. It was speculated
that the CPE was appropriate for the analysis of short time series when it was proposed.
Therefore, the appropriate window width for the CBTN is 2000 samples. It should be noted
that the differences Hx1−x2Surrogate

CPE − Hx1−x2
CPE had a negative value with the CPE method

when the coupling strength was 0.1. This is inconsistent with the theory and indicates that
the CPE was not capable of differentiating the weak coupling state.

With the determined window width of 2000 samples, the impact of the embedding
dimension d on the estimation of the coupling strength was further investigated using the
same method as above. The dimension d varied from 3 to 15 with a step of 1. Figure 3
compares the results between the CBTN method and the CPE method. It can be seen that the
results of CBTN method tended to be stable with the increase in the embedding dimension d.
When the embedding dimension was greater than 10, the measured difference under three
coupling strength levels basically reached a stable state. In contrast, the measured difference
using the CPE method was greatly affected by the embedded dimension. Within the varying
range of the embedded dimension, the measured difference under three coupling strength
levels could reach a stable state. When the embedding dimension was greater than 11, the
measured difference under the stronger coupling strength (C = 0.3) was even smaller than
that under the weaker coupling strength (C = 0.1 and C = 0.2). These results demonstrated
that the CBTN method can be less affected by the embedding dimension d compared with
the CPE method. More specifically, the embedding dimension would have little influence
when it is greater than a certain value. Accordingly, for the unidirectional coupled Henon
model, the recommended embedding dimension d for the CBTN method was set to 10.
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Figure 2. The results of the unidirectional coupled Henon model using CBTN and CPE for coupling
analysis, respectively, at different coupling strengths C = 0.1, 0.3, 0.5 and when the sliding time
window width is varied in steps of 200 samples within [200, 5000]. The values of the ordinate are
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2 can be obtained by surrogating x2 using the iAAFT method. (a) The

results of coupling analysis using CBTN (30 repeated calculations); (b) The results of coupling analysis
using CPE, d = 5, τ = 2 (30 repeated calculations).
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Figure 3. At different coupling strengths C = 0.1, 0.3, 0.5, the sliding time window width is fixed at
2000 samples, and the embedding dimension d is taken from 3 to 15; the results of unidirectional
coupled Henon model using CBTN and CPE for coupling analysis, respectively. The values of
ordinate are Hx1−xsurrogate

2 − Hx1−x2 . xsurrogate
2 can be obtained by surrogating x2 using the iAAFT

method. (a) The results of coupling analysis using CBTN (30 repeated calculations); (b) The results of
coupling analysis using CPE, τ = 2 (30 repeated calculations).

After the embedding dimension and the sliding window width were determined,
the CBTN was used to analyze the unidirectional coupled Honen model under different
coupling strengths C. Specifically, the coupling strength C increased from 0 to 0.9 with
a step of 0.05. For a given coupling strength, the data of x1, x2 and x2Surrogate within
individual sliding windows were analyzed using the CBTN and CPE methods, respectively,
to obtain the Hx1−x2

NOTE , Hx1−x2
CPE , Hx1−x2Surrogate

NOTE and Hx1−x2Surrogate

CPE . The procedure was also
repeated 30 times under each coupling strength, and the mean value and the standard
deviation across 30 repetitions were calculated. Figure 4 illustrates the average value
of Hx1−x2

NOTE , Hx1−x2
CPE , Hx1−x2Surrogate

NOTE and Hx1−x2Surrogate

CPE across all repetitions under different
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coupling strength levels. In the figure, the dashed boxes indicated by the arrows are partial
zooms of the analysis results. As can be seen from Figure 4, the greatest difference between
the analytical results of CBTN and CPE was mainly in the part where the coupling strength
was less than 0.2. In this part, the CBTN method gives correct analysis results, while
the CPE calculation results are greater than the values under the random coupling state,
which is inconsistent with the theory. The possible reason is the CPE method that is based
on the probability distribution statistics of symbols cannot distinguish the interactions
between time series under weak coupling conditions. In contrast, the proposed CBTN
method has good detection capability of interactions between time series with a weak
coupling strength.
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Figure 4. Coupling analysis results for the CBTN-based unidirectional coupled Henon model when
the sliding time window is fixed at 2000 samples and the coupling strength C is varied in steps
of 0.05 in the range [0, 0.9]. The values of the ordinate are HNOTE. The blue curve is the NOTE
between x1 and x2 and the red curve is the NOTE between x1 and xsurrogate

2 . xsurrogate
2 can be obtained

by surrogating x2 using the iAAFT method (all values in the graph are the result of 30 repeated
calculations). (a) The results of coupling analysis using CBTN. (b) The results of coupling analysis
using CPE, d = 5, τ = 2.

3.2. Analysis of Realistic EEG in Mental Arithmetic Tasks

In order to demonstrate the performance of the proposed CBTN method on realistic ex-
perimental data, the EEG signals of mental arithmetic tasks-dataset were used to distinguish
the difference between the resting and the arithmetic states of the brain [41]. The dataset can
be downloaded freely from the website: https://physionet.org/content/eegmat/1.0.0/,
accessed on 23 January 2022. Electrodes were placed according to the international
10/20 scheme and the equipment used was the Neurocom monopolar EEG 23-channel sys-
tem (Ukraine, XAI-MEDICA). The placement of the silver/silver chloride electrodes on the
scalp was prefrontal (Fp1 and Fp2), frontal (F3, F4, Fz, F7, and F8), central (C3, C4, and Cz),
parietal (P3, P4, and Pz), occipital (O1 and O2), and temporal (T3, T4, T5, and T6), all refer-
enced to an interconnected ear reference electrode. The impedance between the electrodes
and the scalp was less than 5 kΩ, and the sampling rate for each channel was 500 Hz. The
acquired EEG signals were filtered using a high-pass filter with a cut-off frequency of 0.5 Hz,
a low-pass filter with a cut-off frequency of 45 Hz, and a power line notch filter (50 Hz). The
EEG data from 36 subjects (9 males and 27 females, aged 16–26 years) met the requirements
for analysis, after a visual inspection of the filtered signals by neuroelectrophysiologists to
remove data with poor signal quality. Subject 31 was not included because the length of
the recordings was different from that of other subjects. The experiments involved mental
arithmetic tasks and each experiment trial was divided into three phases: an adaptation

https://physionet.org/content/eegmat/1.0.0/
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period, a resting state and an arithmetic state. First, the subjects were acclimatized to the
experimental conditions for 3 min. Afterwards, the subjects relaxed for 3 min with their
eyes closed in the resting state. Finally, the subjects were asked to perform a succession of
subtractions in 4 min, each consisting of a four-digit (subtracted number) and two-digit
(subtracted number) succession. The two digits were given to the subject verbally and
the arithmetic task was not allowed to be performed verbally, but finger movements were
allowed. In order to minimize the effect of emotional fluctuations caused by the increased
cognitive load of the subjects during intensive cognitive activity on the results of the EEG
analysis, the last minute of the resting state and the first minute of the arithmetic state were
selected for analysis. Neuroimaging studies showed that the prefrontal and frontal regions
were significantly activated during the performance of arithmetic or cognitive tasks [42,43].
Therefore, EEG data collected from seven channels (FP1, FP2, F3, Fz, F4, F7, and F8) in
the prefrontal and frontal lobes were used in this study, and the NOTE between any two
channels was calculated using the CBTN method to construct an undirected weighted
network with the NOTE as the edge weight. Network parameters were extracted from
the constructed complex network as a quantitative evaluation indicator of cognitive load.
Since the NOTE value is inversely correlated with the coupling strength, in the subsequent
analysis, the NOTE values were reversely processed (1 minus the value of NOTE), so that
they would adhere to our intuition.

EEG signals were first detrended using the singular value decomposition (SVD)
method. Then, the detrended EEG signal was filtered using the harmonic wavelets in
the frequency range of 1 to 42 Hz. The obtained resting and arithmetic state EEG signals
from seven channels were segmented using a sliding time window with a width of 2000
samples and a moving step of 500 samples. Within each window, the NOTE was estimated
between any two of the seven EEG channels using the CBTN method. With the NOTE
value as the edge weight, the complex network was constructed and the average cluster-
ing coefficient and the global network efficiency of the complex network were calculated.
Following the same procedure, all sliding windows were analyzed in turn to obtain the
average aggregation coefficient sequence and the global network efficiency sequence of
the subject in a state. Since the distribution of the obtained sequences were unknown,
the nonparametric permutation test (1000 repeated arrangement sampling) was used to
assess the significance between the same sequences in the two states of the subject. The
significance level p was set to 0.05. As a comparison, the same operation was performed
on this subject using the CPE method with an embedding dimension of 5 and a delay
time of 8. The results of the significance analysis between the feature sequences for all the
35 subjects under the two method treatments are shown in Table 1. The values bolded in
black in Table 1 indicate statistical insignificance between the two states. As can be seen
from the results of the analysis in Table 1, the CBTN method is obviously superior to the
CPE method.

In order to confirm whether there were group differences in the EEG signals between
the resting and arithmetic states, the mean adjacency matrix of each subject was constructed
using the CBTN, and the network parameters of the mean adjacency matrix were extracted
for each subject. The same procedure was performed using the CPE as comparison. The
EEG data within each sliding window were analyzed using the CBTN to build a complex
network, and its adjacency matrix was obtained. All adjacency matrices from the same
subject under the same state were averaged. The clustering coefficient and the global
network efficiency of the average adjacency matrix were used as a feature for each subject.
In this way, the feature in the two states was obtained for individual subjects. The results
obtained for all subjects are shown in Figure 5. It can be seen that for most subjects, the
mean clustering coefficient of the arithmetic state was smaller than that of the resting state
and the global efficiency of the arithmetic state was greater than that of the resting state.
This means that the network in the prefrontal area was more efficient and had enhanced
information processing capacity during the arithmetic state. It also means an increased
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cognitive load during the arithmetic state. Figure 6 shows the analysis results of extracting
the features of the complex network constructed by the CPE method under two states.

Table 1. Results of nonparametric permutation tests for each subject’s feature sequences in the resting
and arithmetic states (1000 repeated arrangement sampling, significant level p = 0.05).

CBTN CPE

ACE GNE ACE GNE

Subject 0 0 0 0 0
Subject 1 0 0 0 0
Subject 2 0.004 0.001 0 0
Subject 3 0 0 0 0
Subject 4 0.973 0.540 0.665 0
Subject 5 0 0 0.518 0.342
Subject 6 0 0 0 0
Subject 7 0 0 0 0
Subject 8 0 0 0 0
Subject 9 0 0 0 0

Subject 10 0 0 0 0
Subject 11 0 0 0 0
Subject 12 0.005 0.018 0 0
Subject 13 0 0 0 0
Subject 14 0.646 0.832 0 0.018
Subject 15 0 0 0 0
Subject 16 0 0 0 0
Subject 17 0.125 0.158 0.398 0.035
Subject 18 0 0 0 0
Subject 19 0 0 0 0
Subject 20 0 0 0 0
Subject 21 0 0 0 0
Subject 22 0 0 0.001 0.021
Subject 23 0 0 0.186 0.680
Subject 24 0 0 0.005 0.004
Subject 25 0.011 0.007 0.483 0.603
Subject 26 0 0 0.049 0.08
Subject 27 0 0 0 0
Subject 28 0 0 0 0
Subject 29 0 0 0 0
Subject 30 0 0 0 0
Subject 32 0 0 0.591 0.895
Subject 33 0 0 0 0
Subject 34 0 0 0 0
Subject 35 0 0 0 0

ACE (average clustering coefficients), GNE (global network efficiency). Non significant results are shown in bold.

In order to verify whether there was significant difference between the two states at
the group level, the results was statistically analyzed using a paired sample t-test. The sig-
nificance level was set at p = 0.05, and statistical analysis was performed on IBM SPSS25.0.
The results of the statistical analysis showed that there was a significant difference in the
mean clustering coefficients (p = 0.0013) and in the global network efficiency (p = 0.0017)
between the two states using the CBTN method (Figure 5). The results of the statistical
analysis also showed that there was a significant difference in the mean clustering coeffi-
cients (p = 0.0056) and in the global network efficiency (p = 0.0061) between the two states
using the CPE method. Although both methods can distinguish between the two states,
the CBTN analysis was significantly better than the CPE analysis. This suggests that a
complex network based on the CBTN using electrodes in the prefrontal and frontal lobe
can distinguish well between the two cognitive states, demonstrating the validity of the
CBTN method in practical applications.
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4. Discussion

The aim of this study is to construct a complex network using multichannel EEG
signals to enable the assessment of cognitive load. The method of constructing the network
directly affects the reliability of the assessment. In the process of using CPE suitable for
the analysis of short time series to construct complex networks, it was found that the
CPE method suffered from the lack of differentiation ability caused by considering only
the probability distribution of symbols and ignoring the transition relationship between
symbols in the temporal domain. In addition, as a nonlinear analysis method, the choice
of parameters in the CPE had a large impact on the analysis results. In order to alleviate
these issues, the CBTN is proposed to measure the coupling relationship between two
time series from the perspective of cross-transition networks. The innovation of the CBTN
is that it combines the advantages of the transition network and the bubble entropy on
the basis of the principle of CPE. The introduction of the transition network solved the
problem of ignoring the transition relationship between symbols in the CPE method. The
symbolization method with reference to bubble entropy made the analysis result less
affected by the embedding dimension. The effectiveness of the method was verified via
a comparison with the CPE method on the unidirectional coupled Henon model. Firstly,
the results show that the CBTN method could achieve satisfactory results when the signal
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length reached 2000 samples, although this was slightly larger than that needed in the
CPE method. This finding suggests that the CBTN is equally suitable for the analysis of
short time series. Secondly, in the experiment study, the result tended to be stable for any
coupling strength as long as the embedding dimension of the CBTN was greater than 10.
This result indicates that the CBTN method is less affected by the coupling strength. Last,
under weak coupling conditions, the CPE method failed to achieve the right results, while
the CBTN could still obtain reliable results, indicating that the CBTN was able to uncover
the weak coupling relationships between time series. These three properties ensure that
the complex network constructed by the CBTN method outperformed the CPE in its ability
to analyze cognitive load using EEG datasets. The results of the above analysis clearly
demonstrate that the proposed method shows several advantages.

1. This method involves few parameters in use, and the value setting of the parameters
has little influence on the analysis results.

2. The cross-transition network allows the method to be more sensitive to weak
changes in the information interaction between two time series and is more suitable for
analysis in weakly coupled conditions.

3. The normalization measures in the definition of node-wise out-link entropy mini-
mize the impact of intersubject variation on the analysis results.

4. The implementation of the algorithm only involves the ranking of numbers and
the probability distribution statistics of symbols, which is easy to be processed and imple-
mented by a computer.

Although the study showed promising results, the limitation of this work should
be considered. Firstly, the adjacency matrix of the cross-transition network was a static
representation of information interaction between two time series in a period of time. This
means that the method was explicitly time-dependent. The analysis of excessively long
time series may have caused a reduction in the variation in the adjacency matrix, making
identification less effective. This needs further study. Secondly, when using EEG datasets
for cognitive load assessment, the electrodes used for analysis were determined subjectively
only based on the findings of the neuroimaging, ignoring other aspects of the selection
factors. As pointed out in the literature [44], in practical application, the practicality of
electrode installation and the comfort of subjects should also be considered. Thirdly, the
phase space reconstruction of the time series only considered the influence of the embedded
dimension as a variable on the analysis results, and the time delay was set to 1 according to
the bubble entropy. In the next research work, the comprehensive impact on the analysis
results when these two parameters are variables will be studied in depth.

5. Conclusions

In this study, the advantages of the transition network and the bubble entropy were
integrated based on the CPE method, and a new method to measure the coupling strength
of two time series was proposed from the perspective of a cross-transition network. It
was further used to build complex networks using the multichannel EEG recordings
for cognitive load assessment. The results of the unidirectional coupled Honen model
showed that this proposed method was not only suitable for the analysis of coupling
strength between two short time series, but also had the advantages of being less affected
by nonlinear parameters and sensitive to a weak coupling relationship. In addition, the
proposed CBTN showed better performance in differentiating cognitive load than the CPE.
The new method can be used for state evaluation based on multichannel physiological
signals, such as brain state monitoring, quantitative evaluation of various types of mental
diseases, and motion decoding based on multichannel electromyography (EMG). It also
has an application potential in the financial research field.
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